Multi-label Classification using Ensembles of Pruned Sets

Jesse Read, Bernhard Pfahringer, Geoff Holmes

University of Waikato New Zealand

ICDM 2008, December 15, 2008. Pisa, Italy

J. Read, B. Pfahringer, G. Holmes (UoW)

Ensembles of Pruned Sets

ICDM 2008 1 / 8

Introduction

- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- A set of *predefined* labels: $L = \{I_0, I_1, \cdots, I_n\}$
- Single-label Classification: Each instance is assigned a label: $(x, l \in L)$
- Multi-label Classification: Each instance is assigned a subset of labels: $(x, S \subseteq L)$

Introduction

- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- A set of *predefined* labels: $L = \{I_0, I_1, \cdots, I_n\}$
- Single-label Classification: Each instance is assigned a label: $(x, l \in L)$
- Multi-label Classification: Each instance is assigned a subset of labels: (x, S ⊆ L)
- Example Applications
 - a film can be labeled Romance and Comedy
 - a news article can be about Science and Technology
 - an image can contain Beach, Sunset and Mountains
 - a patient's symptoms may correspond to various ailments
 - a collection of genes can have multiple functions

Introduction

- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- A set of *predefined* labels: $L = \{I_0, I_1, \cdots, I_n\}$
- Single-label Classification: Each instance is assigned a label: $(x, l \in L)$
- Multi-label Classification: Each instance is assigned a subset of labels: $(x, S \subseteq L)$
- Example Applications
 - a film can be labeled Romance and Comedy
 - a news article can be about Science and Technology
 - an image can contain Beach, Sunset and Mountains
 - a patient's symptoms may correspond to various ailments
 - a collection of genes can have multiple functions
- Some Multi-label-centric Issues
 - label correlations
 - consider {Romance,Comedy} vs {Romance,Horror}
 - computational complexity

Problem Transformation

Any multi-label problem can be transformed into one or several single-label problems. Any single-label classifier can be used.

- Problem transformation is core to most multi-label classification, even "algorithm adaption" methods
- There are several "base" methods common to many works
 - e.g. Combination Method (CM)

Problem Transformation

Any multi-label problem can be transformed into one or several single-label problems. Any single-label classifier can be used.

- Problem transformation is core to most multi-label classification, even "algorithm adaption" methods
- There are several "base" methods common to many works
 - e.g. Combination Method (CM)

Combination Method (CM)

Each label subset $S \subseteq L$ is treated as a single label, thus forming a single-label problem. The distinct label sets are the possible single labels.

- takes into account label correlations
- many single labels to choose from
- cannot predict new combinations

- Multi-label data:
 - Some label correlations are very frequent
 - Most label correlations are very infrequent

- Multi-label data:
 - Some label correlations are very frequent
 - Most label correlations are very infrequent

The Pruned Sets Method (PS)

- Treat each label set as a single-label (as per CM)
 - preserves label correlation information
- Prune away infrequent sets and;
- decompose these sets into frequent sets
 - e.g. (movie_i, {Romance, Comedy, Horror}) (infrequent)
 →(movie_i, {Romance, Comedy}), (movie_i, {Comedy, Horror})...
 - represents only the core label sets as single-labels
 - fewer single labels to learn/choose from (efficient/less error prone)

- Multi-label data:
 - Some label correlations are very frequent
 - Most label correlations are very infrequent

The Pruned Sets Method (PS)

- Treat each label set as a single-label (as per CM)
 - preserves label correlation information
- Prune away infrequent sets and;
- decompose these sets into frequent sets
 - e.g. (movie_i, {Romance, Comedy, Horror}) (infrequent)
 →(movie_i, {Romance, Comedy}), (movie_i, {Comedy, Horror})...
 - represents only the core label sets as single-labels
 - fewer single labels to learn/choose from (efficient/less error prone)
 - cannot predict new combinations
 - prone to over-fitting the data

- Several PS classifiers trained on *subsets* of the training data
 - introduces variation
- The predictions are combined to form new combinations
 - reduces over-fitting
 - more robust

- Several PS classifiers trained on subsets of the training data
 - introduces variation
- The predictions are combined to form new combinations
 - reduces over-fitting
 - more robust

Example (EPS - Classification Phase)

Ensemble	PS_0	PS_1	PS_2	PS_3	PS_4	PS_5
SL Predictions	(M)	(A,F)	(A,C)	(A,F)	(M)	(M)

- Several PS classifiers trained on subsets of the training data
 - introduces variation
- The predictions are combined to form new combinations
 - reduces over-fitting
 - more robust

Example (EPS - Classification Phase)

Ensemble PS_0 PS_1 PS_2 PS_3 PS_4 PS_5 SL Predictions(M)(A,F)(A,C)(A,F)(M)(M)								Сог	unts	
SL Predictions (M) (A,F) (A,C) (A,F) (M) (M) F 2 C 1	Ensemble	PS_0	PS_1	PS_2	PS_3	PS_4	PS_5	A	3	
	SL Predictions	(M)	(A,F)	(A,C)	(A,F)	(M)	(M)	F	2 1	

• Several PS classifiers trained on subsets of the training data

- introduces variation
- The predictions are combined to form new combinations
 - reduces over-fitting
 - more robust

Example (EPS - Classification Phase)

							C	ounts]
Ensemble	PS_0	PS_1	PS_2	PS_3	PS_4	PS_5	A	0.375	
SL Predictions	(M)	(A,F)	(A,C)	(A,F)	(M)	(M)	F	0.375	
$Classif.(\subseteq L)$			{ <i>A</i> , <i>W</i>	I, F }			t	= 0.2	
							C	0.125	

Experiments / Results

- Reuters dataset (|D| = 6000, |L| = 103) 50/50 train/test split
- BM: Binary Method (one binary classifier per label)
- CM: Combination Method (each set is a single-label)
- EPS,RAKEL: 10 models, auto-tuned threshold, varying *p*,*k*
 - e.g. p = 3: only label sets occurring > 3 times are *frequent*
- All using Support Vector Machines as single-label classifiers

BM						
Time	Acc.					
123	32.48					
СМ						
C	M					
Time	M Acc.					

EPS								
р	Time	Acc.						
5	194	48.01						
4	277	48.51						
3	408	48.40						
2	719	48.71						
1	1,553	49.97						

RAKEL							
k	Time	Acc.					
2	10	10.05					
25	350	36.66					
50	3,627	44.70					
61*	22,337	47.35					
102	DNF	DNF					

• Ensembles of Pruned Sets: A new problem transformation method

- classifier independent
- improved performance over BM, CM, and RAKEL
- efficient in practice
- Main contribution: focus on core label correlations
 - pruning infrequent sets
 - set decomposition into frequent sets
 - flexible pruning parameter p
 - can be combined easily with other methods

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	D	<i>L</i>	LC(D)	PD(D)	Description.
Scene	2407	6	1.07	0.006	still scenes
Yeast	2417	14	4.24	0.082	protein function
Medical	978	45	1.25	0.096	medical text
Enron	1702	53	3.38	0.442	e-mail corpus
Reuters	6000	103	1.46	0.147	newswire stories

- D =full dataset
- L = label set
- LC = Label Cardinality. Average number of labels per instance in D
- *PD* = *P*ercent *D*instinct. The percentage of instances with a distinct label set

Framework

- WEKA¹ framework
- using Support Vector Machines (SVM) as single-label classifiers (default parameters)
- 5 × 2 Cross Validation (CV)
- Problem Transformation parameters
 - trialled in order according to theoretical complexity
 - under $5 \times CV$ on training set
 - cut off: 1 hour per parameter combination
- Evaluation Methods
 - Accuracy(D) = $\frac{1}{|D|}\sum_{i=1}^{|D|} \frac{|S_i \cap Y_i|}{|S_i \cup Y_i|}$
 - Micro $F_1(D) = \frac{1}{|D|} \sum_{i=1}^{|D|} \frac{2 \times prec_i \times recall_i}{prec_i + recall_i}$
 - Hamming $loss(D) = 1 \frac{1}{|D| \times |L|} \sum_{i=1}^{|D|} |S_i \oplus Y_i|$

¹http://www.cs.waikato.ac.nz/ml/weka/

J. Read, B. Pfahringer, G. Holmes (UoW)

- CM: Combination Method
- BM: Binary Method
- RM: Ranking Method
 - tune threshold $t = \{0.1, \dots, 0.9\}$
- PS: Pruned Sets method
 - tune parameter $p = \{5, 4, 3, 2, 1\}$
 - tune parameter $s = \{-, A_1, A_2, A_3, B_1, B_2, B_3\}$
- EPS: Ensembles of Pruned Sets
 - tune parameters using a single PS method
 - tune threshold $t = \{0.1, \cdots, 0.9\}$
- RAKEL: RAndom K labEL subsets
 - parameter range as per paper
 - tune threshold $t = \{0.1, \cdots, 0.9\}$

	BM	[CM]	RAKEL	PS	EPS
Scene	58.28	71.81	71.58	71.93	73.80
Yeast	49.64 📐	51.98	54.49	52.82	55.03
Medical	73.00	74.71	72.55	74.63	74.45
Enron	31.91	41.02	42.98	42.15	44.09
Reuters	38.64 📐	49.17	31.80	49.83	49.80

- Accuracy Measure
- Paired t Test (against CM)
 - \bullet \nearrow,\searrow statistically significant improvement,degradation

	BM	[CM]	RAKEL	PS	EPS
Scene	0.671	0.729	0.735	0.730	0.752/
Yeast	0.630	0.633	0.664 /	0.643	0.655 /
Medical	0.791 /	0.767	0.784	0.766	0.764
Enron	0.504	0.502	0.543 /	0.520	0.543 /
Reuters	0.421	0.482	0.418	0.496	0.499 />

- F₁ Measure
- Paired t Test (against CM)
 - \bullet \nearrow,\searrow statistically significant improvement,degradation