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course agenda

• introduction to graph mining Tue afternoon

• computing basic graph statistics Tue afternoon, Wed morning

• finding dense subgraphs Wed afternoon, Thu morning

• spectral graph analysis Thu afternoon

• additional topics Fri morning

– inferring hierarchies in graphs

– mining dynamic graphs

– graph sparsifiers



algorithmic tools



efficiency considerations

• data in the web and social-media are typically of extremely
large scale (easily reach to billions)

• how to compute simple graph statistics?

• even quadratic algorithms are not feasible in practice



hashing and sketching

• probabilistic / approximate methods

• sketching : create sketches that summarize the data and
allow to estimate simple statistics with small space

• hashing : hash objects in such a way that similar objects
have larger probability of mapped to the same value than
non-similar objects



estimator theorem

• consider a set of items U
• a fraction ρ of them have a specific property
• estimate ρ by sampling

• how many samples N are needed?

N ≥ 4
ε2ρ

log
2
δ
.

for an ε-approximation with probability at least 1− δ
• notice: it does not depend on |U| (!)



homework

use the Chernoff bound to derive the estimator theorem



computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . ,n}

• mi = |{j : xj = i}| the number of occurrences of i

define

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 index of homogeneity, size of self-join,
and other applications
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computing statistics on data streams

• How to compute the frequency moments using less than
O(n log m) space?

• sketching: create a sketch that takes much less space and
gives an estimation of Fk

[Alon et al., 1999]



estimating the number of distinct values (F0)

[Flajolet and Martin, 1985]

• consider a bit vector of length O(log n)

• upon seen xi , set:
• the 1st bit with probability 1/2
• the 2nd bit with probability 1/4
• . . .
• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set

• return Y = 2R



estimating number of distinct values (F0)

Theorem. For every c > 2, the algorithm computes a number
Y using O(logn) memory bits, such that the probability that
the ratio between Y and F0 is not between 1/c and c is at
most 2/c



locality sensitive hashing

a family H is called (R, cR,p1,p2)-sensitive if for any two
objects p and q

• if d(p,q) ≤ R, then PrH[h(p) = h(q)] ≥ p1

• if d(p,q) ≥ cR, then PrH[h(p) = h(q)] ≤ p2

interesting case when p1 > p2



locality sensitive hashing: example

• objects in a Hamming space {0,1}d – binary vectors

• H : {0,1}d → {0,1} sample the i bit:

• H = {h(x) = xi | i = 1, . . . ,d}

• for two vectors x and y with distance r , it is

Pr
H
[h(x) = h(y)] = 1− r

d

• thus p1 = 1− R
d and p2 = 1− cR

d

• gap between p1 and p2 too small

• probability amplification



locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1
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locality sensitive hashing: Hamming distance
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locality sensitive hashing: Hamming distance

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1
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locality sensitive hashing: Hamming distance

Probability of collision

Pr[h(x) = h(y)] = 1− (1− (1− r
d
)k )l



locality sensitive hashing: Hamming distance



homework

how to apply the locality sensitive hashing for vectors of
integers, not just binary vectors?

vectors x = {x1, . . . , xd}

L1 distance ||x− y||1 =
∑d

i=1 |xi − yi |



Jaccard coefficient

• for two sets A,B ⊆ U define J(A,B) = |A∩B|
|A∪B|

• measure of similarity of the sets

B

A

• can we design a locality sensitive hashing family for
Jaccard?



min-wise independent permutations

• π : U → U a random permutation of U
• h(A) = min{π(x) | x ∈ A}

• then
Pr[h(A) = h(B)] = J(A,B) =

|A ∩ B|
|A ∪ B|

• amplify the probability as before:

– repeat many times,

– concatenate into blocks

– consider objects similar if they collide in at least
– one block
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homework

show that for h(A) = min{π(x) | x ∈ A}, with π a random
permutation, it is

Pr[h(A) = h(B)] = J(A,B) =
|A ∩ B|
|A ∪ B|



homework

design a locality-sensitive hashing scheme for vectors
according to the cosine similarity measure

vectors x = {x1, . . . , xd}

distance 1− cos(x,y) = 1− x·y
||x||2 ||y||2



applications of the algorithmic tools to real scenarios



clustering coefficient and triangles



clustering coefficient

C =
3× number of triangles in the network
number of connected triples of vertices

• how to compute it?
• how to compute the number of triangles in a graph?
• assume that the graph is very large, stored in disk

[Buriol et al., 2006]
• count triangles when graph is seen as a data stream
• two models:

– edges are stored in any order
– edges in order : all edges incident to one vertex are
– stored sequentially



counting triangles

• brute-force algorithm is checking every triple of vertices
• obtain an approximation by sampling triples



sampling algorithm for counting triangles

• how many samples are required?

• let T be the set of all triples and
Ti the set of triples that have i edges, i = 0,1,2,3

• by the estimator theorem, to get an ε-approximation,
with probability 1− δ, the number of samples should be

N ≥ O(
|T |
|T3|

1
ε2

log
1
δ
)

• but |T | can be very large compared to |T3|



counting triangles

• incidence model : all edges incident to each vertex appear
in order in the stream

• sample connected triples



sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation



counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass

count the number of paths of length 2 in the stream
2nd pass

uniformly choose one path (a,b, c)
3rd pass

if ((b, c) ∈ E) β = 1 else β = 0
return β

we have E[β] = 3|T3|
|T2|+3|T3| , with |T2|+ 3|T3| =

∑
u

du(du−1)
2 , so

|T3| = E[β]
∑

u

du(du − 1)
6

and space needed is O((1 + |T2|
|T3|)

1
ε2

log 1
δ )
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properties of the sampling space

it should be possible to

• estimate the size of the sampling space

• sample an element uniformly at random



homework

1 compute triangles in 3 passes when edges
appear in arbitrary order

2 compute triangles in 1 pass when edges
appear in arbitrary order

3 compute triangles in 1 pass in the incidence model



triangle sparsifiers

[Tsourakakis et al., 2011]

• start with graph G(V ,E)

• use sparsification parameter p

• pick a random subset E ′ of edges
each edge is selected with probability p

• T ′3 = # triangles on graph G′(V ,E ′)

• return T3 = T ′3/p
3

• T3 is highly concentrated around the true number
of triangles
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counting graph minors



counting other minors

• count all minors in a very large graphs
– connected subgraphs
– size 3 and 4
– directed or undirected graphs

• why?
• modeling networks, “signature” structures

e.g., copying model
• anomaly detection, e.g., spam link farms

[Alon, 2007, Bordino et al., 2008]



counting minors in large graphs

• characterize a graph by the distribution of its minors

all undirected minors of size 4

all directed minors of size 3



sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation



adapting the algorithm

sampling spaces:

• 3-node directed

• 4-node undirected

are the sampling space properties satisfied?



datasets

graph class type # instances
synthetic un/directed 39
wikipedia un/directed 7
webgraphs un/directed 5
cellular directed 43
citation directed 3
food webs directed 6
word adjacency directed 4
author collaboration undirected 5
autonomous systems undirected 12
protein interaction undirected 3
US road undirected 12



clustering of undirected graphs

assigned to 0 1 2 3 4 5 6
AS graph 12 0 0 0 0 0 0
collaboration 0 0 3 2 0 0 0
protein 1 0 0 1 0 0 1
road-graph 0 12 0 0 0 0 0
wikipedia 0 0 0 0 2 5 0
synthetic 11 0 0 0 0 0 28
webgraph 2 0 0 1 0 0 0



clustering of directed graphs

feature class accuracy compared
to ground truth

standard topological properties (81) 0.74%
minors of size 3 0.78%
minors of size 4 0.84%
minors of size 3 and 4 0.91%



local statistics



compute local statistics in large graphs

• our goal: compute triangle counts for all vertices
• local clustering coefficient and related statistics

• motivation
• motifs can be used to characterize network

families [Alon, 2007, Bordino et al., 2008]
• analysis of social or biological networks
• thematic relationships in the web
• web spam

• applications: spam detection and content quality analysis
in social media



semi-streaming model

[Feigenbaum et al., 2004]

• data stream model (constant memory) too restrictive

• graph stored in secondary memory as adjacency or
edge list

X no random access possible

• O(N log N) bits available in main memory
• limited amount of information per vertex
X not enough to store edges in main memory

• limited (constant or O(log N)) number of passes

• compute counts for all vertices concurrently



two algorithms

1 external memory
• keep a counter for each vertex (main memory)
• keep a counter for each edge (secondary memory)

2 main memory
• keep a counter for each vertex



number of triangles for edges and nodes

• neighbors: N(u) = {v : (u, v) ∈ E}

• degree: d(u) = |N(u)|

• edge triangles: Tuv = |N(u) ∩ N(v)|

• vertex triangles: T (u) = 1
2
∑

v∈N(u) Tuv



computing triangles : idea

• consider the Jaccard coefficient between
two sets A and B:

J(A,B) =
|A ∩ B|
|A ∪ B|

• if we knew J(N(u),N(v)) = J, then:

Tuv = |N(u) ∩ N(v)| = J
J + 1

(|N(u)|+ |N(v)|)

• and then:
T (u) =

1
2

∑
v∈N(u)

Tuv



computing triangles : idea

we want:

Tuv = |N(u) ∩ N(v)| = J
J + 1

(|N(u)|+ |N(v)|)

approximate the Jaccard coefficient:
• m independent trials
• Zuv : # times that minπ(N(u)) = minπ(N(v))

use the estimator:

T uv =
Zuv

Zuv + m
(|N(u)|+ |N(v)|)



external-memory algorithm

• semi-stream model

• keep vertex min-hash values (in memory)

• keep edge counters (on disk)

• use edge counters to estimate number of triangles
(and local clustering coefficient)



external-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {independent trials}
3: for u : 1 . . . |V | do {assign labels}
4: li(u) = hashi (u) {Min-wise linear permutation}
5: end for

6: for u : 1 . . . |V | do {compute fingerprints}
7: Fi(u) = minv∈N(u) li(u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {update counters}

10: for v ∈ N(u) do
11: if (Fi(u) = Fi(v)) then {minima are equal}
12: Zuv = Zuv + 1 {Zuv ’s stored on disk}
13: end if
14: end for
15: end for
16: end for
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implementation

• hashi(x) is, e.g., a linear hash function (aix + bi mod p)

• for every i , the Fi(u)’s can be kept in main memory

• the Zuv ’s must be stored on disk
• for every i , updating Zuv requires access to disk
• computing counters most expensive operation



main-memory algorithm
• replace:

T uv =
Zuv

Zuv + m
(|N(u)|+ |N(v)|)

• by the estimator for |N(u) ∩ N(v)|:

T̃uv =
Zuv
2
3m

(N(u) + N(v))

• and estimator for T (u):

T̃ (u) =
1

3m

∑
v∈N(u)

Zuv (N(u) + N(v)) =
1

3m
Zu

• Zu sums d(u) + d(v) if minπ(N(u)) = minπ(N(v))
• only one counter per node



main-memory algorithm

1: Z = 0
2: for i: 1 . . . m do {Independent trials}
3: for u : 1 . . . |V | do {Assign labels}
4: li(u) = hashi(u)
5: end for
6: for u : 1 . . . |V | do {Compute fingerprints}
7: Fi(u) = minv∈V (u) li(u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {Update counters}

10: for v ∈ N(u) do
11: if Fi(u) == Fi(v) then {Minima are equal}
12: Zu = Zu + d(u) + d(v) {Zu ’s in main memory}
13: end if
14: end for
15: end for
16: end for



experimental results

Algorithm 1 Algorithm 2
Graph Nodes Edges (ext. mem.) (main mem.)

WB-2001 118M 1.7G 10 hr 20 min 3 hr 40 min
IT-2004 41M 2.1G 8 hr 20 min 5 hr 30 min

UK-2006 77M 5.3G 20 hr 30 min 13 hr 10 min



quality of approximation
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quality of approximation
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applications : spam detection
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applications : spam detection
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applications : spam detection

number of triangles feature is ranked 60-th out of 221 for spam
detection



applications : content quality in yahoo! answers

• Yahoo! answers, a question-answering portal

• consider the graph with edges (u, v) if user u has
answered a question of user v

• consider “high quality” users those who have given a best
answer to a random sample of questions

• predict high-quality users based on their local structure



applications : content quality in yahoo! answers
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applications : content quality in yahoo! answers
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graph distance distributions



small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)
• small-world experiment (1967)



Milgram’s experiment

• 300 people (starting population) are asked to dispatch a
parcel to a single individual (target)

• the target was a Boston stockbroker

• the starting population is selected as follows:
• 100 were random Boston inhabitants (group A)
• 100 were random Nebraska strockbrokers (group B)
• 100 were random Nebraska inhabitants (group C)



Milgram’s experiment

• rules of the game :
• parcels could be directly sent only to someone the sender

knows personally
• 453 intermediaries happened to be involved in the

experiments (besides the starting population and the
target)



Milgram’s experiment

questions Milgram wanted to answer:

1. how many parcels will reach the target?
.

2. what is the distribution of the number of hops required to
reach the target?
.

3. is this distribution different for the three starting
subpopulations?
.



Milgram’s experiment

answers to the questions

1. how many parcels will reach the target?
29%

2. what is the distribution of the number of hops required to
reach the target?
average was 5.2

3. is this distribution different for the three starting
subpopulations?
YES: average for groups A/B/C was 4.6/5.4/5.7



chain lengths



measuring what?

but what did Milgram’s experiment reveal, after all?

1. the the world is small

2. that people are able to exploit this smallness



graph distance distribution

• obtain information about a large graph, i.e., social network

• macroscopic level

• distance distribution

• mean distance
• median distance
• diameter
• effective diameter
• ...



graph distance distribution

• given a graph, d(x , y) is the length of the shortest path
from x to y , defined as∞ if one cannot go from x to y

• for undirected graphs, d(x , y) = d(y , x)

• for every t , count the number of pairs (x , y) such
that d(x , y) = t

• the fraction of pairs at distance t is a distribution



exact computation

how can one compute the distance distribution?

• weighted graphs: Dijkstra (single-source: O(m log n)),

• Floyd-Warshall (all-pairs: O(n3))

• in the unweighted case:

• a single BFS solves the single-source version of the
problem: O(m)

• if we repeat it from every source: O(nm)



sampling pairs

• sample at random pairs of nodes (x , y)

• compute d(x , y) with a BFS from x

• (possibly: reject the pair if d(x , y) is infinite)



sampling pairs

• for every t , the fraction of sampled pairs that were found at
distance t are an estimator of the value of the probability
mass function

• takes a BFS for every pair — O(m)



sampling sources

• sample at random a source t

• compute a full BFS from t



sampling sources

• it is an unbiased estimator only for undirected and
connected graphs

• uses anyway BFS...

• ...not cache friendly

• ... not compression friendly



idea : diffusion

[Palmer et al., 2002]

• let Bt(x) be the ball of radius t around x
(the set of nodes at distance ≤ t from x)

• clearly B0(x) = {x}

• moreover Bt+1(x) =
⋃

(x ,y) Bt(y)
⋃
{x}

• so computing Bt+1 from Bt just takes a single (sequential)
scan of the graph



easy but costly

• every set requires O(n) bits, hence O(n2) bits overall

• easy but costly

• too many!

• what about using approximated sets?

• we need probabilistic counters, with just two primitives:
add and size

• very small!



estimating the number of distinct values (F0)

• [Flajolet and Martin, 1985]
• consider a bit vector of length O(log n)
• upon seen xi , set:

• the 1st bit with probability 1/2
• the 2nd bit with probability 1/4
• . . .
• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set
• return Y = 2R



ANF

• probabilistic counter for approximating the number of
distinct values [Flajolet and Martin, 1985]

• ANF algorithm [Palmer et al., 2002]
uses the original probabilist counters

• HyperANF algorithm [Boldi et al., 2011]
uses HyperLogLog counters [Flajolet et al., 2007]



HyperANF

• HyperLogLog counter [Flajolet et al., 2007]

• with 40 bits you can count up to 4 billion with a standard
deviation of 6%

• remember: one set per node



implementation tricks

[Boldi et al., 2011]

• use broad-word programming to compute union efficiently

• systolic computation for on-demand updates of counters

• exploit micro-parallelization of multicore architectures



performance

• HADI, a Hadoop-conscious implementation of ANF
[Kang et al., 2011]

• takes 30 minutes on a 200K-node graph
(on one of the 50 world largest supercomputers)

• HyperANF does the same in 2.25min on a workstation
(20 min on a laptop).



experiments on facebook

[Backstrom et al., 2011]

considered only active users

• it : only italian users

• se : only swedish users

• it + se : only italian and swedish users

• us : only US users

• the whole facebook (750m nodes)

based on users current geo-IP location



distance distribution (it)



distance distribution (se)



distance distribution (fb)



average distance

2008 2012
it 6.58 3.90
se 4.33 3.89
it+se 4.90 4.16
us 4.74 4.32
fb 5.28 4.74

fb 2012 : 92% pairs are reachable!



effective diameter

2008 2012
it 9.0 5.2
se 5.9 5.3
it+se 6.8 5.8
us 6.5 5.8
fb 7.0 6.2



actual diameter

2008 2012
it > 29 = 25
se > 16 = 25
it+se > 21 = 27
us > 17 = 30
fb > 17 > 58



breaking the news



another application : spid

[Boldi et al., 2011]

• spid : shortest-paths index of dispersion

• the ratio between variance and average in the distance
distribution

• spid < 1 : the distribution is subdispersed

• spid > 1 : is superdispersed

• web graphs and social networks have different spid!



spid plot



the spid conjecture

• [Boldi et al., 2011] conjecture that spid is able to tell social
networks from web graphs

• average distance alone would not suffice: it is very
changeable and depends on the scale

• spid, instead, seems to have a clear cutpoint at 1

• what is facebook spid?

0.093



the spid conjecture

• [Boldi et al., 2011] conjecture that spid is able to tell social
networks from web graphs

• average distance alone would not suffice: it is very
changeable and depends on the scale

• spid, instead, seems to have a clear cutpoint at 1

• what is facebook spid? 0.093



indexing distances in large graphs



shortest-path distances in large graphs

• input: consider a graph G = (V ,E)

• and nodes s and t in V

• goal: compute the shortest-path distance d(s, t)
from s to t

• do it very fast



well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store



applications of shortest-path queries



searching in graphs — I. context-sensitive search
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searching in graphs — I. context-sensitive search
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searching in graphs — I. context-sensitive search
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cuisine
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music



searching in graphs — I. context-sensitive search

• customize search results to the user’s current page or
recent history of pages have visited

• increasing relevance of answers
• disambiguation
• suggesting links to wikipedia editors



searching in graphs — II. social search



searching in graphs — II. social search



searching in graphs — II. social search



searching in graphs — II. social search

• consider more information than just contacts
• preferences
• geographical information
• comments
• favorites
• tags
• etc.



machine-learning approach

• learn a ranking function that combines a large number
of features
content-based features:

• TF/IDF, BM25, etc., as in traditional IR and web search
• content similarity between the querying node and a target

node
link-based features:

• PageRank
• shortest-path distance from the querying node to a target

node
• spectral distance from the querying node to a target node
• graph-based similarity measures
• context-specific PageRank



well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store



anything in between?

• is there a smooth tradeoff between

〈O(1),O(m)〉 and 〈O(n2),O(1)〉



distance oracles

[Thorup and Zwick, 2005]

• given a graph G = (V ,E)

• an (α, β)-approximate distance oracle
is a data structure S that

• for a query pair of nodes (u, v), S returns dS(u, v) s.t.

d(u, v) ≤ dS(u, v) ≤ α d(u, v) + β

• α called stretch or distortion
• consider the preprocessing time, the required space, and

the query time



distance oracles

[Thorup and Zwick, 2005]

• given k , construct an oracle with
storage O(kn1+1/k ), query time O(k), stretch 2k − 1

• k = 1
⇒ APSP

• k = log n
⇒ storage O(n log n), query time O(log n), stretch O(log n)



distance oracles — preprocessing

[Das Sarma et al., 2010]

1 r = blog |V |c

2 sample r + 1 sets of sizes 1,2,22,23, . . . ,2r

3 call the sampled sets S0,S1, . . . ,Sr

4 for each node u and each set Si compute (wi , δi),

where δi = d(u,wi) = minv∈Si{d(u, v)}

5 SKETCH[u] = {(w0, δ0), . . . , (wr , δr )}

6 repeat k times



distance oracles — query processing

[Das Sarma et al., 2010]

given query (u, v)

1 obtain SKETCH[u] and SKETCH[v ]

2 find the set of common nodes w in SKETCH[u] and
SKETCH[v ]

3 for each common node w , compute d(u,w) and d(w , v)

4 return the minimum of d(u,w) + d(w , v),
taken over all common node w ’s

5 if no common w is present, then return∞



landmark-based approach

• precompute: distance from each node to a fixed landmark l
• then

|d(s, l)− d(t , l)| ≤ d(s, t) ≤ d(s, l) + d(l , t)

• precompute: distances to d landmarks, l1, . . . , ld

max
i
|d(s, li)− d(t , li)| ≤ d(s, t) ≤ min

i
(d(s, li) + d(li , t))

• obtain a range estimate in time O(d) (i.e., constant)



landmark-based approach

• motivated by indexing general metric spaces

• used for estimating latency in the internet
[Ng and Zhang, 2008]

• typically randomly chosen landmarks



theoretical results

[Kleinberg et al., 2004]

• random landmarks can provide distance estimates with
distortion (1 + δ) for a fraction of at least (1− ε) of pairs

• number of landmarks required depends on ε, δ, and the
doubling dimension k of the metric space



approximation guarantee in practice

what does a logarithmic approximation guarantee mean in a
small-world graph?



the landmark selection problem

how to choose good landmarks in practice?



good landmarks

if
tl

s then d(s, t)=d(s, l) + d(l , t)

if
t

l
s

then |d(s, l)− d(t , l)|=d(s, t)



good (upper-bound) landmarks

• a landmark l covers a pair (s, t) if l is on a shortest path
from s to t

• problem definition: find a set L ⊆ V of k landmarks that
cover as many pairs (s, t) ∈ V × V as possible

• NP-hard
• for k = 1: the node with the highest centrality betweenness
• for k > 1: apply a “natural” set-cover approach

(but O(n3))



landmark selection heuristics

• high-degree nodes
• high-centrality nodes
• “constrained” versions

• once a node is selected none of its neighbors is selected
• “clustered” versions

• cluster the graph and select one landmark per cluster
• select landmarks on the “borders” between clusters



datasets

# nodes # edges median effective clustering
distance diameter coefficient

flickr 801 K 8 M 5 8 0.11

DBLP 226 K 716 K 9 13 0.47



flickr-implicit — distance error
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DBLP — precision @ 5
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triangulation task

[Kleinberg et al., 2004]
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comparing with exact algorithm

[Goldberg and Harrelson, 2005]
landmarks (10%) Fl.-E Fl.-I Wiki DBLP Y!IM

Method CENT CENT CENT/P BORD/P BORD/P
Landmarks used 20 100 500 50 50

Nodes visited 1 1 1 1 1
Operations 20 100 500 50 50
CPU ticks 2 10 50 5 5

ALT (exact) Fl.-E Fl.-I Wiki DBLP Y!IM
Method Ikeda Ikeda Ikeda Ikeda Ikeda

Landmarks used 8 4 4 8 4
Nodes visited 7245 10337 19616 2458 2162

Operations 56502 41349 78647 19666 8648
CPU ticks 7062 10519 25868 1536 1856
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