

On the (In)Equivalence of Impossible Differential and Zero-Correlation Distinguishers for Feisteland Skipjack-type Ciphers

Céline Blondeau and Andrey Bogdanov and Meiqin Wang

Thursday June 12, 2014 ACNS

Outline

Impossible Differential and Zero-Correlation Linear Distinguishers

The Distinguishers Previously Known Relation

Feistel and Skipjack-Type Ciphers

Constructions The Matrix Method Main Results Illustration of the Proof

Examples and Conclusion

Example of (In)Equivalence Conclusion

Outline

Impossible Differential and Zero-Correlation Linear Distinguishers

The Distinguishers Previously Known Relation

Feistel and Skipjack-Type Ciphers

Constructions The Matrix Method Main Results Illustration of the Proof

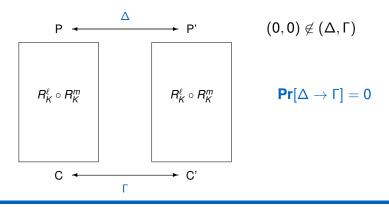
Examples and Conclusion

Example of (In)Equivalence Conclusion

[Knudsen 1997]

ID distinguishers :

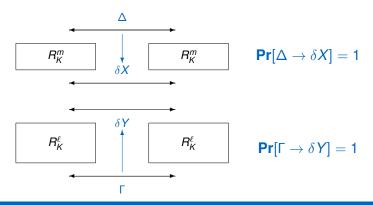
- Differentials which never occur
- Truncated differential (Δ, Γ) with probability 0



[Knudsen 1997]

ID distinguishers :

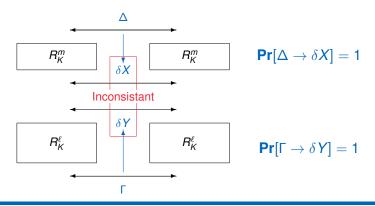
- Differentials which never occur
- Truncated differential (Δ, Γ) with probability 0



[Knudsen 1997]

ID distinguishers :

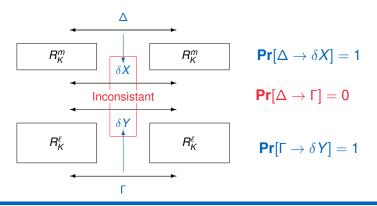
- Differentials which never occur
- Truncated differential (Δ, Γ) with probability 0



[Knudsen 1997]

ID distinguishers :

- Differentials which never occur
- Truncated differential (Δ, Γ) with probability 0



[Bogdanov et al 2012]

(Multidimensional) ZC distinguishers :

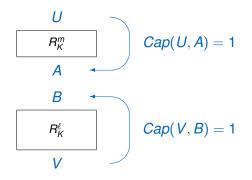
- Linear approximations with probability 1/2
- Multidimensional linear approximation (U, V) with capacity 0

 $\begin{array}{c} \boldsymbol{U} \cdot \boldsymbol{P} & (0,0) \notin (\boldsymbol{U},\boldsymbol{V}) \\ \\ & \forall \boldsymbol{u} \in \boldsymbol{U}, \ \forall \boldsymbol{v} \in \boldsymbol{V}, \\ & \boldsymbol{Pr}[\boldsymbol{u} \cdot \boldsymbol{P} \oplus \boldsymbol{v} \cdot \boldsymbol{C} = 0] = \frac{1}{2} \\ \\ & \text{Or equivalently,} \\ & \boldsymbol{Cap}(\boldsymbol{U},\boldsymbol{V}) = 0 \end{array}$

[Bogdanov et al 2012]

(Multidimensional) ZC distinguishers :

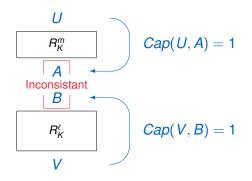
- Linear approximations with probability 1/2
- Multidimensional linear approximation (U, V) with capacity 0



[Bogdanov et al 2012]

(Multidimensional) ZC distinguishers :

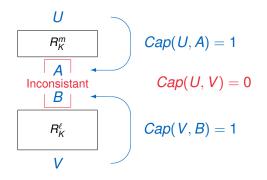
- Linear approximations with probability 1/2
- Multidimensional linear approximation (U, V) with capacity 0



[Bogdanov et al 2012]

(Multidimensional) ZC distinguishers :

- Linear approximations with probability 1/2
- Multidimensional linear approximation (U, V) with capacity 0



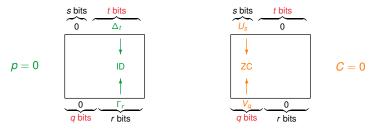
Mathematical Relation between ID and ZC

[Blondeau Nyberg 2013]

- $\succ \mathsf{TD} : [(0, \Delta_t), (0, \Gamma_r)]_{\Delta_t \in \mathbb{F}_2^t \setminus \{0\}, \ \Gamma_r \in \mathbb{F}_2^r}$
- ► ML : $[(U_s, 0), (V_q, 0)]_{U_s \in \mathbb{F}_2^s \setminus \{0\}, V_q \in \mathbb{F}_2^q}$ w

with probability *p* with capacity *C*

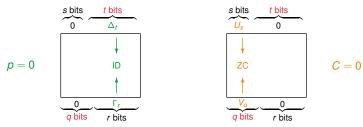
$$\frac{2^t - 1}{2^t} \cdot p = 2^{-q} \cdot (C + 1) - 2^{-t}$$



If t = q: ZC and ID distinguishers are mathematically equivalent

Mathematical Relation between ID and ZC

[Blondeau Nyberg 2013]



If t = q: ZC and ID distinguishers are mathematically equivalent Observation :

Independent of the cipher and its structure

However: $(2^t - 1)(2^{n-t} - 1) \approx 2^n$ IDs are involved

In practice, the considered spaces are smaller

Outline

Impossible Differential and Zero-Correlation Linear Distinguishers The Distinguishers Previously Known Relation

Feistel and Skipjack-Type Ciphers

Constructions The Matrix Method Main Results Illustration of the Proof

Examples and Conclusion

Example of (In)Equivalence Conclusion

ID and ZC Distinguishers

Number of Rounds of the Distinguisher:

Ciphers	ID	ZC
LBlock / TWINE	14	14
MARS	11	11
SMS4	11	11
Skipjack	24	17
Skipjack (only rule A)	16	16
Four-Cell	18	12

ID and ZC Distinguishers

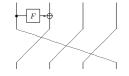
Number of Rounds of the Distinguisher:

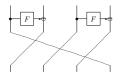
Ciphers	ID	ZC
LBlock / TWINE	14	14
MARS	11	11
SMS4	11	11
Skipjack	24	17
Skipjack (only rule A)	16	16
Four-Cell	18	12

Example of Patterns (for LBlock) :

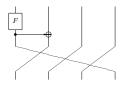
- Impossible differential :
 - $(0000000, 00 \Delta 00000) \nrightarrow (0 \Gamma 000000, 00000000)$
- ► Zero correlation approximation : (000 U0000, 0000000) → (0000000, 0 V000000)

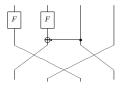
Example of Constructions



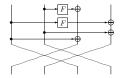


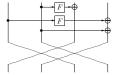
Skipjack-Type



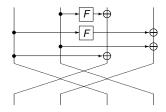


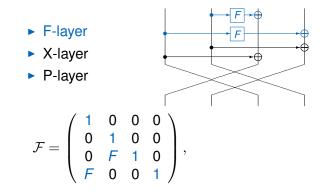
EGNF-Type

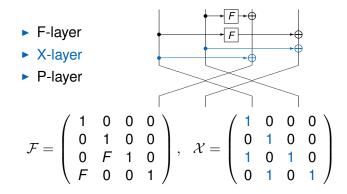


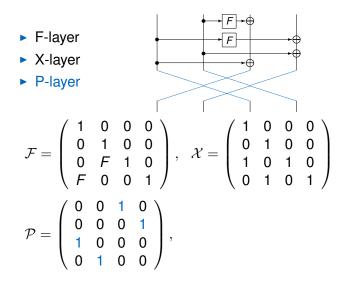


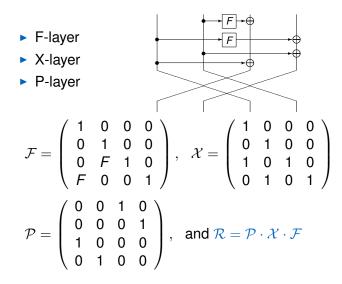
- F-layer
- X-layer
- P-layer











Rules to find ZC and ID distinguishers

Differential Context :

Linear Context :

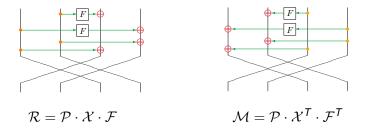
Rules to find ZC and ID distinguishers

Differential Context :

Linear Context :

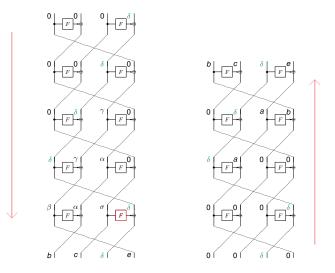
⊕ and • "play orthogonal roles"

Mirror Round Function

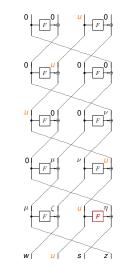


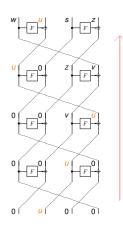
- \mathcal{M} is the matrix representation of the mirror round function
- In general $\mathcal{M}^T \neq \mathcal{R}$
- Used to find ZC distinguishers [Soleimany Nyberg 2013]

Example of ID distinguisher



Example of ZC distinguisher





Matrix Method

Impossible Differential Context :

- Truncated input difference Δ
- Truncated output difference Г
- ▶ If there is an inconsistency between $\mathbb{R}^m \cdot \Delta$ and $\mathbb{R}^{-\ell} \cdot \Gamma$, we have an ID on $m + \ell$ rounds

Zero-Correlation Context :

- Truncated input mask U
- Truncated output mask V
- ▶ If there is an inconsistency between $\mathcal{M}^m \cdot U$ and $\mathcal{M}^{-\ell} \cdot V$, we have a ZC on $m + \ell$ rounds

Equivalence between ID and ZC distinguishers

If it exists a linear relation between \mathcal{M} and \mathcal{R} or \mathcal{R}^{-1} , the existence of an ID distinguisher involving M differentials is equivalent to the existence of a ZC distinguisher involving M linear masks.

Given $\ensuremath{\mathcal{Q}}$ a permutation matrix, the relation is

• Feistel-type ($\mathcal{R} = \mathcal{P} \cdot \mathcal{F}$) :

$$\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1}$$
 or $\mathcal{R} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$

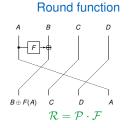
• Skipjack-type ($\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$):

$$\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1} \text{ or } \mathcal{F} \cdot \mathcal{P} \cdot \mathcal{X} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$$

• EGFN-type ($\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$) :

$$\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1}$$
 or $\mathcal{R} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$ or $\mathcal{F} \cdot \mathcal{P} \cdot \mathcal{X} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$

Illustration of the Proof for a Type-I Feistel



Inverse function

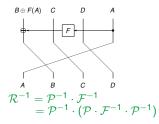
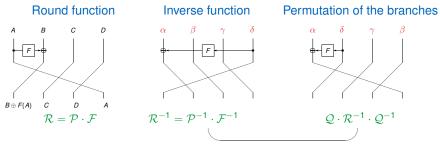
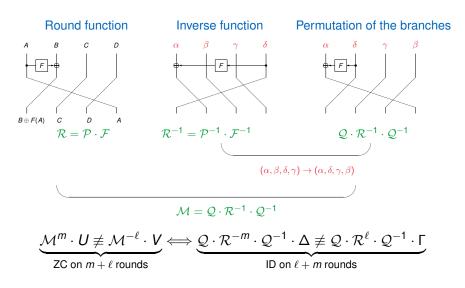


Illustration of the Proof for a Type-I Feistel

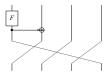


 $(\alpha, \beta, \delta, \gamma) \rightarrow (\alpha, \delta, \gamma, \beta)$

Illustration of the Proof for a Type-I Feistel



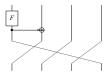
Round function



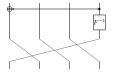
 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Round function

Inverse function



 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

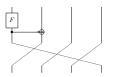


$$\mathcal{R}^{-1} = \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1}$$
$$= \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1}$$

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

Round function



 $\mathcal{R}^{-1} = \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1}$

 $= \mathcal{P}^{-1} \cdot \mathcal{F}_{*}^{-1} \cdot \mathcal{X}_{*}^{-1}$

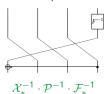
Inverse function

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

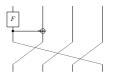
$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Exchange the order of the operations

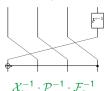


Round function



 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

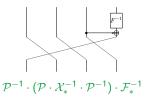
Exchange the order of the operations



Inverse function

$$\begin{split} \mathcal{R}^{-1} &= \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1} \\ &= \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1} \end{split}$$

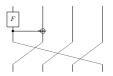
Equivalent formulation

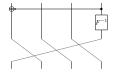


$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

Round function





Inverse function

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

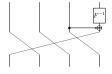
 $\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$

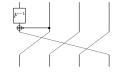
Exchange the order of the operations


```
\mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1}
```

$$\mathcal{R}^{-1} = \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1}$$
$$= \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1}$$

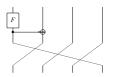
Equivalent formulation Permutation of the branches

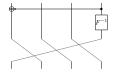




 $\mathcal{P}^{-1} \cdot (\mathcal{P} \cdot \mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1}) \cdot \mathcal{F}_*^{-1}$

Round function





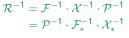
Inverse function

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

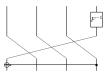
$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

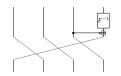
Exchange the order of the operations

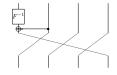


Equivalent formulation Permutation of the branches



 $\mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1}$





 $\mathcal{P}^{-1} \cdot (\mathcal{P} \cdot \mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1}) \cdot \mathcal{F}_*^{-1}$

The inverse function is "equivalent" to the mirror function

Outline

Impossible Differential and Zero-Correlation Linear Distinguishers The Distinguishers Previously Known Relation

Feistel and Skipjack-Type Ciphers

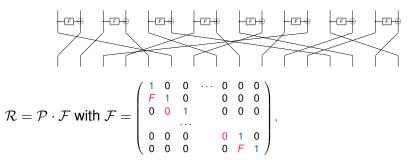
Constructions The Matrix Method Main Results Illustration of the Proof

Examples and Conclusion

Example of (In)Equivalence Conclusion

Example of Equivalence

Round Function of the Twine Block Cipher:



 \mathcal{P} defined from $\pi = \{5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14\}$

We have $\mathcal{M} = \mathcal{Q} \cdot \mathcal{R} \cdot \mathcal{Q}^{-1}$ for \mathcal{Q} defined from

 $\gamma = \{16, 15, 12, 11, 14, 13, 10, 9, 8, 7, 4, 3, 6, 5, 2, 1\}$

Example of Inequivalence

Some of the Feistels of [Suzaki et al 2010]

For instance
$$\mathcal{R} = \mathcal{P} \cdot \mathcal{F}$$
 with $\mathcal{F} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ F & 1 & & 0 & 0 \\ & & \cdots & & \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & & F & 1 \end{pmatrix}$

and \mathcal{P} is defined from $\pi = \{1, 2, 9, 4, 11, 6, 7, 8, 5, 12, 13, 10, 3, 0\}$

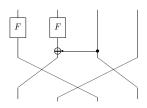
Example of Inequivalence

Some of the Feistels of [Suzaki et al 2010]

For instance
$$\mathcal{R} = \mathcal{P} \cdot \mathcal{F}$$
 with $\mathcal{F} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ F & 1 & 0 & 0 \\ & \cdots & & \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & & F & 1 \end{pmatrix}$

and \mathcal{P} is defined from $\pi = \{1, 2, 9, 4, 11, 6, 7, 8, 5, 12, 13, 10, 3, 0\}$

- The original Skipjack (ID: 24 rounds, ZC: 17 rounds)
 - Rule-B followed by Rule-A is equivalent to



Conclusions

- We provide condition of equivalence between ID and ZC distinguishers for different cipher constructions (Feistel-type, Skipjack-type, EGFN-type, ···)
- The results can be generalized to other constructions
- This relation can be taken into consideration when designing a cipher

Is there a link between the key-recovery attacks?

