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Impossible Differential (ID) Cryptanalysis
[Knudsen 1997]
ID distinguishers :
» Differentials which never occur
» Truncated differential (A, ') with probability 0
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Zero-Correlation (ZC) Linear Cryptanalysis
[Bogdanov et al 2012]
(Multidimensional) ZC distinguishers :
» Linear approximations with probability 1/2
» Multidimensional linear approximation (U, V') with capacity 0

P (0,0) £ (U, V)
Yue U, VveV,
- Prlu-Pev-C=0=2
Or equivalently,
Cap(U,V)=0
v.C
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Zero-Correlation (ZC) Linear Cryptanalysis
[Bogdanov et al 2012]
(Multidimensional) ZC distinguishers :
» Linear approximations with probability 1/2
» Multidimensional linear approximation (U, V') with capacity 0
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Mathematical Relation between ID and ZC
[Blondeau Nyberg 2013]
» TD : (0, A¢), (O, F,)]AIGF \{0}, T/€Fy with probability p
» ML : [(Us,0), (Vg, )]USG]FS\{O}, Voekd with capacity C

2t 1 . L
s bits t bits s bits t bits
0 Ay Us 0
p=0 ID ZC Cc=0
0 I Vq 0
q bits r bits q bits r bits

If t = q: ZC and ID distinguishers are mathematically equivalent
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Mathematical Relation between ID and ZC
[Blondeau Nyberg 2013]

s bits t bits s bits t bits
—~N— —_——
0 AI Us 0
p=0 ID zc c=0
NN Va0
q bits r bits q bits r bits

If t = q: ZC and ID distinguishers are mathematically equivalent

Observation :
» Independent of the cipher and its structure
However: (2! — 1)(2"~! — 1) ~ 2" IDs are involved

» In practice, the considered spaces are smaller
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Feistel and Skipjack-Type Ciphers
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ID and ZC Distinguishers

Number of Rounds of the Distinguisher:

Ciphers ID ZC
LBlock / TWINE 14 14
MARS 11 11

SMS4 11 11
Skipjack 24 17
Skipjack (only rule A) | 16 16
Four-Cell 18 12
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ID and ZC Distinguishers

Number of Rounds of the Distinguisher:

Ciphers ID ZC
LBlock / TWINE 14 14
MARS 11 11

SMS4 11 11
Skipjack 24 17
Skipjack (only rule A) | 16 16
Four-Cell 18 12

Example of Patterns (for LBlock) :

» Impossible differential :
(00000000,00A00000) - (0r000000,00000000)
» Zero correlation approximation :
(000U0000,00000000) — (00000000, 01000000)
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Example of Constructions

Feistel-Type

Skipjack-Type

EGNF-Type
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Representation of the Round Function
| F]-®
=

» F-layer 'Fl
» X-layer

> P-layer >§§<
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Representation of the Round Function

—{F-&
> F-layer 'Fl
» X-layer
> P-layer >§§<
1 0 0O 1 0 00
01 00O 0100
7= 0O F 10|’ = 1 010
F 0 0 1 01 0 1
0 01O
0O 0 0 1
P=l1000|
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Representation of the Round Function

—{FI-o

» F-layer [F]

» X-layer

> P-layer >§§<
10 00 1000
0 1 00O 0100

F=loF1o0] =101 0
F 0 0 1 0101
0010
0 00 1

P = 1000 ,andR=P- X -F
0100
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Rules to find ZC and ID distinguishers

Differential Context :

04
+—52 S5 = 61 = 6
d3

Linear Context :
Uy

+—U2 Uz = U1 @ U2
us

01

+— dg 03 =01 P02
03

Uy

+—U2 Uz =U1 = U
us

01

)

04 =0=0
01#0and 52 #0
[ :U2:0

ui#0and us#£0
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Rules to find ZC and ID distinguishers

Differential Context :

01 04 51 PR
+—52 03 = 01 = 02 +—52 03 = 81 ® 02 5140 and 620
03 03 5

Linear Context :

Uy Uy Uy

U1=U2=0
+—U2 Uz = U1 D U2 +—U2 Uz = Uy = U2 U £0 and Uy #£0
Us Us Up

@ and - “play orthogonal roles”
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Mirror Round Function

- F)- s
7 I ‘
R=P-X F M=p.xT.FT

» M is the matrix representation of the mirror round function
» Ingeneral MT £ R

» Used to find ZC distinguishers [Soleimany Nyberg 2013]
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Example of ID distinguisher




Example of ZC distinguisher




Matrix Method

Impossible Differential Context :
» Truncated input difference A
» Truncated output difference I'

» If there is an inconsistency between R - A and R~‘-T, we
have an ID on m+ ¢ rounds

Zero-Correlation Context :
» Truncated input mask U
» Truncated output mask V

» If there is an inconsistency between M- U and M~ -V, we
have a ZC on m + ¢ rounds
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Equivalence between ID and ZC distinguishers

If it exists a linear relation between M and R or R,
the existence of an ID distinguisher involving M differentials is
equivalent to the existence of a ZC distinguisher involving M linear
masks.

Given Q a permutation matrix, the relation is
» Feistel-type (R =P - F):
R=Q - M-Q'orR=90-M1.01
» Skipjack-type (R=P - X - F):
R=Q M- QlorF-P-Xx=0 M. Q"
» EGFN-type (R=P - X - F):
R=QM-Q'orR=QM - Qlor FP-X=QM'.Q"
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lllustration of the Proof for a Type-I Feistel

Round function Inverse function

A B c D B&F(A) C D A
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lllustration of the Proof for a Type-I Feistel

Round function Inverse function Permutation of the branches
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lllustration of the Proof for a Type-I Feistel

Round function Inverse function Permutation of the branches

M:Q.R71'Q71

M7 UEzM ' Ve Q- R™ QT A£Q - RI-Q1.T

ZC on m + £ rounds ID on £ + mrounds
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lllustration for Proof for Skipjack Rule-A

Round function

R=P -X-F
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lllustration for Proof for Skipjack Rule-A

Round function Inverse function

A
R=P -X-F RE=7
P
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lllustration for Proof for Skipjack Rule-A

Round function Inverse function

71_
R=P-X-F R =7
P

Exchange the order
of the operations

X;1 .7)71 ]_‘;1
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lllustration for Proof for Skipjack Rule-A

Round function Inverse function

-1 _ 1 —1 —1
R_P.X-F RI=F1.x1.P
:,P,1 ]:;1 'X,:1

Exchange the order Equivalent formulation

of the operations
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lllustration for Proof for Skipjack Rule-A

Round function Inverse function

-1 _ 1 —1 —1
R_P.X-F RI=F1.x1.P
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lllustration for Proof for Skipjack Rule-A

Round function Inverse function

-1 _ 1 —1 —1
R_P.X-F RI=F1.x1.P
:,P,1 ]:;1 'X,:1

Exchange the order Equivalent formulation Permutation of the branches

of the operations

x;tpF PPt P F
The inverse function is “equivalent” to the mirror function
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Example of Equivalence
Round Function of the Twine Block Cipher:

1.0 0 -0 00
F 10 000
R=P -FwithF=|°° 1 000
00 O 010
00 O 0 F 1

P defined from = = {5,0,1,4,7,12,3,8,13,6,9,2,15,10,11,14}
We have M = Q- R - Q! for Q defined from

~v={16,15,12,11,14,13,10,9,8,7,4,3,6,5,2,1}
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Example of Inequivalence
» Some of the Feistels of [Suzaki et al 2010]

10 --- 00
. . 00
» Forinstance R = P - F with F =
0 0 10
00 F 1

and P is defined from = = {1,2,9,4,11,6,7,8,5,12,13,10, 3,0}

Aalto University i of ID and ZC Distingui:
School of Science S



Example of Inequivalence
» Some of the Feistels of [Suzaki et al 2010]

10 00
. . F 1 00
» Forinstance R = P - F with F =
0 0 10
00 F 1

and P is defined from = = {1,2,9,4,11,6,7,8,5,12,13,10, 3,0}

» The original Skipjack (ID: 24 rounds, ZC: 17 rounds)
» Rule-B followed by Rule-A is equivalent to
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Conclusions

» We provide condition of equivalence between ID and ZC
distinguishers for different cipher constructions (Feistel-type,
Skipjack-type, EGFN-type, --- )

» The results can be generalized to other constructions

» This relation can be taken into consideration when designing a
cipher

» Is there a link between the key-recovery attacks?
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