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data mining group in Aalto University
research themes

theoretical and application-driven research in data mining

most work focuses on graph mining

finding dense subgraphs

mining labeled and temporal networks
network alignment

network inference

information propagation and opinion formation

team formation

applications

mining social media, e.g., studying polarization

urban informatics, e.g., characterizing city neighborhoods



the network-alighment problem

» also known as: graph reconciliation, graph matching,
collective entity resolution, etc.
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source: http://www.umiacs.umd.edu/~getoor/Tutorials/ER_KDD2013.pdf

> task: align nodes with similar attributes and similar neighbors


http://www.umiacs.umd.edu/~getoor/Tutorials/ER_KDD2013.pdf

family trees

> input: family trees provided by different researchers

» output: a single, aligned family tree
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family trees

> input: family trees provided by different researchers

» output: a single, aligned family tree
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protein-protein interaction networks

» task: align PPI networks of different species to identify

functional orthologs across species

(a) The Star Sy;p001c

. Bioinformatics 2009

Source: Lia et al



ontology matching
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» applications in ontology
evolution, data integration,
data warehouses, etc.
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Source: Shvaiko & Euzenat. Ontology matching:
state of the art and future challenges. TKDE, 2013
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social networks

» task: find matching user profiles across services

» application: friend suggestions
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computer vision and pattern recognition

» task: identify objects in a database

> an object is represented by a graph of landmarks containing

information about features and spatial relationships

Source: http://www.f-zhou.com/gm.html



problem complexity

» graph isomorphism: not known to be in P nor NP-complete

» subgraph isomorphism: standard NP-complete problem



methods

v

large number of practical methods

notable methods:
— IsoRank (linear system) [Singh et al., RECOMB 2007]
Natalie (global method) [Klau, BMC Bioinformatics 2009]
NetAlignMP (message passing) [Bayati et al.,, TKDD 2013]
UserMatch (local method) [Korula & Lattanzi, VLDB 2014]



the matching problem

» given a bipartite graph G = (U, V, E)
with edge weights w;;

» find a matching M C E  (each vertex
is incident to at most one edge in M)

that maximizes  )_(; o Wi



the matching problem

» given a bipartite graph G = (U, V, E)
with edge weights w;;

» find a matching M C E  (each vertex
is incident to at most one edge in M)

that maximizes > (; jycy wij

» problem solvable in polynomial time

- Hungarian algorithm O(n?)



Natalie

» Gunnar Klau, “A new graph-based method for pairwise global
network alignment”, BMC Bioinformatics, 2009
» a state-of-the-art network alignment method according

to several independent studies

overview
1. formulate network alignment as a quadratic integer program
2. linearize the problem
3. apply Lagrangian relaxation to solve the linear problem



quadratic integer program

v

input graphs G; = (V4, E1) and G, = (s, E)

> binary x; indicates whether / € V; is aligned with j €

v

Al and A? are the adjacency matrices of G; and G,
> o(i,j) is the similarity between node attributes, and

> g is a parameter

max Z o(i,j)xj +& Z Z A}kAJ?EX,-ijg,

(i ))EVIX V2 (i ))eEViXx Vo (k,£)EVIX Vo

such that ZX,'J' =1,
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quadratic integer program

v

input graphs G; = (V4, E1) and G, = (s, E)

> binary x; indicates whether / € V; is aligned with j €

v

Al and A? are the adjacency matrices of G; and G,
> o(i,j) is the similarity between node attributes, and

> g is a parameter

max Z o(i,j)xj +& Z Z A}kAJ?eX,-jxkg,

(i ))EVIX V2 (i ))eEViXx Vo (k,£)EVIX Vo

such that ZX,'J' =1,
i

> X =1,

Xjj € {0, 1}

» NP-hard problem



linear integer program formulation

> replace wjjis < xjjx¢ (guaranteed by constraints (1) and (2))

max Z o(i,j)xj+g Z Wijke

’ (ij)eEVix Vs ij Ok,0

such that Zx,-j =1, ZXU =1,
Z Wijke < Xij Z Wijke < Xij (1)

Wijke = Wkeij, (2)
Xijs Wijke € {0, 1}.



Lagrangian relaxation

> relax the symmetry constraint

Zip(M) = max Yoo alii)xgt+e D, wike
(iJ)EVIX Vo i,jOk,t

+ > Nike(Wije — wieij)
i Ok, 0

such that ZXU =1, ZXU =1,
j i
Z Wijke < Xij, Z Wiike < Xij,
4 k
Xij, Wijke € {0, 1}



solving for a given \

» problem can be written as

ZLD()\) = mXaX Z [O'(i,j) + VU()\)] Xij
()
such that ZXU =1, ZXU =1,
j i
x;j € {0,1} for all i,j.

» where
vij(A) = max Y g+ cimedie wike
(k,0):(i,j Ok, L)

such that Z wike < 1, Z Wike < 1,
¢ k

Wikl € {0, 1} for all k,£.

> a total of |V;||V2| + 1 maximum matching instances



Natalie

» Theorem [Klau 2009]: The relaxed problem can be reduced to
the bipartite matching problem

» for any A\, Z;p(A) is an upper bound to the optimal alignment

— Zip(A) is a relaxation

» x part of Z;p(\) solution is a feasible alignment

— such a feasible alignment gives a lower bound
» thus, solving Z;p(\) gives an upper and a lower bound
» solve miny Z;p(A\) to find the tightest upper bound

> Natalie does it with subgradient optimization and dual descent



multiple network alighment

» geneology researchers construct their own family trees

> merging these trees gives a more complete family tree,

better access to information, and possibly eliminates errors

example
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multiple network alighment
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Fig. 4 An instance of the social network alignment problem. Vertices can only be aligned
to other vertices with the same color. Entity graph depicts the set of underlying entities and

edges between them.



multiple network alighment

» how to formalize the network-alignment problem for

multiple networks?

» considered extensions of Natalie, including a formulation
based on facility location

“Lagrangian relaxations for multiple network alignment”
E. Malmi, S. Chawla, A. Gionis, DMKD 2017



active network alignment

» consider : human experts can assist in network alignment
» how to optimally leverage human expertise?

» goal : ask the most informative queries from human experts

“Active network alignment: a matching-based approach”
E. Malmi, E. Terzi, A. Gionis, CIKM 2017



example

» what questions to ask from the human?
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example

» what questions to ask from the human?
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v

several possible query strategies

— e.g., “are nodes a and b the same or not?”

in our work : “which node in the set {by,...,bs} is the most
similar to node a?”

v

which nodes? the most uncertain, the most central, ...



example

should an algorithm query node A, B, or C?

A Ay Az As

Gs G



idea

> query the most uncertain node

» how to formalize the idea?



idea

query the most uncertain node

how to formalize the idea?

. consider network aligment expressed as bipartite matching

(e.g., Natalie)

. obtain a set of near-optimal matchings
. compute the distribution of matches of a given node

. quantify uncertainty using this distribution



step 1: network alighment as bipartite matching
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step 2: sampling matchings

approach 1
» sample ¢ matching
» matching M sampled with probability prop. to exp(—%E(M))
» apply a Gibbs sampler [Volkovs and Zemel, 2012]

approach 2
» find top-£ matchings
» apply Murthy's algorithm [Murthy, 1968]
> running time O(¢n3) [Miller et al., 1997]



steps 1-3:

Bipartite graph

used for matching

o 33
OB
BO - -OB
O4s
»o 8

example

top-5 matchings

OB OB OB OB
BO—O B BO—OB: BO—COB: BO—OB:
O 43 O 43 O 43 O4s

The matching distributions for A, B, and C are
{A1 : 40%, Ay : 40%, A3 : 20%},
{By : 80%, B> : 20%}, and
{C : 40%, C; : 60%}, respectively.



quantifying uncertainty

» let f,(u) denote how many times node v € V4 has been
assigned to u € V5, among the sampled matchings
approach 1

» select to query node ¥ = arg min, max, f,(u)
approach 2

» define uncertainty using entropy

approach 3

> select to query node ¥ that maximizes the expected certainty

of the remaining nodes



example

should an algorithm query node A, B, or C?

A Ay Az As

Gs G



quantifying uncertainty : example

Bipartite graph

top-5 matchings

used for matching

cO 82 co\8$f co\ggf

OB OB OB
BO --OB BO—QO B BO—O B
O4s O4s O 43

A A; A:
A0 8Af AO\8A3 A0 54

» query node ¥ = arg min,max,f,(u)

{A1 : 40%, Az : 40%, A3 : 20%} — query node A

{B1 :80%, B> : 20%}
{Cl : 40%, C2 : 60%}



experiments

datasets

» preferential-attachment graphs
» social networks

» genealogical networks



experiments

datasets

» preferential-attachment graphs
» social networks

» genealogical networks
evaluation

1. run a non-active aligner

2. compute accuracy (% of correctly aligned non-queried nodes)
3. query a node

4. go back to step 1



baselines

v

random: query random node

v

betweenness: largest betweenness centrality

» margin: smallest difference between the top-2 nodes

v

LCCL: least confident given the current labelling
[Cortés & Serratosa 2013]



results
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the proposed methods, TopMatchings and GibbsMatchings, outperform the
baseline query strategies. Accuracy is the % of correctly aligned unqueried
nodes using Natalie [Klau 2009]



conclusions

v

active network alignment to leverage human experts

> main novelty: the combination of
(1) viewing network alignment as bipartite matching +
(2) sampling matchings +
(3) quantifying uncertainty based on marginal distributions

v

applicable on top of any matching-based aligner

future work
(1) relative vs. absolute queries
(2) imperfect oracle

v



genealogical network inference

» dataset: 10 million
transcribed vital/parish
records from Finland

— births, marriages,
burials, migration
— from 1648 to 1917

» task: link birth records to
the parents’ birth records

» challenges:
— duplicate names
— spelling variations

— missing records



linking birth records

» birth record attributes: child name, parent names, birth date,

birth location, parent occupations
» training/test data: 18731 ground truth links

> approach

1. retrieve candidate parents based on names and birth years

2. probabilistically classify each child—parent edge to
match vs. no match

3. compute a probability distribution over the candidates
E. Malmi, M. Rasa, A. Gionis “AncestryAl: A tool for exploring computationally
inferred family trees”, WWW Companion, 2017.

E. Malmi, A. Solin, A. Gionis “The blind leading the blind: Network-based location
estimation under uncertainty”, ECML PKDD, 2015.



results

» largest component:

2.6 million individuals

> subgraph of 2000 nodes
and 13 generations shown

on the right

* 1 Upperand middle class ~ 9° 3. Crofters ®  Unknown
¥ 2 Peasants ® 4 Labourers



online tool: ancestryai.cs.hut.fi
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ancestryai.cs.hut.fi
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case study : assortative mating
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» instance of social stratification

Opposites don't attract




case study : assortative mating

Ecor‘l\-ginist Subscribe 2
> aSSOrtat|Ve matln Assortative mating )
. Marital choices are
= marrying your like exacerbating household
income inequality

» instance of social stratification

Opposites don't attract

> research questions:

(/) can we detect assortative mating in
the inferred genealogical network?

(if) how does it change over time?




assortative mating results

> probability of matching spouse father occupations

» null model: shuffle spouses

Social stratification

30 === (No stratification)
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assortative mating results (occupations clustered)

100 A
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Class4: (1) upper and middle class, (2) peasants, (3) crofters, and (4) labourers



conclusions

1. accurate links
2. link probabilities

3. assortative mating
(1) did occur in Finland (1735-1885)

(i) did not monotonously decrease or increase

4. longitudinal computational social science
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