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Multi-label and Multi-target Classification

Map D feature (input) variables to L target (output) variables.

X1 X2 X3 . . . XD Y1 Y2 Y3 Y4 Y5

x1 x2 x3 . . . xD 0 0 0 4 5
x1 x2 x3 . . . xD 1 1 1 2 1
x1 x2 x3 . . . xD 0 0 0 2 2
x1 x2 x3 . . . xD 1 1 0 3 2

x̃1 x̃2 x̃3 . . . x̃D ? ? ? ? ?
multi-label classification: all targets are binary variables, e.g., ∈ {0, 1}

Build model h, such that ŷ = [ŷ1, . . . , ŷL] = h(x̃).
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Binary Relevance (BR)

With any off-the-shelf classifier, train L independent models
h = (h1, . . . , hL), one for each label,

y4y3y2y1

x

For input x̃, predict

ŷ = [ŷ1, . . . , ŷL] = [h1(x̃), . . . , hL(x̃)] = h(x̃)

General consensus in the literature: should model relationship
between target variables

Jesse Read (Aalto University/HIIT) Classifier Chains Nancy, France. Sep. 15, 2014 3 / 20



Classifier Chains (CC)

Predictions are cascaded along a chain as additional features1:

y4y3y2y1

x

For any x̃, predict

ŷ = [ŷ1, . . . , ŷL] = [h1(x̃), h2(x̃, ŷ1), . . . , hL(x̃, ŷ1, . . . , ŷL−1)] = h(x̃)

1
[Read et al., 2009], MLJ
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Binary Relevance vs Classifier Chains

Table : Binary Relevance: Model h3

X1 X2 X3 . . . XD Y1 Y2 Y3 Y4

x1 x2 x3 . . . xD 0 1 1 0
x1 x2 x3 . . . xD 1 0 0 0
x1 x2 x3 . . . xD 0 1 0 0
x1 x2 x3 . . . xD 0 0 1 1

x̃1 x̃2 x̃3 . . . x̃D ?

Table : Classifier Chains: Model h3

X1 X2 X3 . . . XD Y1 Y2 Y3 Y4

x1 x2 x3 . . . xD 0 1 1 0
x1 x2 x3 . . . xD 1 0 0 0
x1 x2 x3 . . . xD 0 1 0 0
x1 x2 x3 . . . xD 0 0 1 1

x̃1 x̃2 x̃3 . . . x̃D ŷ1 ŷ2 ?
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Classifier Chains

Example - Greedy Inference
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ŷ = h(x̃) = [?, ?, ?]

y3y2y1

x

1 ŷ1 = h1(x̃) = argmaxy1
p(y1|x̃) = ?

2 ŷ2 = h2(x̃, ŷ1) = argmaxy2
p(y2|x̃, 1) =

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = argmaxy3
p(y3|x̃, 1, 0) =
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ŷ = h(x̃) = [1, ?, ?]

y3y21

x

1 ŷ1 = h1(x̃) = argmaxy1
p(y1|x̃) = 1

2 ŷ2 = h2(x̃, 1) = argmaxy2
p(y2|x̃, 1) =

3 ŷ3 = h3(x̃, 1, ŷ2) = argmaxy3
p(y3|x̃, 1, 0) =

Jesse Read (Aalto University/HIIT) Classifier Chains Nancy, France. Sep. 15, 2014 6 / 20



Classifier Chains

Example - Greedy Inference

0

0

0

1

1

0

1

1

0

0

1
0.7

1

0

1

0.3

0.6
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Classifier Chains
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Classifier Chains

Example - Greedy Inference
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ŷ = h(x̃) = [1, 0, 1]

101
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1 ŷ1 = h1(x̃) = argmaxy1
p(y1|x̃) = 1

2 ŷ2 = h2(x̃, 1) = argmaxy2
p(y2|x̃, 1) = 0

3 ŷ3 = h3(x̃, 1, 0) = argmaxy3
p(y3|x̃, 1, 0) = 1

Better predictions than BR; similar build time (if L < D)

but, errors may be propagated down the chain
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Ensemble of Classifier Chains

1 Train M classifier chains, h(1), . . . ,h(M) with random label orders.

2 Ensemble voting

Example

y3y2y1

x

,
y1y3y2

x

,
y1y2y3

x

Y1 Y2 Y3

h(1)(x̃) 1 0 1

h(2)(x̃) 1 0 0

h(3)(x̃) 0 0 1

ŷ 1 0 1

Improves predictive performance, but what about a single chain?
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Probabilistic Classifier Chains

Bayes-optimal inference2 instead of greedy inference.

ŷ =

((((((((((((((((((((((((

[argmax
y1∈{0,1}

p(y1|x), · · · , argmax
yL∈{0,1}

p(yL|x, y1, . . . , yL−1)] • greedy

= argmax
y∈{0,1}L

{
p(y1|x)

L∏
j=2

p(yj |x, y1, . . . , yj−1)
}
• Bayes optimal

2
[Dembczyński et al., 2010], ICML’10
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Probabilistic Classifier Chains

Explore all (2L) possible paths

Example - Bayes-optimal Inference
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1 p(y = [0, 0, 0]) = 0.040

2 p(y = [0, 0, 1]) = 0.040

3 p(y = [0, 1, 0]) = 0.288

4 p(y = [0, 1, 1]) = 0.032

5 p(y = [1, 0, 0]) = 0.168

6 p(y = [1, 0, 1]) = 0.252

7 p(y = [1, 1, 0]) = 0.090

8 p(y = [1, 1, 1]) = 0.090

ŷ = argmax
y∈{0,1}L

p(y|x̃) = [0, 1, 0]

Better accuracy than CC, but only appropriate for L . 15
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Monte-Carlo search for Classifier Chains

Sampling for inference in CC2 (instead of greedy / exhaustive)

Example - CC with Monte-Carlo Search
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Sample T = 2 times . . .

1 p(y1 = [1, 0, 1]) = 0.252

2 p(y2 = [0, 1, 0]) = 0.288

ŷ = argmax
y∈{yt}T

t=1

p(yt |x̃) = [0, 1, 0]

Becomes tractable (for T � 2L), but still � CC.
2

e.g., [Dembczynski et al., 2012] ECAI, [Read et al., 2013], Pat. Reg.
and related techinques, e.g., “Beam search” [Kumar et al., 2013]
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Chain Order

Are these models equivalent?

y4y3y2y1

x

vs

y1y3y2y4

x

Not necessarily. Although

p(y2|x)p(y1|y2, x) = p(y1|x)p(y2|y1, x)

we estimate p from finite and noisy data; so

p̂(y2|x)p̂(y1|ŷ2, x) 6= p̂(y1|x)p̂(y2|ŷ1, x)
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How to Order the Chain?

1 Use the ‘default’ chain

2 Use several random chains in ensemble
3 Search the chain space (try several chains) at training time3, and

I use the best one;
I use several (possibly just one per test instance); or
I weighted average.

Empirical results: good accuracy, but expensive.

4 Order the chain according to some heuristic, e.g.,
I by difficulty / model accuracy: easiest labels first
I by label dependence . . .

. . . why a chain (cascade)?

3
e.g., [Read et al., 2014] Pat. Reg., [Kumar et al., 2013] Mach. Learn., [Li and Zhou, 2013], MCS ’13
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From a Chain to a Tree

Can formulate any structure,

ŷ = argmax
y

L∏
j=2

p(yj |x, y1, . . . , yj−1) • chain

≈ argmax
y

L∏
j=1

p(yj |x,paj) • directed graph

where paj = parents of node j .

y4y3y2y1

x

‘Plug in’ any CC (e.g., greedy inference)

Benefits wrt train/test time, interpretability, but

how to find a good structure?
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Classifier Directed Graphs

1 Measure
I marginal dependence, i.e., dependence among Y1, . . . ,YL

4; or
I conditional dependence, e.g., dependence among errors ε1, . . . , εL

5

2 Create a directed graph (there are many existing methods)

y4 y3

y2 y1

x

3 Plug in CC (or use standard message passing algorithms6 –
complexity permitting).

4
e.g., [Zaragoza et al., 2011], IJCAI

5
as in ‘LEArning with label Dependence’ [Zhang and Zhang, 2010], KDD ’10

6
[Alessandro et al., 2013] IJCAI “Ensemble of Bayes Nets for MLC”
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Undirected Graph

Graph can be undirected, becomes like conditional random fields7

y4y3y2y1

x

chain ‘order’ no longer an issue; but

greedy inference no-longer possible. Can use, e.g., Gibbs sampling,
1 sample many times yj ∼ p(yj |x, y1, . . . , yj−1, yj+1, . . . , yL)
2 collect marginals.

reduced structure usually necessary

7
e.g., [Guo and Gu, 2011] IJCAI “Conditional Dependency Networks for MLC”; [Dembszyński et al., 2011] CoLISD
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So far

Classifier Chains (and Trees, Graphs, etc.):

1 Measure label dependence
2 Choose a structure for labels

I more interpretable
I more efficient

3 Choose an inference procedure

But, empirical results: accuracy no better than random structures. Why?
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Classifier Chains: advantages beyond label dependence

Suppose we know that, given the input, the labels are independent,

X

Y1 Y2

E(Y2|Y1,X ) = E(Y2|X )

Independent classifiers (BR) will work as well here as classifier chains
(CC)? . . . Not always!
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Example: The xor Problem

Toy problem,

o
r

a
n
d

x
o
r

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Clearly, E(Y3|Y1,Y2,X1,X2) = E(Y3|X1,X2), but . . .

Table : XOR-problem, 20 examples, base classifier logistic regression.

Measure BR CC

Hamming acc. 0.83 1.00
Exact match 0.50 1.00
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Example: The xor Problem

From the point of view of y3 (the xor label),

y3y2y1

x

=
y3

y2y1

x

≈ A hidden layer!8

8
[Read and Hollmén, 2014] to appear in IDA 2014
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Example: The xor Problem

From the point of view of y3 (the xor label),

y3y2y1

x

=
y3

y2y1

x

≈
y3

y2y1

x

≈ A hidden layer!8

In terms of neural networks, the third graph is enough9

8
[Read and Hollmén, 2014] to appear in IDA 2014

9
[Rumelhart et al., 1986]
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Classifier Chains: Current Challenges

Different base classifiers: same chain order?

Large labelsets

Deepening connection with related fields, for example
I neural networks
I probabilistic graphical models
I deep learning
I structured output prediction
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End

Thank you!

Questions?

All methods described in this talk implemented in Meka

http://meka.sourceforge.net
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