
Algorithmic methods for mining large graphs
Lecure 2 : Computing basic graph statistics

Aristides Gionis

Aalto University

Bertinoro International Spring School 2016
March 7–11, 2016

course agenda

• introduction to graph mining Tue afternoon

• computing basic graph statistics Tue afternoon, Wed morning

• finding dense subgraphs Wed afternoon, Thu morning

• spectral graph analysis Thu afternoon

• additional topics Fri morning

– inferring hierarchies in graphs

– mining dynamic graphs

– graph sparsifiers

algorithmic tools

efficiency considerations

• data in the web and social-media are typically of extremely
large scale (easily reach to billions)

• how to compute simple graph statistics?

• even quadratic algorithms are not feasible in practice

hashing and sketching

• probabilistic / approximate methods

• sketching : create sketches that summarize the data and
allow to estimate simple statistics with small space

• hashing : hash objects in such a way that similar objects
have larger probability of mapped to the same value than
non-similar objects

estimator theorem

• consider a set of items U
• a fraction ρ of them have a specific property
• estimate ρ by sampling

• how many samples N are needed?

N ≥ 4
ε2ρ

log
2
δ
.

for an ε-approximation with probability at least 1− δ
• notice: it does not depend on |U| (!)

homework

use the Chernoff bound to derive the estimator theorem

computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . ,n}

• mi = |{j : xj = i}| the number of occurrences of i

define

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 index of homogeneity, size of self-join,
and other applications

computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . ,n}

• mi = |{j : xj = i}| the number of occurrences of i

define

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 index of homogeneity, size of self-join,
and other applications

computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . ,n}

• mi = |{j : xj = i}| the number of occurrences of i

define

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 index of homogeneity, size of self-join,
and other applications

computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . ,n}

• mi = |{j : xj = i}| the number of occurrences of i

define

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 index of homogeneity, size of self-join,
and other applications

computing statistics on data streams

• How to compute the frequency moments using less than
O(n log m) space?

• sketching: create a sketch that takes much less space and
gives an estimation of Fk

[Alon et al., 1999]

estimating the number of distinct values (F0)

[Flajolet and Martin, 1985]

• consider a bit vector of length O(log n)

• upon seen xi , set:
• the 1st bit with probability 1/2
• the 2nd bit with probability 1/4
• . . .
• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set

• return Y = 2R

estimating number of distinct values (F0)

Theorem. For every c > 2, the algorithm computes a number
Y using O(logn) memory bits, such that the probability that
the ratio between Y and F0 is not between 1/c and c is at
most 2/c

locality sensitive hashing

a family H is called (R, cR,p1,p2)-sensitive if for any two
objects p and q

• if d(p,q) ≤ R, then PrH[h(p) = h(q)] ≥ p1

• if d(p,q) ≥ cR, then PrH[h(p) = h(q)] ≤ p2

interesting case when p1 > p2

locality sensitive hashing: example

• objects in a Hamming space {0,1}d – binary vectors

• H : {0,1}d → {0,1} sample the i bit:

• H = {h(x) = xi | i = 1, . . . ,d}

• for two vectors x and y with distance r , it is

Pr
H
[h(x) = h(y)] = 1− r

d

• thus p1 = 1− R
d and p2 = 1− cR

d

• gap between p1 and p2 too small

• probability amplification

locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1

locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1

0 0 0 1 1

locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1

0 0 0 1 1 1 1 0 1 0

locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1

0 0 0 1 1 1 1 0 1 0 0 1 1 0 1

locality sensitive hashing: Hamming distance

Probability of collision

Pr[h(x) = h(y)] = 1− (1− (1− r
d
)k)l

locality sensitive hashing: Hamming distance

homework

how to apply the locality sensitive hashing for vectors of
integers, not just binary vectors?

vectors x = {x1, . . . , xd}

L1 distance ||x− y||1 =
∑d

i=1 |xi − yi |

Jaccard coefficient

• for two sets A,B ⊆ U define J(A,B) = |A∩B|
|A∪B|

• measure of similarity of the sets

B

A

• can we design a locality sensitive hashing family for
Jaccard?

min-wise independent permutations

• π : U → U a random permutation of U
• h(A) = min{π(x) | x ∈ A}

• then
Pr[h(A) = h(B)] = J(A,B) =

|A ∩ B|
|A ∪ B|

• amplify the probability as before:

– repeat many times,

– concatenate into blocks

– consider objects similar if they collide in at least
– one block

min-wise independent permutations

• π : U → U a random permutation of U
• h(A) = min{π(x) | x ∈ A}
• then

Pr[h(A) = h(B)] = J(A,B) =
|A ∩ B|
|A ∪ B|

• amplify the probability as before:

– repeat many times,

– concatenate into blocks

– consider objects similar if they collide in at least
– one block

homework

show that for h(A) = min{π(x) | x ∈ A}, with π a random
permutation, it is

Pr[h(A) = h(B)] = J(A,B) =
|A ∩ B|
|A ∪ B|

homework

design a locality-sensitive hashing scheme for vectors
according to the cosine similarity measure

vectors x = {x1, . . . , xd}

distance 1− cos(x,y) = 1− x·y
||x||2 ||y||2

applications of the algorithmic tools to real scenarios

clustering coefficient and triangles

clustering coefficient

C =
3× number of triangles in the network
number of connected triples of vertices

• how to compute it?
• how to compute the number of triangles in a graph?
• assume that the graph is very large, stored in disk

[Buriol et al., 2006]
• count triangles when graph is seen as a data stream
• two models:

– edges are stored in any order
– edges in order : all edges incident to one vertex are
– stored sequentially

counting triangles

• brute-force algorithm is checking every triple of vertices
• obtain an approximation by sampling triples

sampling algorithm for counting triangles

• how many samples are required?

• let T be the set of all triples and
Ti the set of triples that have i edges, i = 0,1,2,3

• by the estimator theorem, to get an ε-approximation,
with probability 1− δ, the number of samples should be

N ≥ O(
|T |
|T3|

1
ε2

log
1
δ
)

• but |T | can be very large compared to |T3|

counting triangles

• incidence model : all edges incident to each vertex appear
in order in the stream

• sample connected triples

sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation

counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass

count the number of paths of length 2 in the stream
2nd pass

uniformly choose one path (a,b, c)
3rd pass

if ((b, c) ∈ E) β = 1 else β = 0
return β

we have E[β] = 3|T3|
|T2|+3|T3| , with |T2|+ 3|T3| =

∑
u

du(du−1)
2 , so

|T3| = E[β]
∑

u

du(du − 1)
6

and space needed is O((1 + |T2|
|T3|)

1
ε2

log 1
δ)

counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass

count the number of paths of length 2 in the stream
2nd pass

uniformly choose one path (a,b, c)
3rd pass

if ((b, c) ∈ E) β = 1 else β = 0
return β

we have E[β] = 3|T3|
|T2|+3|T3| , with |T2|+ 3|T3| =

∑
u

du(du−1)
2 , so

|T3| = E[β]
∑

u

du(du − 1)
6

and space needed is O((1 + |T2|
|T3|)

1
ε2

log 1
δ)

properties of the sampling space

it should be possible to

• estimate the size of the sampling space

• sample an element uniformly at random

homework

1 compute triangles in 3 passes when edges
appear in arbitrary order

2 compute triangles in 1 pass when edges
appear in arbitrary order

3 compute triangles in 1 pass in the incidence model

triangle sparsifiers

[Tsourakakis et al., 2011]

• start with graph G(V ,E)

• use sparsification parameter p

• pick a random subset E ′ of edges
each edge is selected with probability p

• T ′3 = # triangles on graph G′(V ,E ′)

• return T3 = T ′3/p
3

• T3 is highly concentrated around the true number
of triangles

triangle sparsifiers

[Tsourakakis et al., 2011]

• start with graph G(V ,E)

• use sparsification parameter p

• pick a random subset E ′ of edges
each edge is selected with probability p

• T ′3 = # triangles on graph G′(V ,E ′)

• return T3 = T ′3/p
3

• T3 is highly concentrated around the true number
of triangles

counting graph minors

counting other minors

• count all minors in a very large graphs
– connected subgraphs
– size 3 and 4
– directed or undirected graphs

• why?
• modeling networks, “signature” structures

e.g., copying model
• anomaly detection, e.g., spam link farms

[Alon, 2007, Bordino et al., 2008]

counting minors in large graphs

• characterize a graph by the distribution of its minors

all undirected minors of size 4

all directed minors of size 3

sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation

adapting the algorithm

sampling spaces:

• 3-node directed

• 4-node undirected

are the sampling space properties satisfied?

datasets

graph class type # instances
synthetic un/directed 39
wikipedia un/directed 7
webgraphs un/directed 5
cellular directed 43
citation directed 3
food webs directed 6
word adjacency directed 4
author collaboration undirected 5
autonomous systems undirected 12
protein interaction undirected 3
US road undirected 12

clustering of undirected graphs

assigned to 0 1 2 3 4 5 6
AS graph 12 0 0 0 0 0 0
collaboration 0 0 3 2 0 0 0
protein 1 0 0 1 0 0 1
road-graph 0 12 0 0 0 0 0
wikipedia 0 0 0 0 2 5 0
synthetic 11 0 0 0 0 0 28
webgraph 2 0 0 1 0 0 0

clustering of directed graphs

feature class accuracy compared
to ground truth

standard topological properties (81) 0.74%
minors of size 3 0.78%
minors of size 4 0.84%
minors of size 3 and 4 0.91%

local statistics

compute local statistics in large graphs

• our goal: compute triangle counts for all vertices
• local clustering coefficient and related statistics

• motivation
• motifs can be used to characterize network

families [Alon, 2007, Bordino et al., 2008]
• analysis of social or biological networks
• thematic relationships in the web
• web spam

• applications: spam detection and content quality analysis
in social media

semi-streaming model

[Feigenbaum et al., 2004]

• data stream model (constant memory) too restrictive

• graph stored in secondary memory as adjacency or
edge list

X no random access possible

• O(N log N) bits available in main memory
• limited amount of information per vertex
X not enough to store edges in main memory

• limited (constant or O(log N)) number of passes

• compute counts for all vertices concurrently

two algorithms

1 external memory
• keep a counter for each vertex (main memory)
• keep a counter for each edge (secondary memory)

2 main memory
• keep a counter for each vertex

number of triangles for edges and nodes

• neighbors: N(u) = {v : (u, v) ∈ E}

• degree: d(u) = |N(u)|

• edge triangles: Tuv = |N(u) ∩ N(v)|

• vertex triangles: T (u) = 1
2
∑

v∈N(u) Tuv

computing triangles : idea

• consider the Jaccard coefficient between
two sets A and B:

J(A,B) =
|A ∩ B|
|A ∪ B|

• if we knew J(N(u),N(v)) = J, then:

Tuv = |N(u) ∩ N(v)| = J
J + 1

(|N(u)|+ |N(v)|)

• and then:
T (u) =

1
2

∑
v∈N(u)

Tuv

computing triangles : idea

we want:

Tuv = |N(u) ∩ N(v)| = J
J + 1

(|N(u)|+ |N(v)|)

approximate the Jaccard coefficient:
• m independent trials
• Zuv : # times that minπ(N(u)) = minπ(N(v))

use the estimator:

T uv =
Zuv

Zuv + m
(|N(u)|+ |N(v)|)

external-memory algorithm

• semi-stream model

• keep vertex min-hash values (in memory)

• keep edge counters (on disk)

• use edge counters to estimate number of triangles
(and local clustering coefficient)

external-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {independent trials}
3: for u : 1 . . . |V | do {assign labels}
4: li(u) = hashi (u) {Min-wise linear permutation}
5: end for

6: for u : 1 . . . |V | do {compute fingerprints}
7: Fi(u) = minv∈N(u) li(u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {update counters}

10: for v ∈ N(u) do
11: if (Fi(u) = Fi(v)) then {minima are equal}
12: Zuv = Zuv + 1 {Zuv ’s stored on disk}
13: end if
14: end for
15: end for
16: end for

external-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {independent trials}
3: for u : 1 . . . |V | do {assign labels}
4: li(u) = hashi (u) {Min-wise linear permutation}
5: end for
6: for u : 1 . . . |V | do {compute fingerprints}
7: Fi(u) = minv∈N(u) li(u)
8: end for{1 scan of G}

9: for u : 1 . . . |V | do {update counters}
10: for v ∈ N(u) do
11: if (Fi(u) = Fi(v)) then {minima are equal}
12: Zuv = Zuv + 1 {Zuv ’s stored on disk}
13: end if
14: end for
15: end for
16: end for

external-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {independent trials}
3: for u : 1 . . . |V | do {assign labels}
4: li(u) = hashi (u) {Min-wise linear permutation}
5: end for
6: for u : 1 . . . |V | do {compute fingerprints}
7: Fi(u) = minv∈N(u) li(u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {update counters}

10: for v ∈ N(u) do
11: if (Fi(u) = Fi(v)) then {minima are equal}
12: Zuv = Zuv + 1 {Zuv ’s stored on disk}
13: end if
14: end for
15: end for
16: end for

implementation

• hashi(x) is, e.g., a linear hash function (aix + bi mod p)

• for every i , the Fi(u)’s can be kept in main memory

• the Zuv ’s must be stored on disk
• for every i , updating Zuv requires access to disk
• computing counters most expensive operation

main-memory algorithm
• replace:

T uv =
Zuv

Zuv + m
(|N(u)|+ |N(v)|)

• by the estimator for |N(u) ∩ N(v)|:

T̃uv =
Zuv
2
3m

(N(u) + N(v))

• and estimator for T (u):

T̃ (u) =
1

3m

∑
v∈N(u)

Zuv (N(u) + N(v)) =
1

3m
Zu

• Zu sums d(u) + d(v) if minπ(N(u)) = minπ(N(v))
• only one counter per node

main-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {Independent trials}
3: for u : 1 . . . |V | do {Assign labels}
4: li(u) = hashi(u)
5: end for
6: for u : 1 . . . |V | do {Compute fingerprints}
7: Fi(u) = minv∈V (u) li(u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {Update counters}

10: for v ∈ N(u) do
11: if Fi(u) == Fi(v) then {Minima are equal}
12: Zu = Zu + d(u) + d(v) {Zu ’s in main memory}
13: end if
14: end for
15: end for
16: end for

experimental results

Algorithm 1 Algorithm 2
Graph Nodes Edges (ext. mem.) (main mem.)

WB-2001 118M 1.7G 10 hr 20 min 3 hr 40 min
IT-2004 41M 2.1G 8 hr 20 min 5 hr 30 min

UK-2006 77M 5.3G 20 hr 30 min 13 hr 10 min

quality of approximation

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 10 20 30 40 50 60 70

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Passes

IT-2004

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

quality of approximation

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10 20 30 40 50 60 70

P
ea

rs
on

’s
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

Number of Passes

IT-2004

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2

applications : spam detection

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 H
os

ts

Triangles

Exact Method

Normal
Spam

Separation of non-spam and spam hosts in the histogram of
triangles

applications : spam detection

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 H
os

ts

Triangles

Algorithm Using External Memory

Normal
Spam

Separation of non-spam and spam hosts in the histogram of
triangles

applications : spam detection

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 H
os

ts

Triangles

Approximated Using Only Main Memory

Normal
Spam

Separation of non-spam and spam hosts in the histogram of
triangles

applications : spam detection

number of triangles feature is ranked 60-th out of 221 for spam
detection

applications : content quality in yahoo! answers

• Yahoo! answers, a question-answering portal

• consider the graph with edges (u, v) if user u has
answered a question of user v

• consider “high quality” users those who have given a best
answer to a random sample of questions

• predict high-quality users based on their local structure

applications : content quality in yahoo! answers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.1 0.2 0.3 0.4 0.5

Fraction of best answers

Average quality
High quality

Separation of users who have provided questions/answers of high
quality with users who have provided questions/answers of normal
quality in terms of fraction of best answers

applications : content quality in yahoo! answers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Clustering coefficient

Average quality
High quality

Separation of users who have provided questions/answers of high
quality with users who have provided questions/answers of normal
quality in terms of local clustering coefficient

graph distance distributions

small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)
• small-world experiment (1967)

Milgram’s experiment

• 300 people (starting population) are asked to dispatch a
parcel to a single individual (target)

• the target was a Boston stockbroker

• the starting population is selected as follows:
• 100 were random Boston inhabitants (group A)
• 100 were random Nebraska strockbrokers (group B)
• 100 were random Nebraska inhabitants (group C)

Milgram’s experiment

• rules of the game :
• parcels could be directly sent only to someone the sender

knows personally
• 453 intermediaries happened to be involved in the

experiments (besides the starting population and the
target)

Milgram’s experiment

questions Milgram wanted to answer:

1. how many parcels will reach the target?
.

2. what is the distribution of the number of hops required to
reach the target?
.

3. is this distribution different for the three starting
subpopulations?
.

Milgram’s experiment

answers to the questions

1. how many parcels will reach the target?
29%

2. what is the distribution of the number of hops required to
reach the target?
average was 5.2

3. is this distribution different for the three starting
subpopulations?
YES: average for groups A/B/C was 4.6/5.4/5.7

chain lengths

measuring what?

but what did Milgram’s experiment reveal, after all?

1. the the world is small

2. that people are able to exploit this smallness

graph distance distribution

• obtain information about a large graph, i.e., social network

• macroscopic level

• distance distribution

• mean distance
• median distance
• diameter
• effective diameter
• ...

graph distance distribution

• given a graph, d(x , y) is the length of the shortest path
from x to y , defined as∞ if one cannot go from x to y

• for undirected graphs, d(x , y) = d(y , x)

• for every t , count the number of pairs (x , y) such
that d(x , y) = t

• the fraction of pairs at distance t is a distribution

exact computation

how can one compute the distance distribution?

• weighted graphs: Dijkstra (single-source: O(m log n)),

• Floyd-Warshall (all-pairs: O(n3))

• in the unweighted case:

• a single BFS solves the single-source version of the
problem: O(m)

• if we repeat it from every source: O(nm)

sampling pairs

• sample at random pairs of nodes (x , y)

• compute d(x , y) with a BFS from x

• (possibly: reject the pair if d(x , y) is infinite)

sampling pairs

• for every t , the fraction of sampled pairs that were found at
distance t are an estimator of the value of the probability
mass function

• takes a BFS for every pair — O(m)

sampling sources

• sample at random a source t

• compute a full BFS from t

sampling sources

• it is an unbiased estimator only for undirected and
connected graphs

• uses anyway BFS...

• ...not cache friendly

• ... not compression friendly

idea : diffusion

[Palmer et al., 2002]

• let Bt(x) be the ball of radius t around x
(the set of nodes at distance ≤ t from x)

• clearly B0(x) = {x}

• moreover Bt+1(x) =
⋃

(x ,y) Bt(y)
⋃
{x}

• so computing Bt+1 from Bt just takes a single (sequential)
scan of the graph

easy but costly

• every set requires O(n) bits, hence O(n2) bits overall

• easy but costly

• too many!

• what about using approximated sets?

• we need probabilistic counters, with just two primitives:
add and size

• very small!

estimating the number of distinct values (F0)

• [Flajolet and Martin, 1985]
• consider a bit vector of length O(log n)
• upon seen xi , set:

• the 1st bit with probability 1/2
• the 2nd bit with probability 1/4
• . . .
• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set
• return Y = 2R

ANF

• probabilistic counter for approximating the number of
distinct values [Flajolet and Martin, 1985]

• ANF algorithm [Palmer et al., 2002]
uses the original probabilist counters

• HyperANF algorithm [Boldi et al., 2011]
uses HyperLogLog counters [Flajolet et al., 2007]

HyperANF

• HyperLogLog counter [Flajolet et al., 2007]

• with 40 bits you can count up to 4 billion with a standard
deviation of 6%

• remember: one set per node

implementation tricks

[Boldi et al., 2011]

• use broad-word programming to compute union efficiently

• systolic computation for on-demand updates of counters

• exploit micro-parallelization of multicore architectures

performance

• HADI, a Hadoop-conscious implementation of ANF
[Kang et al., 2011]

• takes 30 minutes on a 200K-node graph
(on one of the 50 world largest supercomputers)

• HyperANF does the same in 2.25min on a workstation
(20 min on a laptop).

experiments on facebook

[Backstrom et al., 2011]

considered only active users

• it : only italian users

• se : only swedish users

• it + se : only italian and swedish users

• us : only US users

• the whole facebook (750m nodes)

based on users current geo-IP location

distance distribution (it)

distance distribution (se)

distance distribution (fb)

average distance

2008 2012
it 6.58 3.90
se 4.33 3.89
it+se 4.90 4.16
us 4.74 4.32
fb 5.28 4.74

fb 2012 : 92% pairs are reachable!

effective diameter

2008 2012
it 9.0 5.2
se 5.9 5.3
it+se 6.8 5.8
us 6.5 5.8
fb 7.0 6.2

actual diameter

2008 2012
it > 29 = 25
se > 16 = 25
it+se > 21 = 27
us > 17 = 30
fb > 17 > 58

breaking the news

another application : spid

[Boldi et al., 2011]

• spid : shortest-paths index of dispersion

• the ratio between variance and average in the distance
distribution

• spid < 1 : the distribution is subdispersed

• spid > 1 : is superdispersed

• web graphs and social networks have different spid!

spid plot

the spid conjecture

• [Boldi et al., 2011] conjecture that spid is able to tell social
networks from web graphs

• average distance alone would not suffice: it is very
changeable and depends on the scale

• spid, instead, seems to have a clear cutpoint at 1

• what is facebook spid?

0.093

the spid conjecture

• [Boldi et al., 2011] conjecture that spid is able to tell social
networks from web graphs

• average distance alone would not suffice: it is very
changeable and depends on the scale

• spid, instead, seems to have a clear cutpoint at 1

• what is facebook spid? 0.093

indexing distances in large graphs

shortest-path distances in large graphs

• input: consider a graph G = (V ,E)

• and nodes s and t in V

• goal: compute the shortest-path distance d(s, t)
from s to t

• do it very fast

well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store

applications of shortest-path queries

searching in graphs — I. context-sensitive search

searching in graphs — I. context-sensitive search

"chilly peppers"

searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP

searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP

food

searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP

music

searching in graphs — I. context-sensitive search

• customize search results to the user’s current page or
recent history of pages have visited

• increasing relevance of answers
• disambiguation
• suggesting links to wikipedia editors

searching in graphs — II. social search

searching in graphs — II. social search

searching in graphs — II. social search

searching in graphs — II. social search

• consider more information than just contacts
• preferences
• geographical information
• comments
• favorites
• tags
• etc.

machine-learning approach

• learn a ranking function that combines a large number
of features
content-based features:

• TF/IDF, BM25, etc., as in traditional IR and web search
• content similarity between the querying node and a target

node
link-based features:

• PageRank
• shortest-path distance from the querying node to a target

node
• spectral distance from the querying node to a target node
• graph-based similarity measures
• context-specific PageRank

well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store

anything in between?

• is there a smooth tradeoff between

〈O(1),O(m)〉 and 〈O(n2),O(1)〉

distance oracles

[Thorup and Zwick, 2005]

• given a graph G = (V ,E)

• an (α, β)-approximate distance oracle
is a data structure S that

• for a query pair of nodes (u, v), S returns dS(u, v) s.t.

d(u, v) ≤ dS(u, v) ≤ α d(u, v) + β

• α called stretch or distortion
• consider the preprocessing time, the required space, and

the query time

distance oracles

[Thorup and Zwick, 2005]

• given k , construct an oracle with
storage O(kn1+1/k), query time O(k), stretch 2k − 1

• k = 1
⇒ APSP

• k = log n
⇒ storage O(n log n), query time O(log n), stretch O(log n)

distance oracles — preprocessing

[Das Sarma et al., 2010]

1 r = blog |V |c

2 sample r + 1 sets of sizes 1,2,22,23, . . . ,2r

3 call the sampled sets S0,S1, . . . ,Sr

4 for each node u and each set Si compute (wi , δi),

where δi = d(u,wi) = minv∈Si{d(u, v)}

5 SKETCH[u] = {(w0, δ0), . . . , (wr , δr)}

6 repeat k times

distance oracles — query processing

[Das Sarma et al., 2010]

given query (u, v)

1 obtain SKETCH[u] and SKETCH[v]

2 find the set of common nodes w in SKETCH[u] and
SKETCH[v]

3 for each common node w , compute d(u,w) and d(w , v)

4 return the minimum of d(u,w) + d(w , v),
taken over all common node w ’s

5 if no common w is present, then return∞

landmark-based approach

• precompute: distance from each node to a fixed landmark l
• then

|d(s, l)− d(t , l)| ≤ d(s, t) ≤ d(s, l) + d(l , t)

• precompute: distances to d landmarks, l1, . . . , ld

max
i
|d(s, li)− d(t , li)| ≤ d(s, t) ≤ min

i
(d(s, li) + d(li , t))

• obtain a range estimate in time O(d) (i.e., constant)

landmark-based approach

• motivated by indexing general metric spaces

• used for estimating latency in the internet
[Ng and Zhang, 2008]

• typically randomly chosen landmarks

theoretical results

[Kleinberg et al., 2004]

• random landmarks can provide distance estimates with
distortion (1 + δ) for a fraction of at least (1− ε) of pairs

• number of landmarks required depends on ε, δ, and the
doubling dimension k of the metric space

approximation guarantee in practice

what does a logarithmic approximation guarantee mean in a
small-world graph?

the landmark selection problem

how to choose good landmarks in practice?

good landmarks

if
tl

s then d(s, t)=d(s, l) + d(l , t)

if
t

l
s

then |d(s, l)− d(t , l)|=d(s, t)

good (upper-bound) landmarks

• a landmark l covers a pair (s, t) if l is on a shortest path
from s to t

• problem definition: find a set L ⊆ V of k landmarks that
cover as many pairs (s, t) ∈ V × V as possible

• NP-hard
• for k = 1: the node with the highest centrality betweenness
• for k > 1: apply a “natural” set-cover approach

(but O(n3))

landmark selection heuristics

• high-degree nodes
• high-centrality nodes
• “constrained” versions

• once a node is selected none of its neighbors is selected
• “clustered” versions

• cluster the graph and select one landmark per cluster
• select landmarks on the “borders” between clusters

datasets

nodes # edges median effective clustering
distance diameter coefficient

flickr 801 K 8 M 5 8 0.11

DBLP 226 K 716 K 9 13 0.47

flickr-implicit — distance error

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Seeds

E
rr

or

Flickr Implicit dataset

Rand
Centr/1
High/1
Border

DBLP — precision @ 5

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Seeds

P
re

ci
si

on
 @

 5

DBLP dataset

Rand
Centr/1
High/1
Border

triangulation task

[Kleinberg et al., 2004]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

L/U

N
um

be
r

of
 q

ue
rie

s

DBLP dataset

Rand
Degree/P
Border

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

L/U

N
um

be
r

of
 q

ue
rie

s

Y!IM dataset

Rand
Degree/P
Border

comparing with exact algorithm

[Goldberg and Harrelson, 2005]
landmarks (10%) Fl.-E Fl.-I Wiki DBLP Y!IM

Method CENT CENT CENT/P BORD/P BORD/P
Landmarks used 20 100 500 50 50

Nodes visited 1 1 1 1 1
Operations 20 100 500 50 50
CPU ticks 2 10 50 5 5

ALT (exact) Fl.-E Fl.-I Wiki DBLP Y!IM
Method Ikeda Ikeda Ikeda Ikeda Ikeda

Landmarks used 8 4 4 8 4
Nodes visited 7245 10337 19616 2458 2162

Operations 56502 41349 78647 19666 8648
CPU ticks 7062 10519 25868 1536 1856

acknowledgements

Paolo Boldi Charalampos Tsourakakis

references

Alon, N., Matias, Y., and Szegedy, M. (1999).
The space complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147.

Alon, U. (2007).
Network motifs: theory and experimental approaches.
Nature Reviews Genetics.

Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. (2011).
Four degrees of separation.
CoRR, abs/1111.4570.

Boldi, P., Rosa, M., and Vigna, S. (2011).
HyperANF: approximating the neighborhood function of very large
graphs on a budget.
In WWW.

Bordino, I., Donato, D., Gionis, A., and Leonardi, S. (2008).
Mining large networks with subgraph counting.
In ICDM.

http://dx.doi.org/10.1145/237814.237823

references (cont.)
Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., and
Sohler, C. (2006).
Counting triangles in data streams.
In PODS ’06: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 253–262, New York, NY, USA. ACM Press.

Das Sarma, A., Gollapudi, S., Najork, M., and Panigrahy, R. (2010).
A sketch-based distance oracle for web-scale graphs.
In WSDM, pages 401–410.

Feigenbaum, J., Kannan, S., Gregor, M. A., Suri, S., and Zhang, J.
(2004).
On graph problems in a semi-streaming model.
In 31st International Colloquium on Automata, Languages and
Programming.

Flajolet, F., Fusy, E., Gandouet, O., and Meunier, F. (2007).
Hyperloglog: the analysis of a near-optimal cardinality estimation
algorithm.
In Proceedings of the 13th conference on analysis of algorithm (AofA).

references (cont.)

Flajolet, P. and Martin, N. G. (1985).
Probabilistic counting algorithms for data base applications.
Journal of Computer and System Sciences, 31(2):182–209.

Goldberg, A. and Harrelson, C. (2005).
Computing the shortest path: A* search meets graph.
In SODA.

Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., and Leskovec,
J. (2011).
HADI: Mining radii of large graphs.
ACM TKDD, 5.

Kleinberg, J., Slivkins, A., and Wexler, T. (2004).
Triangulation and embedding using small sets of beacons.
In FOCS.

Ng, E. and Zhang, H. (2008).
Predicting internet network distance with coordinate-based approaches.
In INFOCOMM.

http://citeseer.ist.psu.edu/flajolet85probabilistic.html

references (cont.)

Palmer, C. R., Gibbons, P. B., and Faloutsos, C. (2002).
ANF: a fast and scalable tool for data mining in massive graphs.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 81–90, New York, NY,
USA. ACM Press.

Thorup, M. and Zwick, U. (2005).
Approximate distance oracles.
JACM, 52(1):1–24.

Tsourakakis, C., Kolountzakis, M., and Miller, G. (2011).
Triangle sparsifiers.
Journal of Graph Algorithms and Applications, 15(6).

http://dx.doi.org/10.1145/775047.775059

