Inferring Cognitive Models from Data using Approximate Bayesian Computation

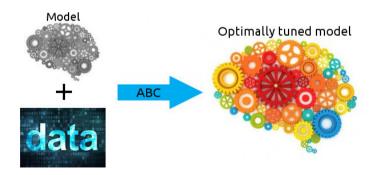
CHI 2017

Antti Kangasrääsiö¹, Kumaripaba Athukorala¹, Andrew Howes², Jukka Corander³, Samuel Kaski¹, Antti Oulasvirta⁴

 ¹Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland
²School of Computer Science, University of Birmingham, UK
³Department of Biostatistics, University of Oslo, Norway
⁴Helsinki Institute for Information Technology HIIT,
Department of Communications and Networking, Aalto University, Finland

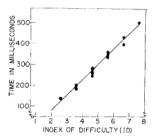
Tuesday 9.5.2017

Parameters of cognitive models can be tuned based on commonly available observation data using Approximate Bayesian Computation (ABC)



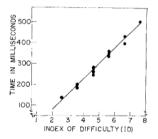
Examples of Cognitive Models

Early work: Fitt's law (1954) Speed/accuracy trade-off in pointing tasks



Early work: Fitt's law (1954) Speed/accuracy trade-off in pointing tasks

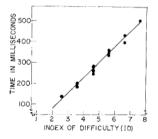
Modern work: ACT-R (1997) Cognitive tasks with visual elements

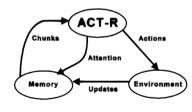


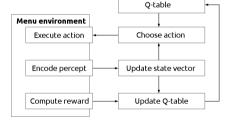
Early work: Fitt's law (1954) Speed/accuracy trade-off in pointing tasks

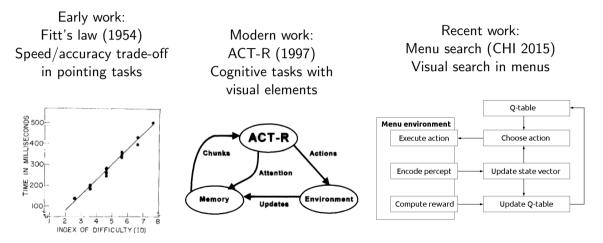
Modern work: ACT-R (1997) Cognitive tasks with visual elements

Recent work: Menu search (CHI 2015) Visual search in menus









Yesterday: A model of visual decision-making by Chen, Starke, Baber & Howes

Why Model Human Cognition

Predicting user behavior

Explaining cognitive processes

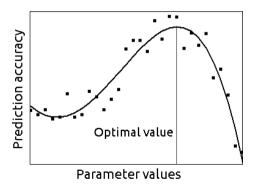
Predicting user behavior

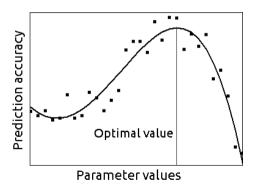
Predicting user behavior

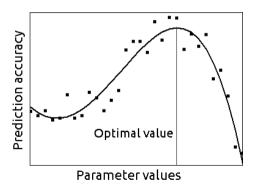
Explaining cognitive processes

Allowing computer systems to adapt better to the user

Model Tuning

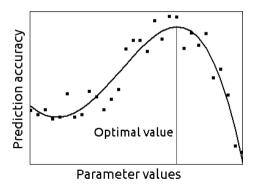




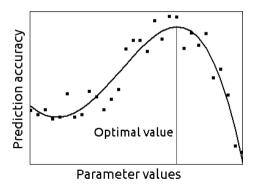


Examples of parameters

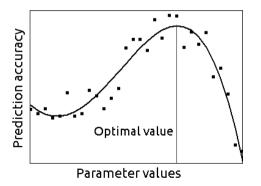
• Duration of a visual fixation



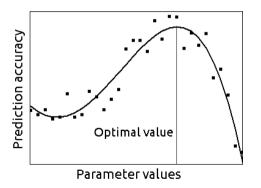
- Duration of a visual fixation
- Acuity and size of peripheral visual field



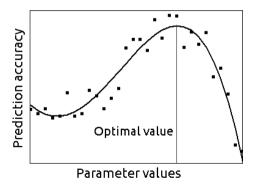
- Duration of a visual fixation
- Acuity and size of peripheral visual field
- Reward for completing the task



- Duration of a visual fixation
- Acuity and size of peripheral visual field
- Reward for completing the task
- Penalty for wasting one second of time



- Duration of a visual fixation
- Acuity and size of peripheral visual field
- Reward for completing the task
- Penalty for wasting one second of time
- Duration of short-term memory



- Duration of a visual fixation
- Acuity and size of peripheral visual field
- Reward for completing the task
- Penalty for wasting one second of time
- Duration of short-term memory
- And so on ..

Characteristics of Modern Cognitive Models

No simple way to tune parameters

Highly non-linear model structure, not possible to directly compute best parameter values

No simple way to tune parameters

Highly non-linear model structure, not possible to directly compute best parameter values

Computing predictions takes time

Once we fix the parameter values, the model needs to first learn a behavior strategy

Traditional Tuning Methods

Manual Parameter Tuning

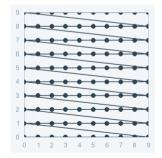
Slow: needs human labour No guarantees of optimality

Manual Parameter Tuning

Slow: needs human labour No guarantees of optimality

Grid search

Might take a very long time No uncertainty estimates



Approximate Bayesian Computation (ABC)

• Choose parameter values for the model

- Choose parameter values for the model
- Simulate predictions

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space
- (Repeat until converged)

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space
- (Repeat until converged)

Inference Results

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space
- (Repeat until converged)

Inference Results

• Based on the probabilistic model, we can compute an approximate probability distribution over the parameter space

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space
- (Repeat until converged)

Inference Results

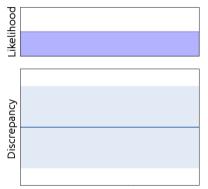
- Based on the probabilistic model, we can compute an approximate probability distribution over the parameter space
- Maximum of the distribution gives us the Maximum Likelihood (ML) estimate

ABC Inference Process

- Choose parameter values for the model
- Simulate predictions
- Evaluate discrepancy between predictions and observations
- Use a probabilistic model to estimate discrepancy in different regions of parameter space
- (Repeat until converged)

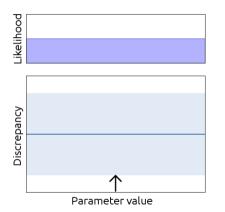
Inference Results

- Based on the probabilistic model, we can compute an approximate probability distribution over the parameter space
- Maximum of the distribution gives us the Maximum Likelihood (ML) estimate
- Width of distribution corresponds to uncertainty

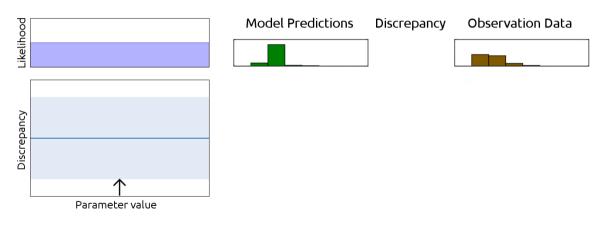


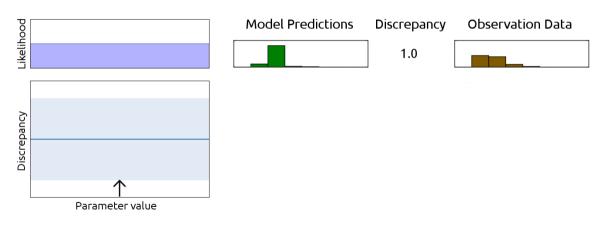
Parameter value

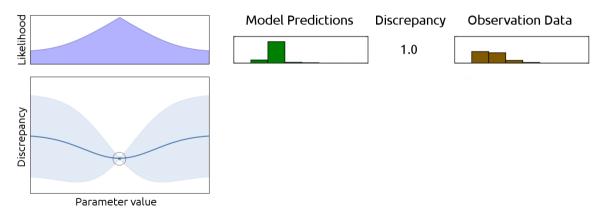
Model Predictions Discrepancy Observation Data

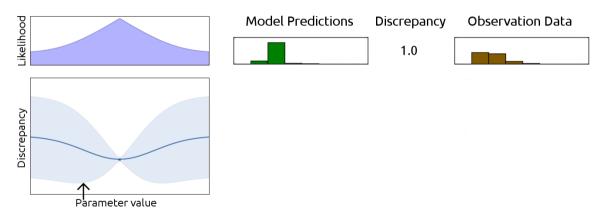


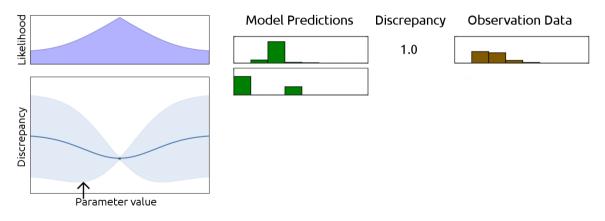
Model Predictions Discrepancy Observation Data

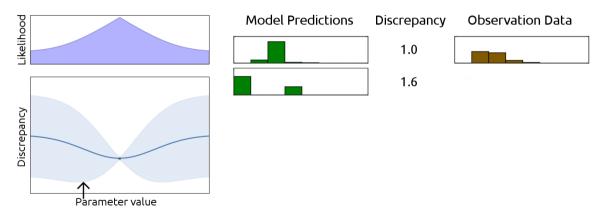


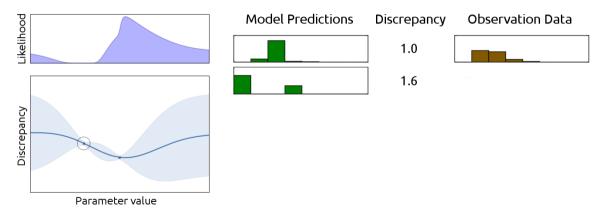


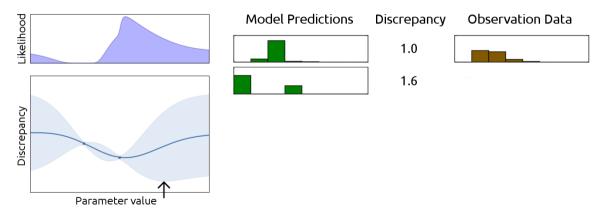


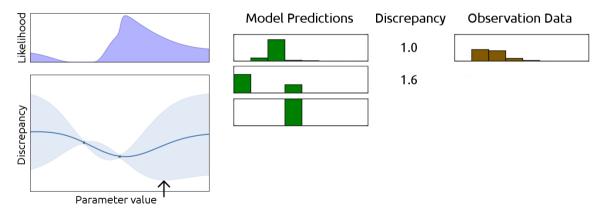


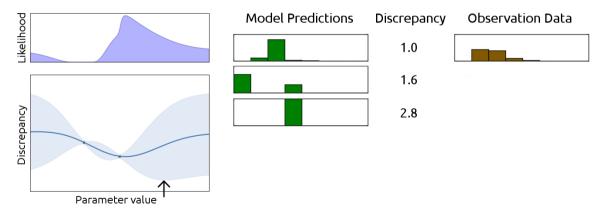


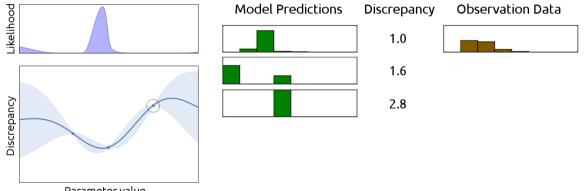


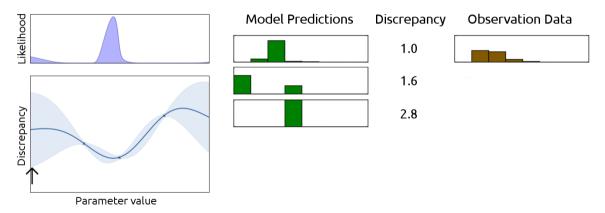


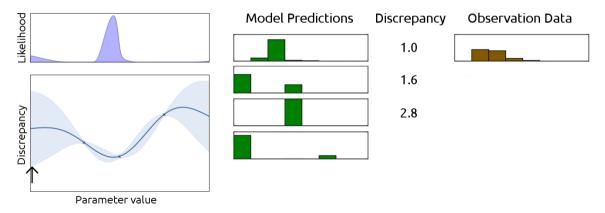


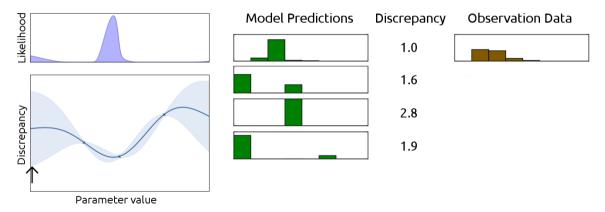


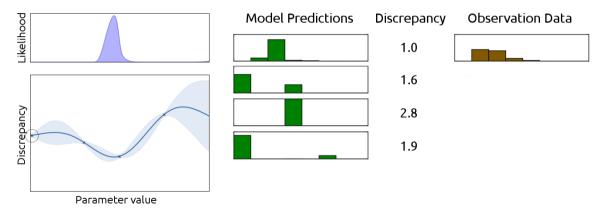


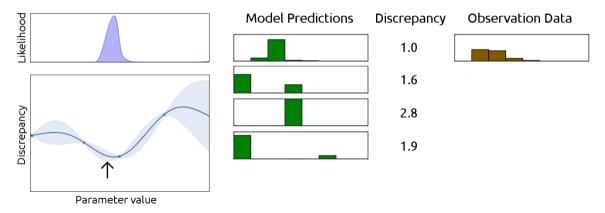


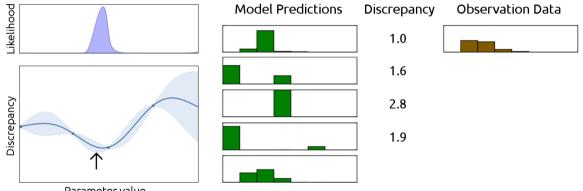


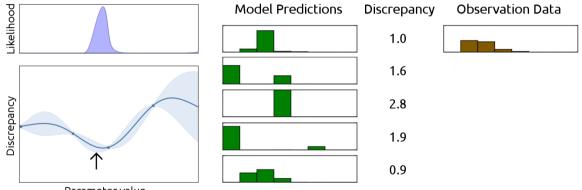


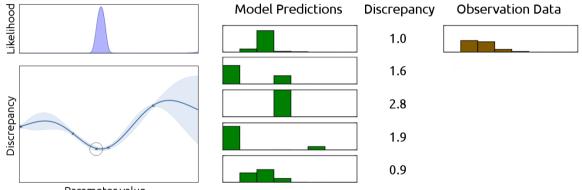


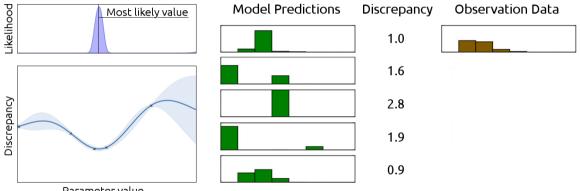


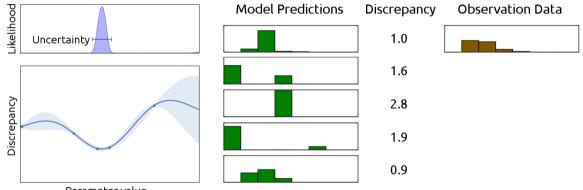


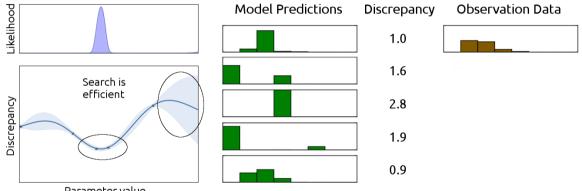


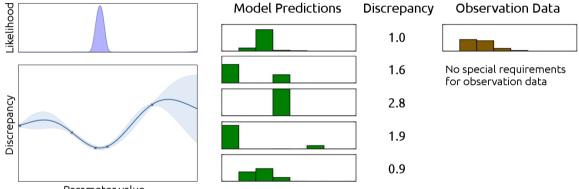












Case Study: Visual Search

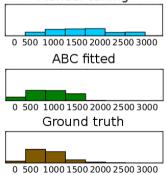
A recent model for visual search in drop-down menus (Chen *et al.* CHI 2015)

A recent model for visual search in drop-down menus (Chen *et al.* CHI 2015)

With ABC, the predictions match better to observations

Task Completion Time (ms)

Manual tuning



Model Development and Individual Modelling with ABC

Fit different models to same dataset

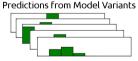
This allowed us to estimate how different changes to the model affected the predictions

Predictions from Model Variants

Observation Data

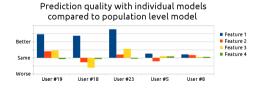
Fit different models to same dataset

This allowed us to estimate how different changes to the model affected the predictions



Fit same model to different datasets

By fitting models to observations from individual users we were able to improve the predictions over a population level model



Resources for Practical Use of ABC

• A simulator model (with tunable parameters)

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset
- Discrepancy measure

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset
- Discrepancy measure

Technical Considerations

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset
- Discrepancy measure

Technical Considerations

 There exists programming frameworks for ABC (e.g. ELFI: github.com/elfi-dev/elfi)

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset
- Discrepancy measure

Technical Considerations

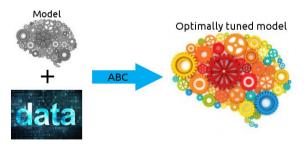
- There exists programming frameworks for ABC (e.g. ELFI: github.com/elfi-dev/elfi)
- The more parameters you infer, the more challenging inference is

- A simulator model (with tunable parameters)
- Prior knowledge of reasonable parameter values
- Observation dataset
- Discrepancy measure

Technical Considerations

- There exists programming frameworks for ABC (e.g. ELFI: github.com/elfi-dev/elfi)
- The more parameters you infer, the more challenging inference is
- Cluster computers offer speedups

Tuning the parameters of cognitive models based on real observations is important for making good predictions Approximate Bayesian Computation (ABC) allows you to do this with only very mild technical requirements



ELFI, a Python library for ABC: github.com/elfi-dev/elfi Tech paper: Inverse Reinforcement Learning from Summary Data: arxiv.org/abs/1703.09700