

Algorithmic methods for mining large graphs Lecure 2 : Computing basic graph statistics

Aristides Gionis Aalto University

Bertinoro International Spring School 2016 March 7–11, 2016

course agenda

- introduction to graph mining
- computing basic graph statistics
- finding dense subgraphs
- spectral graph analysis
- additional topics
- inferring hierarchies in graphs
- mining dynamic graphs
- graph sparsifiers

Tue afternoon, Wed morning Wed afternoon, Thu morning Thu afternoon Fri morning

Tue afternoon

algorithmic tools

efficiency considerations

- data in the web and social-media are typically of extremely large scale (easily reach to billions)
- how to compute simple graph statistics?
- even quadratic algorithms are not feasible in practice

hashing and sketching

- probabilistic / approximate methods
- sketching : create sketches that summarize the data and allow to estimate simple statistics with small space
- hashing : hash objects in such a way that similar objects have larger probability of mapped to the same value than non-similar objects

estimator theorem

- consider a set of items U
- a fraction ρ of them have a specific property
- estimate ρ by sampling

• how many samples N are needed?

$$\mathsf{V} \geq rac{4}{\epsilon^2
ho} \log rac{2}{\delta}.$$

for an ϵ -approximation with probability at least $1 - \delta$

• notice: it does not depend on |U| (!)

use the Chernoff bound to derive the estimator theorem

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- *m_i* = |{*j* : *x_j* = *i*}| the number of occurrences of *i* define

$$F_k = \sum_{i=1}^n m_i^k$$

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- *m_i* = |{*j* : *x_j* = *i*}| the number of occurrences of *i* define

$$F_k = \sum_{i=1}^n m_i^k$$

• F₀ is the number of distinct elements

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- *m_i* = |{*j* : *x_j* = *i*}| the number of occurrences of *i* define

$$F_k = \sum_{i=1}^n m_i^k$$

- F₀ is the number of distinct elements
- F₁ is the length of the sequence

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- *m_i* = |{*j* : *x_j* = *i*}| the number of occurrences of *i* define

$$F_k = \sum_{i=1}^n m_i^k$$

- F₀ is the number of distinct elements
- F₁ is the length of the sequence
- *F*₂ index of homogeneity, size of self-join, and other applications

- How to compute the frequency moments using less than O(n log m) space?
- sketching: create a sketch that takes much less space and gives an estimation of F_k

[Alon et al., 1999]

estimating the number of distinct values (F_0)

[Flajolet and Martin, 1985]

- consider a bit vector of length O(log n)
- upon seen x_i, set:
 - the 1st bit with probability 1/2
 - the 2nd bit with probability 1/4
 - ...
 - the *i*-th bit with probability $1/2^i$
- important: bits are set deterministically for each x_i
- let R be the index of the largest bit set
- return $Y = 2^R$

estimating number of distinct values (F_0)

Theorem. For every c > 2, the algorithm computes a number *Y* using *O*(*logn*) memory bits, such that the probability that the ratio between *Y* and *F*₀ is not between 1/c and *c* is at most 2/c

locality sensitive hashing

a family \mathcal{H} is called (R, cR, p_1, p_2) -sensitive if for any two objects p and q

- if $d(p,q) \leq R$, then $\Pr_{\mathcal{H}}[h(p) = h(q)] \geq p_1$
- if $d(p,q) \ge cR$, then $\Pr_{\mathcal{H}}[h(p) = h(q)] \le p_2$

interesting case when $p_1 > p_2$

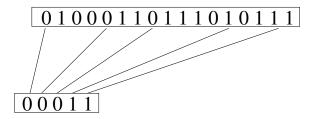
locality sensitive hashing: example

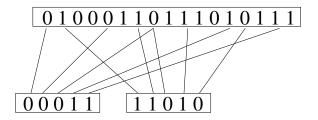
- objects in a Hamming space $\{0, 1\}^d$ binary vectors
- $\mathcal{H}: \{0,1\}^d \to \{0,1\}$ sample the *i* bit:
- $\mathcal{H} = \{h(x) = x_i \mid i = 1, ..., d\}$
- for two vectors x and y with distance r, it is

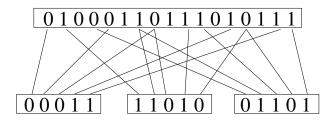
$$\Pr_{\mathcal{H}}[h(x) = h(y)] = 1 - \frac{r}{d}$$

- thus $p_1 = 1 \frac{R}{d}$ and $p_2 = 1 \frac{cR}{d}$
- gap between p₁ and p₂ too small
- probability amplification

01000110111010111

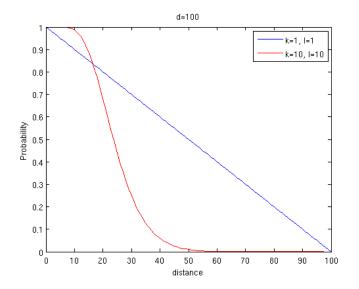






Probability of collision

$$\Pr[h(x) = h(y)] = 1 - (1 - (1 - \frac{r}{d})^k)^t$$



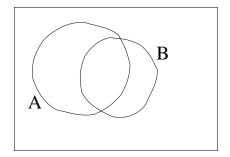
homework

how to apply the locality sensitive hashing for vectors of integers, not just binary vectors?

- vectors $\mathbf{x} = \{x_1, ..., x_d\}$
- L_1 distance $||\mathbf{x} \mathbf{y}||_1 = \sum_{i=1}^{d} |x_i y_i|$

Jaccard coefficient

- for two sets $A, B \subseteq U$ define $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$
- measure of similarity of the sets



 can we design a locality sensitive hashing family for Jaccard?

min-wise independent permutations

- $\pi: U \rightarrow U$ a random permutation of U
- $h(A) = \min\{\pi(x) \mid x \in A\}$

min-wise independent permutations

- $\pi: U \rightarrow U$ a random permutation of U
- $h(A) = \min\{\pi(x) \mid x \in A\}$
- then

$$\Pr[h(A) = h(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- amplify the probability as before:
 - repeat many times,
 - concatenate into blocks
 - consider objects similar if they collide in at least one block

homework

show that for $h(A) = \min\{\pi(x) \mid x \in A\}$, with π a random permutation, it is

$$\Pr[h(A) = h(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

homework

design a locality-sensitive hashing scheme for vectors according to the cosine similarity measure

vectors $\mathbf{x} = \{x_1, ..., x_d\}$

distance $1 - \cos(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$

applications of the algorithmic tools to real scenarios

clustering coefficient and triangles

clustering coefficient

 $C = \frac{3 \times \text{number of triangles in the network}}{\text{number of connected triples of vertices}}$

- how to compute it?
- how to compute the number of triangles in a graph?
- assume that the graph is very large, stored in disk

[Buriol et al., 2006]

- count triangles when graph is seen as a data stream
- two models:
 - edges are stored in any order
 - edges in order : all edges incident to one vertex are stored sequentially

counting triangles

- · brute-force algorithm is checking every triple of vertices
- obtain an approximation by sampling triples

sampling algorithm for counting triangles

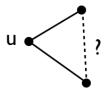
- how many samples are required?
- let *T* be the set of all triples and T_i the set of triples that have *i* edges, *i* = 0, 1, 2, 3
- by the estimator theorem, to get an *ε*-approximation, with probability 1 − δ, the number of samples should be

$$N \ge O(rac{|\mathcal{T}|}{|\mathcal{T}_3|}rac{1}{\epsilon^2}\lograc{1}{\delta})$$

but |T| can be very large compared to |T₃|

counting triangles

- incidence model : all edges incident to each vertex appear in order in the stream
- sample connected triples



sampling algorithm for counting triangles

- incidence model
- consider sample space $S = \{b \text{-} a \text{-} c \mid (a, b), (a, c) \in E\}$
- $|S| = \sum_{i} d_{i}(d_{i} 1)/2$
- 1: sample $X \subseteq S$ (paths *b*-*a*-*c*)
- 2: estimate fraction of X for which edge (b, c) is present
- 3: scale by $|\mathcal{S}|$
 - gives (ϵ, δ) approximation

counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]

1st pass

count the number of paths of length 2 in the stream

2nd pass

uniformly choose one path (*a*, *b*, *c*)

3rd pass

if $((b, c) \in E) \beta = 1$ else $\beta = 0$ return β

counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]

1st pass

count the number of paths of length 2 in the stream

2nd pass

uniformly choose one path (a, b, c)

3rd pass

if $((b, c) \in E) \beta = 1$ else $\beta = 0$ return β

we have $E[\beta] = \frac{3|T_3|}{|T_2|+3|T_3|}$, with $|T_2|+3|T_3| = \sum_u \frac{d_u(d_u-1)}{2}$, so $|T_3| = E[\beta] \sum_u \frac{d_u(d_u-1)}{6}$

and space needed is $O((1 + \frac{|T_2|}{|T_3|})\frac{1}{\epsilon^2}\log\frac{1}{\delta})$

properties of the sampling space

it should be possible to

- estimate the size of the sampling space
- sample an element uniformly at random

homework

- compute triangles in 3 passes when edges appear in arbitrary order
- compute triangles in 1 pass when edges appear in arbitrary order
- 3 compute triangles in 1 pass in the incidence model

triangle sparsifiers

[Tsourakakis et al., 2011]

- start with graph G(V, E)
- use sparsification parameter p
- pick a random subset E' of edges each edge is selected with probability p
- T'_3 = # triangles on graph G'(V, E')
- return $T_3 = T'_3 / p^3$

triangle sparsifiers

[Tsourakakis et al., 2011]

- start with graph G(V, E)
- use sparsification parameter p
- pick a random subset E' of edges each edge is selected with probability p
- T'_3 = # triangles on graph G'(V, E')
- return $T_3 = T'_3 / p^3$
- *T*₃ is highly concentrated around the true number of triangles

counting graph minors

counting other minors

count all minors in a very large graphs

- connected subgraphs
- size 3 and 4
- directed or undirected graphs
- why?
- modeling networks, "signature" structures e.g., copying model
- anomaly detection, e.g., spam link farms [Alon, 2007, Bordino et al., 2008]

counting minors in large graphs

characterize a graph by the distribution of its minors

$\nabla \square \nabla \square \nabla \square$ all undirected minors of size 4 $\land \lor \land \lor \land \lor \land \lor \land$ $\land \lor \land \lor \land \lor$

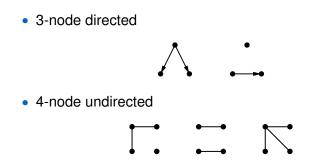
all directed minors of size 3

sampling algorithm for counting triangles

- incidence model
- consider sample space $S = \{b \text{-} a \text{-} c \mid (a, b), (a, c) \in E\}$
- $|S| = \sum_{i} d_{i}(d_{i} 1)/2$
- 1: sample $X \subseteq S$ (paths *b*-*a*-*c*)
- 2: estimate fraction of X for which edge (b, c) is present
- 3: scale by $|\mathcal{S}|$
 - gives (ϵ, δ) approximation

adapting the algorithm

sampling spaces:



are the sampling space properties satisfied?

datasets

graph class	type	# instances
synthetic	un/directed	39
wikipedia	un/directed	7
webgraphs	un/directed	5
cellular	directed	43
citation	directed	3
food webs	directed	6
word adjacency	directed	4
author collaboration	undirected	5
autonomous systems	undirected	12
protein interaction	undirected	3
US road	undirected	12

clustering of undirected graphs

assigned to	0	1	2	3	4	5	6
AS graph	12	0	0	0	0	0	0
collaboration	0	0	3	2	0	0	0
protein	1	0	0	1	0	0	1
road-graph	0	12	0	0	0	0	0
wikipedia	0	0	0	0	2	5	0
synthetic	11	0	0	0	0	0	28
webgraph	2	0	0	1	0	0	0

clustering of directed graphs

feature class	accuracy compared
	to ground truth
standard topological properties (81)	0.74%
minors of size 3	0.78%
minors of size 4	0.84%
minors of size 3 and 4	0.91%

local statistics

compute local statistics in large graphs

- our goal: compute triangle counts for all vertices
- local clustering coefficient and related statistics
- motivation
 - motifs can be used to characterize network families [Alon, 2007, Bordino et al., 2008]
 - analysis of social or biological networks
 - thematic relationships in the web
 - web spam
- applications: spam detection and content quality analysis in social media

semi-streaming model

[Feigenbaum et al., 2004]

- data stream model (constant memory) too restrictive
- graph stored in secondary memory as adjacency or edge list
- x no random access possible
- O(N log N) bits available in main memory
 - limited amount of information per vertex
 - x not enough to store edges in main memory
- limited (constant or $O(\log N)$) number of passes
- compute counts for all vertices concurrently

two algorithms

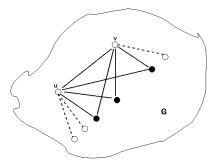
external memory

- keep a counter for each vertex (main memory)
- keep a counter for each edge (secondary memory)

2 main memory

keep a counter for each vertex

number of triangles for edges and nodes



- neighbors: $N(u) = \{v : (u, v) \in E\}$
- degree: *d*(*u*) = |*N*(*u*)|
- edge triangles: $T_{uv} = |N(u) \cap N(v)|$
- vertex triangles: $T(u) = \frac{1}{2} \sum_{v \in N(u)} T_{uv}$

computing triangles : idea

• consider the Jaccard coefficient between two sets *A* and *B*:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

• if we knew J(N(u), N(v)) = J, then:

$$T_{uv} = |N(u) \cap N(v)| = \frac{J}{J+1}(|N(u)| + |N(v)|)$$

• and then:

$$T(u) = \frac{1}{2} \sum_{v \in N(u)} T_{uv}$$

computing triangles : idea

we want:

$$T_{uv} = |N(u) \cap N(v)| = \frac{J}{J+1}(|N(u)| + |N(v)|)$$

approximate the Jaccard coefficient:

- *m* independent trials
- Z_{uv} : # times that $\min \pi(N(u)) = \min \pi(N(v))$

use the estimator:

$$\overline{T}_{uv} = \frac{Z_{uv}}{Z_{uv} + m}(|N(u)| + |N(v)|)$$

- semi-stream model
- keep vertex min-hash values (in memory)
- keep edge counters (on disk)
- use edge counters to estimate number of triangles (and local clustering coefficient)

1: **Z** = **0**

- 2: for i: 1 ... m do {independent trials}
- 3: for $u : 1 \dots |V|$ do {assign labels}
- 4: $I_i(u) = \text{hash}_i(u)$ {Min-wise linear permutation}
- 5: end for

```
1: Z = 0

2: for i: 1 ... m do {independent trials}

3: for u : 1 ... |V| do {assign labels}

4: l_i(u) = hash_i(u) {Min-wise linear permutation}

5: end for

6: for u : 1 ... |V| do {compute fingerprints}

7: F_i(u) = min_{v \in N(u)} l_i(u)
```

8: end for{1 scan of \hat{G} }

```
1: Z = 0
2: for i: 1 ... m do {independent trials}
       for u : 1 \dots |V| do {assign labels}
3:
         l_i(u) = \text{hash}_i(u) {Min-wise linear permutation}
4:
      end for
5:
      for u : 1 . . . | V | do {compute fingerprints}
6:
7:
         F_i(u) = \min_{v \in N(u)} I_i(u)
      end for{1 scan of G}
8:
9:
      for u : 1 \dots |V| do {update counters}
         for v \in N(u) do
10:
            if (F_i(u) = F_i(v)) then {minima are equal}
11:
               Z_{\mu\nu} = Z_{\mu\nu} + 1 \{Z_{\mu\nu}'s stored on disk}
12:
13:
            end if
         end for
14:
15: end for
16: end for
```

implementation

- hash_i(x) is, e.g., a linear hash function $(a_i x + b_i \mod p)$
- for every *i*, the *F_i(u)*'s can be kept in main memory
- the Z_{UV} 's must be stored on disk
 - for every *i*, updating Z_{uv} requires access to disk
 - computing counters most expensive operation

main-memory algorithm

• replace:

$$\overline{T}_{uv} = \frac{Z_{uv}}{Z_{uv} + m}(|N(u)| + |N(v)|)$$

• by the estimator for $|N(u) \cap N(v)|$:

$$\tilde{T}_{uv} = \frac{Z_{uv}}{\frac{2}{3}m}(N(u) + N(v))$$

• and estimator for T(u):

$$\tilde{T}(u) = \frac{1}{3m} \sum_{v \in N(u)} Z_{uv}(N(u) + N(v)) = \frac{1}{3m} Z_u$$

- Z_u sums d(u) + d(v) if min $\pi(N(u)) = \min \pi(N(v))$
- only one counter per node

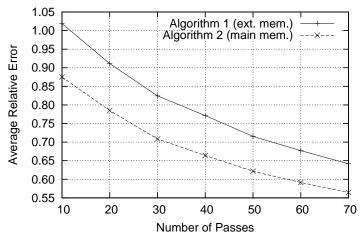
main-memory algorithm

```
1: Z = 0
2: for i: 1 ... m do {Independent trials}
      for u : 1 ... | V | do {Assign labels}
3:
         I_i(u) = \text{hash}_i(u)
4:
5:
     end for
     for u : 1 . . . |V| do {Compute fingerprints}
6:
7:
         F_i(u) = \min_{v \in V(u)} I_i(u)
8:
     end for{1 scan of G}
9:
      for u : 1 . . . | V | do {Update counters}
         for v \in N(u) do
10:
            if F_i(u) == F_i(v) then {Minima are equal}
11:
              Z_u = Z_u + d(u) + d(v) \{Z_u's in main memory
12:
13:
            end if
         end for
14:
    end for
15:
16: end for
```

experimental results

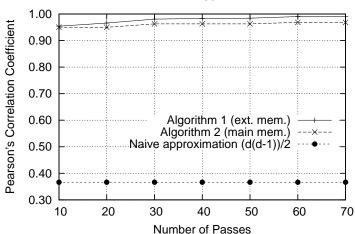
			Algorithm 1	Algorithm 2
Graph	Nodes	Edges	(ext. mem.)	(main mem.)
WB-2001	118M	1.7G	10 hr 20 min	3 hr 40 min
IT-2004	41M	2.1G	8 hr 20 min	5 hr 30 min
UK-2006	77M	5.3G	20 hr 30 min	13 hr 10 min

quality of approximation

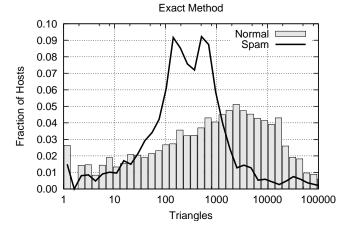


IT-2004

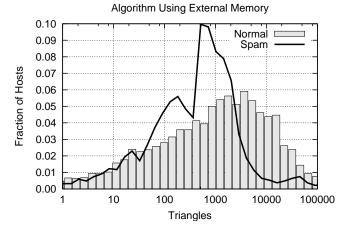
quality of approximation



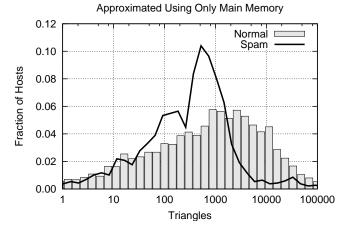
IT-2004



Separation of non-spam and spam hosts in the histogram of triangles



Separation of non-spam and spam hosts in the histogram of triangles



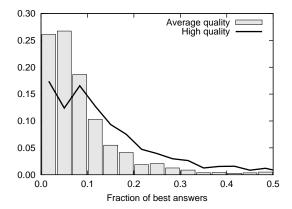
Separation of non-spam and spam hosts in the histogram of triangles

number of triangles feature is ranked 60-th out of 221 for spam detection

applications : content quality in yahoo! answers

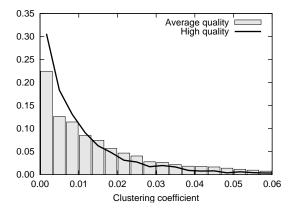
- Yahoo! answers, a question-answering portal
- consider the graph with edges (u, v) if user u has answered a question of user v
- consider "high quality" users those who have given a best answer to a random sample of questions
- predict high-quality users based on their local structure

applications : content quality in yahoo! answers



Separation of users who have provided questions/answers of high quality with users who have provided questions/answers of normal quality in terms of fraction of best answers

applications : content quality in yahoo! answers



Separation of users who have provided questions/answers of high quality with users who have provided questions/answers of normal quality in terms of local clustering coefficient graph distance distributions

small-world phenomena

small worlds : graphs with short paths

- Stanley Milgram (1933-1984)
 "The man who shocked the world"
- obedience to authority (1963)
- small-world experiment (1967)

- 300 people (starting population) are asked to dispatch a parcel to a single individual (target)
- the target was a Boston stockbroker
- the starting population is selected as follows:
 - 100 were random Boston inhabitants (group A)
 - 100 were random Nebraska strockbrokers (group B)
 - 100 were random Nebraska inhabitants (group C)

- rules of the game :
- parcels could be directly sent only to someone the sender knows personally
- 453 intermediaries happened to be involved in the experiments (besides the starting population and the target)

questions Milgram wanted to answer:

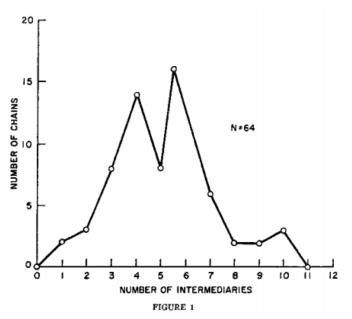
- 1. how many parcels will reach the target?
- 2. what is the distribution of the number of hops required to reach the target?
- 3. is this distribution different for the three starting subpopulations?

answers to the questions

- 1. how many parcels will reach the target? 29%
- what is the distribution of the number of hops required to reach the target? average was 5.2
- 3. is this distribution different for the three starting subpopulations?

YES: average for groups A/B/C was 4.6/5.4/5.7

chain lengths



measuring what?

but what did Milgram's experiment reveal, after all?

- 1. the the world is small
- 2. that people are able to exploit this smallness

graph distance distribution

- obtain information about a large graph, i.e., social network
- macroscopic level
- distance distribution
 - mean distance
 - median distance
 - diameter
 - effective diameter
 - ...

graph distance distribution

- given a graph, d(x, y) is the length of the shortest path from x to y, defined as ∞ if one cannot go from x to y
- for undirected graphs, d(x, y) = d(y, x)
- for every *t*, count the number of pairs (*x*, *y*) such that *d*(*x*, *y*) = *t*
- the fraction of pairs at distance t is a distribution

exact computation

how can one compute the distance distribution?

- weighted graphs: Dijkstra (single-source: O(m log n)),
- Floyd-Warshall (all-pairs: $O(n^3)$)
- in the unweighted case:
 - a single BFS solves the single-source version of the problem: *O*(*m*)
 - if we repeat it from every source: O(nm)

sampling pairs

- sample at random pairs of nodes (*x*, *y*)
- compute d(x, y) with a BFS from x
- (possibly: reject the pair if d(x, y) is infinite)

sampling pairs

- for every t, the fraction of sampled pairs that were found at distance t are an estimator of the value of the probability mass function
- takes a BFS for every pair O(m)

sampling sources

- sample at random a source t
- compute a full BFS from t

sampling sources

- it is an unbiased estimator only for undirected and connected graphs
- uses anyway BFS...
 - ...not cache friendly
 - ... not compression friendly

idea : diffusion

[Palmer et al., 2002]

- let B_t(x) be the ball of radius t around x (the set of nodes at distance ≤ t from x)
- clearly *B*₀(*x*) = {*x*}
- moreover $B_{t+1}(x) = \bigcup_{(x,y)} B_t(y) \bigcup \{x\}$
- so computing *B*_{*t*+1} from *B*_{*t*} just takes a single (sequential) scan of the graph

easy but costly

- every set requires O(n) bits, hence $O(n^2)$ bits overall
- easy but costly
- too many!
- what about using approximated sets?
- we need probabilistic counters, with just two primitives: add and size
- very small!

estimating the number of distinct values (F_0)

- [Flajolet and Martin, 1985]
- consider a bit vector of length O(log n)
- upon seen x_i, set:
 - the 1st bit with probability 1/2
 - the 2nd bit with probability 1/4
 - ...
 - the *i*-th bit with probability 1/2ⁱ
- important: bits are set deterministically for each x_i
- let *R* be the index of the largest bit set
- return $Y = 2^R$

- probabilistic counter for approximating the number of distinct values [Flajolet and Martin, 1985]
- ANF algorithm [Palmer et al., 2002] uses the original probabilist counters
- HyperANF algorithm [Boldi et al., 2011] uses HyperLogLog counters [Flajolet et al., 2007]

HyperANF

- HyperLogLog counter [Flajolet et al., 2007]
- with 40 bits you can count up to 4 billion with a standard deviation of 6%
- remember: one set per node

[Boldi et al., 2011]

- use broad-word programming to compute union efficiently
- systolic computation for on-demand updates of counters
- exploit micro-parallelization of multicore architectures

performance

- HADI, a Hadoop-conscious implementation of ANF [Kang et al., 2011]
- takes 30 minutes on a 200K-node graph (on one of the 50 world largest supercomputers)
- HyperANF does the same in 2.25min on a workstation (20 min on a laptop).

experiments on facebook

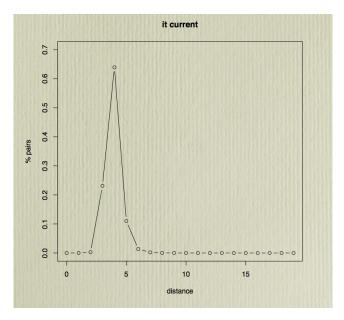
[Backstrom et al., 2011]

considered only active users

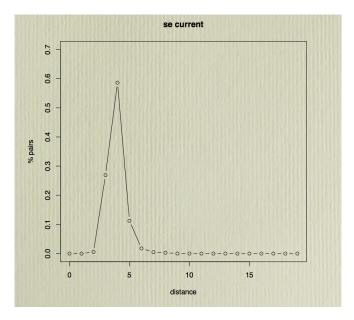
- it : only italian users
- se : only swedish users
- it + se : only italian and swedish users
- us : only US users
- the whole facebook (750m nodes)

based on users current geo-IP location

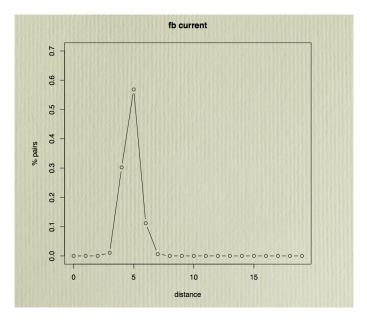
distance distribution (it)



distance distribution (se)



distance distribution (fb)



average distance

	2008	2012
it	6.58	3.90
se	4.33	3.89
it+se	4.90	4.16
us	4.74	4.32
fb	5.28	4.74

fb 2012 : 92% pairs are reachable!

effective diameter

	2008	2012
it	9.0	5.2
se	5.9	5.3
it+se	6.8	5.8
us	6.5	5.8
fb	7.0	6.2

actual diameter

	2008	2012
it	> 29	= 25
se	> 16	= 25
it+se	> 21	= 27
us	> 17	= 30
fb	> 17	> 58

breaking the news

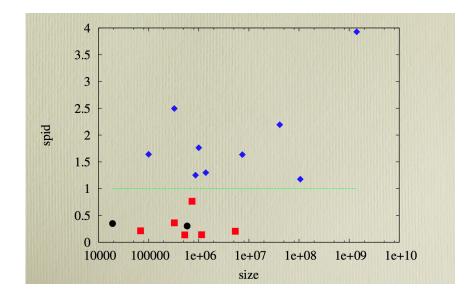


another application : spid

[Boldi et al., 2011]

- spid : shortest-paths index of dispersion
- the ratio between variance and average in the distance distribution
- spid < 1 : the distribution is subdispersed
- spid > 1 : is superdispersed
- web graphs and social networks have different spid!

spid plot



the spid conjecture

- [Boldi et al., 2011] conjecture that spid is able to tell social networks from web graphs
- average distance alone would not suffice: it is very changeable and depends on the scale
- spid, instead, seems to have a clear cutpoint at 1
- what is facebook spid?

the spid conjecture

- [Boldi et al., 2011] conjecture that spid is able to tell social networks from web graphs
- average distance alone would not suffice: it is very changeable and depends on the scale
- spid, instead, seems to have a clear cutpoint at 1
- what is facebook spid?

0.093

indexing distances in large graphs

shortest-path distances in large graphs

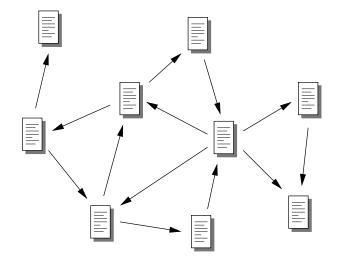
- input: consider a graph G = (V, E)
- and nodes s and t in V
- goal: compute the shortest-path distance d(s, t) from s to t
- do it very fast

well-studied problem

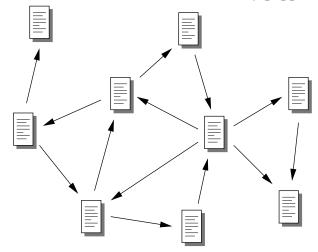
different strategies

- lazy
 - compute shortest path at query time
 - Dijkstra, BFS
 - no precomputation
 - BFS takes O(m)
 - too expensive for large graphs
- eager
 - precompute all-pairs shortest paths
 - Floyd-Warshall, matrix multiplication
 - $O(n^3)$ precomputation, $O(n^2)$ storage
 - too large to store

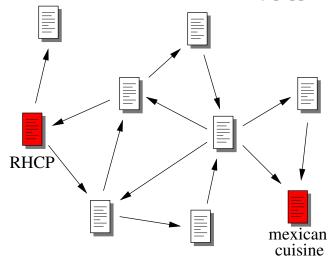
applications of shortest-path queries

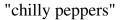


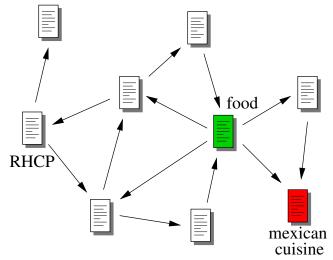
"chilly peppers"

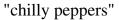


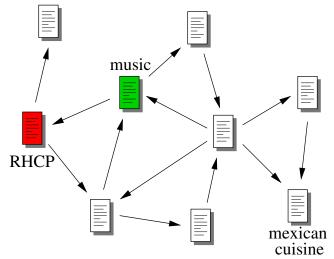
"chilly peppers"



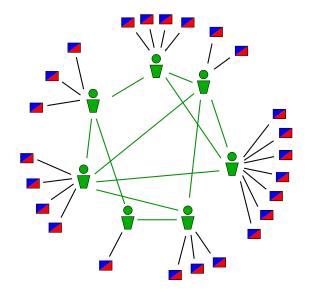


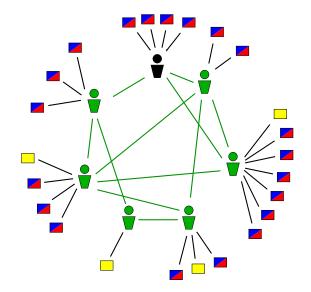


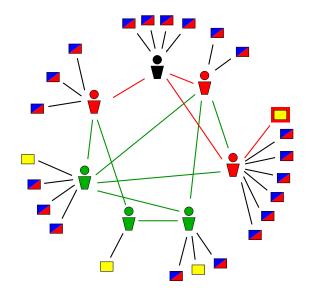




- customize search results to the user's current page or recent history of pages have visited
- increasing relevance of answers
- disambiguation
- suggesting links to wikipedia editors







consider more information than just contacts

- preferences
- geographical information
- comments
- favorites
- tags
- etc.

machine-learning approach

- learn a ranking function that combines a large number of features
 - content-based features:
 - TF/IDF, BM25, etc., as in traditional IR and web search
 - content similarity between the querying node and a target node
 - link-based features:
 - PageRank
 - shortest-path distance from the querying node to a target node
 - spectral distance from the querying node to a target node
 - graph-based similarity measures
 - context-specific PageRank

well-studied problem

different strategies

- lazy
 - compute shortest path at query time
 - Dijkstra, BFS
 - no precomputation
 - BFS takes O(m)
 - too expensive for large graphs
- eager
 - precompute all-pairs shortest paths
 - Floyd-Warshall, matrix multiplication
 - $O(n^3)$ precomputation, $O(n^2)$ storage
 - too large to store

anything in between?

• is there a smooth tradeoff between

 $\langle O(1), O(m) \rangle$ and $\langle O(n^2), O(1) \rangle$

distance oracles

[Thorup and Zwick, 2005]

- given a graph G = (V, E)
- an (α, β)-approximate distance oracle is a data structure S that
- for a query pair of nodes (u, v), S returns $d_S(u, v)$ s.t.

 $d(u, v) \leq d_{\mathcal{S}}(u, v) \leq \alpha \, d(u, v) + \beta$

- α called stretch or distortion
- consider the preprocessing time, the required space, and the query time

distance oracles

[Thorup and Zwick, 2005]

- given k, construct an oracle with storage O(kn^{1+1/k}), query time O(k), stretch 2k - 1
- *k* = 1 ⇒ APSP
- $k = \log n$

 \Rightarrow storage $O(n \log n)$, query time $O(\log n)$, stretch $O(\log n)$

distance oracles — preprocessing

[Das Sarma et al., 2010]

 $1 r = \lfloor \log |V| \rfloor$

- 2 sample r + 1 sets of sizes $1, 2, 2^2, 2^3, ..., 2^r$
- **3** call the sampled sets S_0, S_1, \ldots, S_r
- 4 for each node *u* and each set S_i compute (w_i, δ_i) , where $\delta_i = d(u, w_i) = \min_{v \in S_i} \{d(u, v)\}$
- **5** SKETCH $[u] = \{(w_0, \delta_0), \dots, (w_r, \delta_r)\}$

6 repeat k times

distance oracles — query processing

[Das Sarma et al., 2010]

given query (u, v)

- **1** obtain SKETCH[u] and SKETCH[v]
- find the set of common nodes w in SKETCH[u] and SKETCH[v]
- **3** for each common node *w*, compute d(u, w) and d(w, v)
- return the minimum of d(u, w) + d(w, v), taken over all common node *w*'s
- **5** if no common *w* is present, then return ∞

landmark-based approach

- precompute: distance from each node to a fixed landmark /
- then

 $|d(s, l) - d(t, l)| \le d(s, t) \le d(s, l) + d(l, t)$

• precompute: distances to *d* landmarks, *l*₁,..., *l*_d

 $\max_{i} |d(s, l_{i}) - d(t, l_{i})| \le d(s, t) \le \min_{i} (d(s, l_{i}) + d(l_{i}, t))$

obtain a range estimate in time O(d) (i.e., constant)

landmark-based approach

- motivated by indexing general metric spaces
- used for estimating latency in the internet [Ng and Zhang, 2008]
- typically randomly chosen landmarks

[Kleinberg et al., 2004]

- random landmarks can provide distance estimates with distortion (1 + δ) for a fraction of at least (1 - ε) of pairs
- number of landmarks required depends on *ε*, *δ*, and the doubling dimension *k* of the metric space

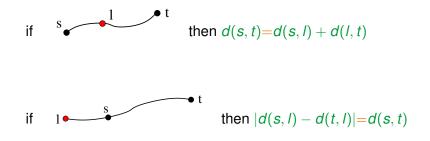
approximation guarantee in practice

what does a logarithmic approximation guarantee mean in a small-world graph?

the landmark selection problem

how to choose good landmarks in practice?

good landmarks



good (upper-bound) landmarks

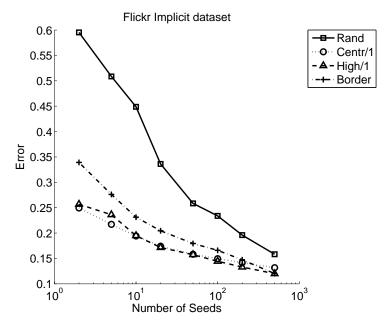
- a landmark / covers a pair (s, t) if / is on a shortest path from s to t
- problem definition: find a set L ⊆ V of k landmarks that cover as many pairs (s, t) ∈ V × V as possible
- NP-hard
- for *k* = 1: the node with the highest centrality betweenness
- for k > 1: apply a "natural" set-cover approach (but O(n³))

landmark selection heuristics

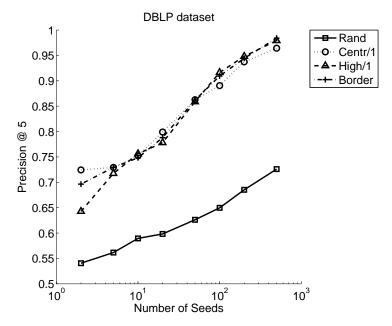
- high-degree nodes
- high-centrality nodes
- "constrained" versions
 - once a node is selected none of its neighbors is selected
- "clustered" versions
 - · cluster the graph and select one landmark per cluster
 - select landmarks on the "borders" between clusters

	# nodes	# edges		edian effective clust tance diameter coeff	
flickr	801 K	8 M	5	8	0.11
DBLP	226 K	716 K	9	13	0.47

flickr-implicit — distance error

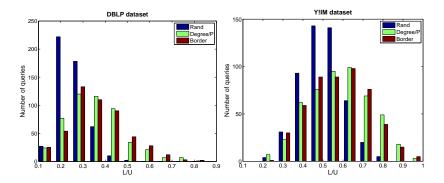


DBLP — precision @ 5



triangulation task

[Kleinberg et al., 2004]



comparing with exact algorithm

[Goldberg and Harrelson, 2005]

landmarks (10%)	FIE	FII	Wiki	DBLP	Y!IM
Method	Cent	Cent	Cent/P	Bord/P	BORD/P
Landmarks used	20	100	500	50	50
Nodes visited	1	1	1	1	1
Operations	20	100	500	50	50
CPU ticks	2	10	50	5	5
ALT (exact)	FIE	FII	Wiki	DBLP	Y!IM
Method	lkeda	lkeda	lkeda	Ikeda	Ikeda
Landmarks used	8	4	4	8	4
Nodes visited	7245	10337	19616	2458	2162
Operations	56502	41349	78647	19666	8648
CPU ticks	7062	10519	25868	1536	1856

acknowledgements

Paolo Boldi Charalampos Tsourakakis

references

- Alon, N., Matias, Y., and Szegedy, M. (1999).

The space complexity of approximating the frequency moments.

J. Comput. Syst. Sci., 58(1):137-147.

Alon, U. (2007).

Network motifs: theory and experimental approaches.

Nature Reviews Genetics.

Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. (2011). Four degrees of separation.

CoRR, abs/1111.4570.

Boldi, P., Rosa, M., and Vigna, S. (2011).

HyperANF: approximating the neighborhood function of very large graphs on a budget.

In WWW.

Bordino, I., Donato, D., Gionis, A., and Leonardi, S. (2008). Mining large networks with subgraph counting. In *ICDM*.

references (cont.)

Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., and Sohler, C. (2006).

Counting triangles in data streams.

In PODS '06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 253–262, New York, NY, USA. ACM Press.

Das Sarma, A., Gollapudi, S., Najork, M., and Panigrahy, R. (2010). A sketch-based distance oracle for web-scale graphs. In *WSDM*, pages 401–410.

Feigenbaum, J., Kannan, S., Gregor, M. A., Suri, S., and Zhang, J. (2004).

On graph problems in a semi-streaming model.

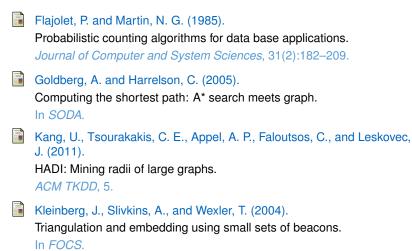
In 31st International Colloquium on Automata, Languages and Programming.

Flajolet, F., Fusy, E., Gandouet, O., and Meunier, F. (2007).

Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.

In Proceedings of the 13th conference on analysis of algorithm (AofA).

references (cont.)



Ng, E. and Zhang, H. (2008).

Predicting internet network distance with coordinate-based approaches. In *INFOCOMM*.

references (cont.)

Palmer, C. R., Gibbons, P. B., and Faloutsos, C. (2002).

ANF: a fast and scalable tool for data mining in massive graphs.

In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 81–90, New York, NY, USA. ACM Press.

Thorup, M. and Zwick, U. (2005).

Approximate distance oracles.

JACM, 52(1):1-24.

Tsourakakis, C., Kolountzakis, M., and Miller, G. (2011). Triangle sparsifiers.

Journal of Graph Algorithms and Applications, 15(6).