Outline

- Intro: Multi-label Classification
- RM: The Ranking Method
- A Probability Distribution for RM
- END: Ensembles of Nested Dichotomies
- Related multi-label work: Pairwise Training
- Current work: M-END: Multi-label END
- Current work: EsPS: Ensembles of split Pruned Sets
- Summary

Intro: Multi-label Classification

Single-label (Multi-class) Classification:

- Set of instances D. Set of labels (classes) L.
- For each $d \in D$, select a label (class) $l \in L$
- Single-label representation: (d, l)

Multi-label Classification:

- Set of instances D. Set of labels L.
- For each $d \in D$, select a label subset $S \subseteq L$
- Multi-label representation: (d, S)

e.g. $L = \{Sports, Environment, Science, Politics\}$ ("Revealed: Polluting impact of humans on the oceans...", {Environment, Science})

Intro: Multi-label Classification

Problem Transformation: Multi-label problems are transformed into one or more single-label problems.

Algorithm Adaption: Employs Problem Transformation internally to a single-label algorithm.

- i.e. All multi-label classification involves **Problem Transformation**. There are three fundamental methods:
 - BM (Binary Method)
 - RM (Ranking Method)
 - CM (Combination Method)

Intro: Multi-label Classification

Problem Transformation: Multi-label problems are transformed into one or more single-label problems.

Algorithm Adaption: Employs Problem Transformation internally to a single-label algorithm.

- i.e. All multi-label classification involves **Problem Transformation**. There are three fundamental methods:
 - BM (Binary Method)
 - RM (Ranking Method)
 - CM (Combination Method)

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

 $\mathsf{ML} \ D_{train}; (d, S \subseteq L)$

 d_1 ,{Sports,Politics}

 d_2 ,{Science,Politics}

 d_3 ,{Sports}

 d_4 ,{Environment,Science}

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

SL D_{train} ; $(d, l \in L)$

 d_1 , Sports

 d_1 , Politics

 d_2 , Science

 d_2 , Politics

 d_3 , Sports

 d_4 , Science

 d_4 , Environment

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

SL D_{train} ; (a	$d, l \in L$)
---------------------	----------------

 d_1 , Sports

 d_1 , Politics

 d_2 , Science

 d_2 , Politics

 d_3 , Sports

 d_4 , Science

 d_4 , Environment

 $d_x \in D_{test}$

$(l \in L)$	$P(l d_x)$
Sports	λ
Environment	λ
Science	λ
Sports	λ

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

SL D_{train} ; $(d, l \in L)$

 d_1 , Sports

 d_1 , Politics

 d_2 , Science

 d_2 , Politics

 d_3 , Sports

 d_4 , Science

 d_4 , Environment

 $\overline{d_x \in D_{test}}$

$(l \in L)$	$P(l d_x)$
Sports	0.03
Environment	0.48
Science	0.45
Politics	0.04

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

SL D_{train} ; $(d, l \in L)$

 d_1 , Sports

 d_1 , Politics

 d_2 , Science

 d_2 , Politics

 d_3 , Sports

 d_4 , Science

 d_4 , Environment

 $\overline{d_x \in D_{test}}$, t=0.2

$(l \in L)$	$P(l d_x)$
Sports	0.03
Environment	0.48
Science	0.45
Politics	0.04

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

 d_1 ,Sports

SL D_{train} ; $(d, l \in L)$

 d_2 , Science

 d_2 , Politics

 $d_3, Sports$

 d_4 , Science

 d_4 , Environment

 $(l \in L)$ $P(l|d_x)$ Sports0.03Environment0.48Science0.45Politics0.04

 $d_x \in D_{test}$, t = 0.2: (d_x ,{Environment,Science}))

Using the probability distribution from a single-label classifier, and a threshold (t), multi-labels are selected.

 $L = \{Sports, Environment, Science, Politics\}$

SL D_{train} ; $(d, l \in L)$ d_1 ,Sports $(l \in L)$ $P(l|d_x)$ d_1 , Politics Sports 0.03 d_2 , Science Environment 0.48 d_2 , Politics 0.45Science d_3 , Sports *Politics* 0.04 d_4 , Science d_4 , Environment

 $d_x \in D_{test}$, t = 0.2: (d_x ,{Environment,Science})

- Assumes that all labels are independent
- Issues with threshold selection / classifier selection

RM: SL Classifier Selection

Each PT method must be supplied a single-label (SL) classifier weka.classifiers.multilabel.RM -t MEDC.arff e.g. SMO:

- -W weka.classifiers.functions.SMO
- e.g. SMO -M (probabilistic outputs):
 - -W weka.classifiers.functions.SMO -M
- e.g. SMO under Bagging:
 - -W weka.classifiers.meta.Bagging --

-W weka.classifiers.functions.SMO

- e.g. Ensembles of Nested Dichotomies:
 - -W weka.classifiers.meta.END --

-W weka....meta.nestedDichotomies.ND --

-W weka.classifiers.functions.SMO

RM: SL Classifier Selection

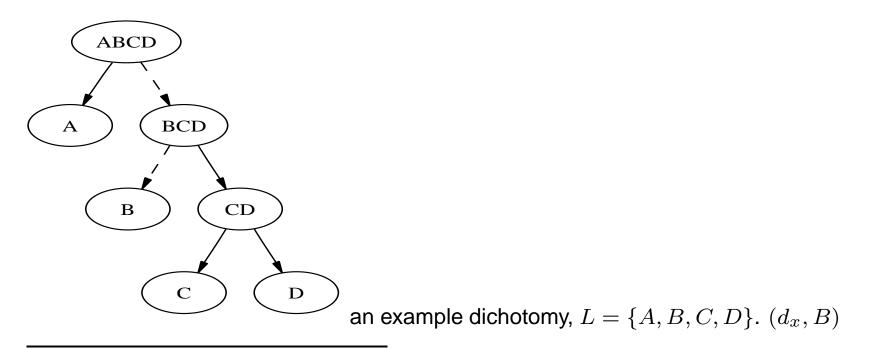
RM: Accuracy on the Medical and Enron datasets.

					END	
			Bag.			DNBND
D	SMO	SMO - M	SMO	SMO	SMO	SMO
MED	74.53	75.43	73.47	77.74	80.31	79.55
ENR	20.90	38.49	23.78	42.86	40.47	42.53

- Medical: average of 1.25 labels / instance
- *Enron*: average of 3.38 labels / instance
- In each case SMO is the SL classifier. Therefore the difference is in the probability distribution and the comparison between labels.

END: Ensembles of Nested Dichotomies

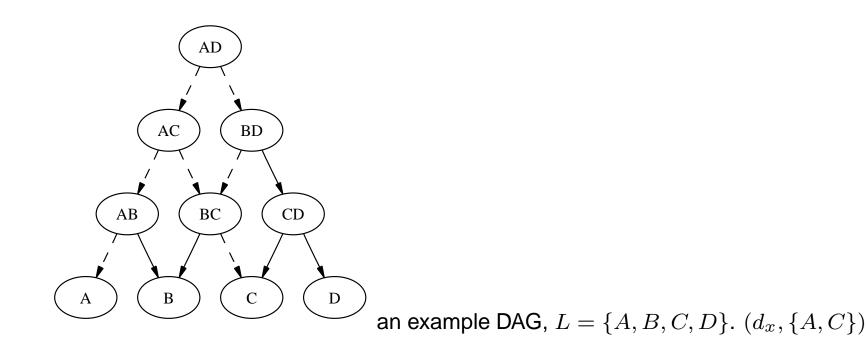
- a: Single-label; Binary Tree; Dichotomy; Ensembles
- Can supply RM-transformed multi-label data and use prob. distribution and threshold to gather multi-labels



^aEibe F. and Kramer S. Ensembles of nested dichotomies for multi-class problems. Proc. of the 21st International conference of Machine Learning, 2004.

Classification by Pairwise Training

^a: Multi-label; DAG; Trichotomy

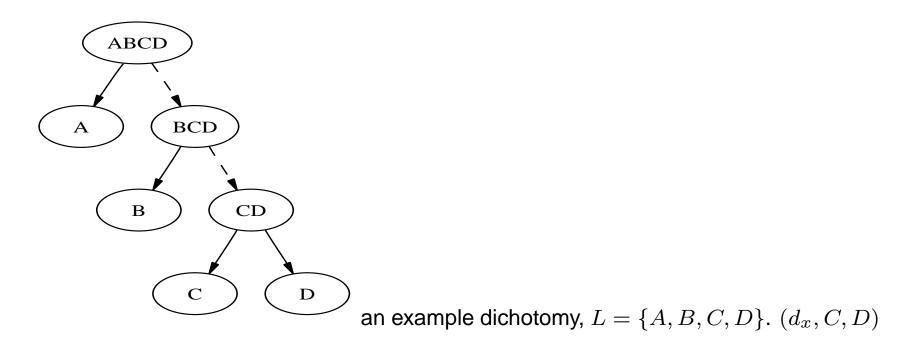


- Error propagation
- Classification sensitive to DAG arrangement (Ensembles?)

^aM. Chang, C. Lin and R. Weng. Multi-label Classification by Pairwise Training thods - p. 8/

M-END: Multi-label END

Multi-label; Binary Tree; Dichotomy; Ensembles

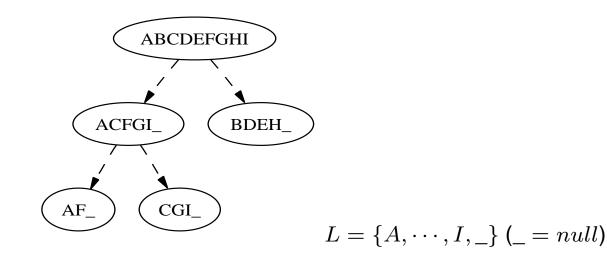


- Can return multiple labels if these labels co-occur often
- Creates splits according to label co-occurrences

A work in progress...

EsPS: *Ensembles of split P***runed** *S***ets**

A somewhat related method inspired by work on M-END



- Some param. to determine when branching stops
- Multi-label method (i.e. PS aka PPT) train on each leaf subset
- Classifications of all leaves are combined

A work in progress...

EsPS: *Ensembles of split P***runed** *S***ets**

Compared to state-of-the-art RAKEL:

Dataset	RAKEL	СМ	BM	RM	EsPS
Scene	71.58±0.89	71.81±1.22	58.28±0.92 •	71.72±0.98	73.51±0.56 o
Medical	72.55±2.32	74.71±1.32	73.00±1.08	72.71±1.56	76.86±1.60
Yeast	$54.49{\pm}0.98$	51.98±0.93 •	49.64±0.88 •	51.95±0.62 •	54.21±0.95
Enron	42.98±0.63	41.02±1.08	38.64±1.05 ●	27.22±0.31 •	47.55±0.80 o
Reuters	31.80±0.29	49.17±0.67 o	31.91±0.76	49.08±0.59 o	46.52±1.03 o
0	 • statistically significant improvement or degradation 				

Dataset	PS.END.DNBND
Medical*	75.82±1.52

5 x 2 fold CV; all ensemble methods 10 iterations, all other parameters tuned via 5 fold internal CV. SMO used as internal single-label classifier in each case.

Summary

- Good probability distributions are important to threshold methods like RM
- Ensembles are a way to achieve this (plus the additional benefits of an ensemble)
 - END
- In multi-label classification it is very important to take into account label-correlations
 - M-END
 - Esps