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Introduction: Multi-label Classification

Binary classification: Is this a picture of a beach? ∈ {yes, no}
Multi-class classification: Which class does this picture belong to?

∈ {beach, sunset, foliage, field, mountain, urban}

Multi-label classification: Which labels are relevant to this picture?

⊆ {beach, sunset, foliage, field, mountain, urban}

i.e., each instance can have multiple labels instead of a single one!
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Introduction: Single-label vs. Multi-label

Table : Single-label Y ∈ {0, 1}

b
e
a
c
h

X1 X2 X3 X4 X5 Y

1 0.1 3 1 0 0
0 0.9 1 0 1 1
0 0.0 1 1 0 0
1 0.8 2 0 1 1
1 0.0 2 0 1 0

0 0.0 3 1 1 ?

Build classifier h, such that ŷ = h(x̃).
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Introduction: Single-label vs. Multi-label

Table : Multi-label Y1, . . . ,YL ∈ 2L
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X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 Y6

1 0.1 3 1 0 0 1 1 0 1 0
0 0.9 1 0 1 1 0 0 0 0 0
0 0.0 1 1 0 0 1 0 0 0 0
1 0.8 2 0 1 1 0 0 1 0 1
1 0.0 2 0 1 0 0 0 1 0 1

0 0.0 3 1 1 ? ? ? ? ? ?

Build classifier(s) h or h, such that ŷ = [y1, . . . , yL] = h(x̃).
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Introduction: Another Example

Table : The IMDB Dataset
ab

an
d

on
ed

ac
ci

d
en

t

. . . vi
ol

en
t

w
ed

d
in

g

h
o
r
r
o
r

r
o
m
a
n
c
e

. . . c
o
m
e
d
y

a
c
t
i
o
n

example X1 X2 . . . X1000 X1001 Y1 Y2 . . . Y27 Y28

1 1 0 . . . 0 1 0 1 . . . 0 0
2 0 1 . . . 1 0 1 0 . . . 0 0
3 0 0 . . . 0 1 0 1 . . . 0 0
4 1 1 . . . 0 1 1 0 . . . 0 1
5 1 1 . . . 0 1 0 1 . . . 0 1
...

...
...

. . .
...

...
...

...
. . .

...
...

120919 1 1 . . . 0 0 0 0 . . . 0 1
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Applications / Datasets

X (data inst.) Y (labels) L N D LC

Music audio data emotions 6 593 72 1.87
Scene image data scene labels 6 2407 294 1.07
Yeast genes biological fns 14 2417 103 4.24
Genbase genes biological fns 27 661 1185 1.25
Medical medical text diagnoses 45 978 1449 1.25
Enron e-mails labels, tags 53 1702 1001 3.38
Reuters news articles categories 103 6000 500 1.46
TMC07 textual reports errors 22 28596 500 2.16
Ohsumed medical articles disease cats. 23 13929 1002 1.66
IMDB plot summaries genres 28 120919 1001 2.00
20NG posts news groups 20 19300 1006 1.03
MediaMill video data annotations 101 43907 120 4.38
Del.icio.us bookmarks tags 983 16105 500 19.02

L number of labels

N number of examples

D number of input feature attributes

LC: Label Cardinality 1
N

∑N
i=1

∑L
j=1 y

(i)
j (average number of labels per example)

Jesse Read (Aalto/HIIT) Classifier Chains Helsinki. March 28, 2014 6 / 32



Evaluation Metrics

Compare prediction ŷ(i) = h(x̃(i)) = [ŷ1, . . . , ŷL] with true labels y(i).

0/1 loss: label vectors must match exactly

0/1 loss1 :=
1

N

N∑
i=1

I[ŷ(i) 6= y(i)]

Hamming loss: predicting all 0s will incur relatively little loss

Hamming loss :=
1

NL

N∑
i=1

L∑
j=1

I[ŷ
(i)
j 6= y

(i)
j ]

It is usually not possible to minimize both at the same time:

For general evaluation, use multiple and contrasting evaluation
measures; other measures: Jaccard Index, F-measure, (can be
micro or macro averaged).

1Often framed as ExactMatch := 1− 0/1 loss
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Related Applications

Multi-target / multi-output / multi-dimensional classification / regression

Table : Multi-output; each ‘output’ Yj ∈ {1, . . . ,K} or Yj ∈ R

s
e
x
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t
.

t
y
p
e

r
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t
e

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4

x1 x2 x3 x4 x5 F 4 A 0.3
x1 x2 x3 x4 x5 M 2 B 0.2
x1 x2 x3 x4 x5 M 2 A 0.4
x1 x2 x3 x4 x5 F 3 C 0.8
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Related Applications

Structured Output Prediction

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure : Structured learning: A multi-label problem with large L; underlying
structure. Here we want to segment the relevant ‘pixels’ y ∈ 2L occupied by
object(s), given some sensor observations x = [x1, . . . , xd ].
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Binary Relevance (BR)

L independent models (one for each label): h = (h1, . . . , hL); where each
hj : X → {0, 1}

For input x̃, predict independently:

ŷj = hj(x̃)

≡ argmax
yj∈{0,1}

p(yj |x̃) y4y3y2y1

x

(probabilistically speaking, although hj can be any off-the-shelf binary
classifier: SVMs, Decision Trees, etc.)

Thus: ŷ = [ŷ1, . . . , ŷL] = h(x̃) = [h1(x̃), . . . , hL(x̃)]
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Binary Relevance (BR)

BR may perform poorly. In real multi-label data,

p(y|x) 6=
L∏

j=1

p(yj |x)

Example

In the IMDB dataset,

P(yadult = 1, yfamily = 1) = 0

whereas
P(yadult = 1)P(yfamily = 1) > 0
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Main Challenges in Multi-label Learning

Typical multi-label paper:

“The BR method does not model label co-occurrences /
correlations / dependencies. We present a method which does
[efficiently] and outperforms BR [and other multi-label
methods].”

The main challenge has been to

1 model label dependencies; and

2 do this efficiently.
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Classifier Chains2 (CC)

Inspiration from the chain rule

p(y|x) = p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1)

Build h = (h1, . . . , hL); each
hj : X × {0, 1}j−1 → {0, 1}
For any x̃, predict

ŷj = hj(x̃, ŷ1, . . . , ŷj−1)

≡ argmax
yj∈{0,1}

p(yj |x̃, ŷ1, . . . , ŷj−1)

y4y3y2y1

x

CC is a greedy approximation; similar complexity to BR.

ŷ = [ŷ1, . . . , ŷL] = h(x̃) ≡ [h1(x̃), h2(x̃, ŷ1), . . . , hL(x̃, ŷ1, . . . , ŷL−1)]
2

[Read et al., 2009], MLJ
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Example
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ŷ = h(x̃) = [?, ?, ?]

y3y2y1

x

1 ŷ1 = h1(x̃) = argmaxy1
p(y1|x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = . . . = 0

3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D); parallelizable; able to
use any off-the-shelf classifier as hj

But, errors may be propagated down the chain
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2 ŷ2 = h2(x̃, ŷ1) = . . . = 0
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Bayes Optimal Probabilistic Classifier Chains3 (PCC)

Bayes-optimal Probabilistic CC, recovers the chain rule, predicts

ŷ = argmax
y∈{0,1}L

p(y|x)

= argmax
y∈{0,1}L

{
p(y1|x)

L∏
j=2

p(yj |x, y1, . . . , yj−1)
}

y4y3y2y1

x

Test all possible paths (y = [y1, . . . , yL] ∈ 2L in total)

3
[Dembczyński et al., 2010], ICML’10
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Bayes Optimal Probabilistic Classifier Chains3 (PCC)

Example
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1 p(y = [0, 0, 0]) = 0.040

2 p(y = [0, 0, 1]) = 0.040

3 p(y = [0, 1, 0]) = 0.288

4 . . .

6 p(y = [1, 0, 1]) = 0.252

7 . . .

8 p(y = [1, 1, 1]) = 0.090

return argmaxy p(y|x̃)

Better accuracy than CC, but only appropriate for L . 15

3
[Dembczyński et al., 2010], ICML’10
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Monte-Carlo search for Classifier Chains4 (MCC)

MCC: Sample the ‘chain’.

1 For t = 1, . . . ,T iterations:
I Sample yt ∼ p(y|x)

1 y1 ∼ p(y1|x) //y1 = 1 with probability p(y1|x)
2 y2 ∼ p(y2|x, y1, y2)
3 . . .
4 yL ∼ p(yL|x, y1, . . . , yL−1)

2 Predict
ŷ = argmax

yt |t=1,...,T
p(yt |x)

y4y3y2y1

x

4
[Read et al., 2013b], Pattern Recognition
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Monte-Carlo search for Classifier Chains4 (MCC)

MCC: Sample the ‘chain’.

Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 = 0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 = 0.288

return argmaxyt p(yt |x)

4
[Read et al., 2013b], Pattern Recognition
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Monte-Carlo search for Classifier Chains4 (MCC)

Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 = 0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 = 0.288

return argmaxyt p(yt |x)

Tractable, unlike PCC (for T � 2L); but similar accuracy (� CC).

4
[Read et al., 2013b], Pattern Recognition
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Is the Sequence of Labels in the Chain Important?

Are these models equivalent?

y4y3y2y1

x

vs

y1y3y2y4

x

No5. Although

p(y2|x)p(y1|y2, x) = p(y1|x)p(y2|y1, x)

p is only an estimated distribution; from finite and noisy data. And

p(y1|x)p(y2|ŷ1, x), etc . . .

5At least, not necessarily [Kumar et al., 2013, Read et al., 2013a]
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MCC with s-Search6 (MsCC)

Monte Carlo walk through the space of chain sequences s = [s1, . . . , sL]

ys4ys3ys2ys1

x

For u = 1, . . . ,U:

1 build MCC on chain sequence su

2 test against some loss/payoff
function J (su); accept if better
(if J (su) > J (su−1))

Use hsU as the final model.

Example

Scene data
u su = [s1, . . . , sL] J (su)
0 [4, 2, 0, 1, 3, 5] 0.623
1 [4, 2, 0, 3, 1, 5] 0.628
2 [4, 2, 0, 3, 5, 1] 0.638
3 [4, 0, 2, 3, 5, 1] 0.647
5 [4, 0, 5, 2, 3, 1] 0.653
18 [5, 1, 4, 3, 2, 0] 0.654
23 [5, 4, 0, 1, 2, 3] 0.664
128 [3, 5, 1, 0, 2, 4] 0.668
176 [5, 3, 1, 0, 4, 2] 0.669
225 [5, 3, 1, 4, 0, 2] 0.670
J (s) := ExactMatch(Y, hs(X)) (higher is better)

6
[Read et al., 2013a], Pattern Recognition
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MCC with s-Search7 (MsCC)

Monte Carlo walk through the space of chain sequences s = [s1, . . . , sL]

ys4ys3ys2ys1

x

The space is L! large, . . . but a little search can go a long way.

Can add temperature to freeze su from left to right over time

Can use a population of chain sequences: s
(1)
u , . . . , s

(M)
u

Another approach is to use ‘beam search’ 6

6
Beam search algorithms for multi-label learning [Kumar et al., 2013], MLJ

7
[Read et al., 2013a], Pattern Recognition
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An Empirical Look

Table : Average predictive performance (5 fold CV, Exact Match)

L BR CC PCC MCC MsCC

params: T = 100 U = 50

Music 6 0.30 0.29 0.35 0.35 0.37
Scene 6 0.54 0.55 0.64 0.64 0.68
Yeast 14 0.14 0.15 0.21 0.23
Genbase 27 0.94 0.96 0.96 0.96
Medical 45 0.58 0.62 0.63 0.62
Enron 53 0.07 0.10 0.10 0.09
Reuters 101 0.29 0.35 0.37 0.37

MCC = PCC, but tractable to larger datasets.

MsCC � MCC: the chain order makes a difference
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An Empirical Look

Table : Average running time (5 fold CV, seconds)

L BR CC PCC MCC MsCC

params: T = 100 U = 50

Music 6 0 2 1 5 18
Scene 6 12 44 15 90 684
Yeast 14 11 66 149 731
Genbase 27 11 56 1695 774
Medical 45 9 86 3420 1038
Enron 53 102 349 3884 2986
Reuters 101 106 1259 1837 4890

MCC = PCC, but tractable to larger datasets.

MsCC � MCC: the chain order makes a difference

although a little slower . . .
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Why not . . .

Why not order the chain based on:

Easiest-to-predict labels first

Most-frequent labels first

Most-‘dependent’ labels first/last (marginal dependence)

Empirical performance (i.e., conditional dependence, MsCC)

Performance can be improved most by modelling label dependence.
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Label Dependence

Generally, methods model

Marginal dependence (e.g., stacked-BR8)

Conditional dependence (e.g, MsCC
9)

Random dependence (e.g., RAkEL10)

No dependence (e.g., BR)

8
Discriminative Methods for Multi-labeled Classification [Godbole and Sarawagi, 2004]

9
Monte Carlo Methods for . . . Classifier Chains [Read et al., 2013b]

10
RAndom k-labEL subsets for Multi-label Classification [Tsoumakas and Vlahavas, 2007]
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Marginal vs. Conditional Dependence

Marginal dependence

When the joint is not the product of the marginals.

p(y2) 6= p(y2|y1) Y1 Y2

Measure the frequencies of co-occurrences in the training data

Conditional in/dependence

p(y2|y1, x) 6= p(y2|x)
X

Y1 Y2
vs

X

Y1 Y2

Have to build and measure models / take into account the input space
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From a Chain to a Tree

Why a chain (sequence)? We can formulate any structure, with

ŷ = p(y|x̃) = argmax
y=[y1,...,yL]

L∏
j=1

p(yj |paj , x̃)

where paj = parents of node j .

y4y3y2y1

x

If paj := {y1, . . . , yj−1} we recover CC

How do we find a good structure?

label dependence!

difficult to find, but can benefit accuracy, train/test time.
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Bayesian Chain Classifiers11 (BCC)

Employ CC in a ‘tree’ (a ‘Classifier Tree’):

1 Weight all edges with (marginal) label dependencies

y4y3y2y1

2 Find a maximum spanning tree (MST)

3 Choose some directionality (a root node)

4 Employ any classifier, e.g., CC with Naive Bayes

11
[Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], ‘Ensemble of Bayes Nets’ for MLC, IJCAI 13 using

standard message passing for inference – complexity permitting
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Bayesian Chain Classifiers11 (BCC)

Employ CC in a ‘tree’ (a ‘Classifier Tree’):

1 Weight all edges with (marginal) label dependencies

2 Find a maximum spanning tree (MST)

3 Choose some directionality (a root node)

4 Employ any classifier, e.g., CC with Naive Bayes

y4y3y2y1

x

Can get comparable accuracy to CC (but not always)

Only uses marginal / unconditional dependencies.

11
[Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], ‘Ensemble of Bayes Nets’ for MLC, IJCAI 13 using

standard message passing for inference – complexity permitting
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Classifier ‘Graphs’ (≈ Bayesian Network)

LEAD12 uses an efficient method to measure conditional label dependence:

Proposition

Given two classification problems (e.g., BR with L = 2),

y1 = h1(x) + e1 and y2 = h2(x) + e2

the dependence between e1, e2 ≈ the conditional dependence between Y1, Y2.

1 train BR, h1, . . . , hL

2 measure dependence among errors, e1, . . . , eL
3 find a directed structure
4 plug in (e.g.,) CC

y4y3y2y1

x

Basically: measure dependence among ej instead of Yj .

12
‘LEArning with label Dependence’ [Zhang and Zhang, 2010], KDD ’10
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Is it worth it?

Is it better to invest resources in one good model; or many approximate
(or even random) models? Perhaps the main challenge is actually to

1 model label dependencies get good multi-label predictions; and

2 do this efficiently.
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Getting a good Classifier ‘Graph’

Is it necessary (for best peformance) to

model label dependence?

. . . conditional dependence?

. . . ‘complete’ dependence?

Table : Average Jaccard Index : rank, under 5×CV [L = 6].

BR BCC-R BCC-M BCC-C ECC PsCC

Music 0.517 0.545 (5) 0.567 (4) 0.582 (3) 0.588 (2) 0.594 (1)
Scene 0.595 0.646 (3) 0.646 (3) 0.643 (5) 0.647 (2) 0.705 (1)

BR: independent classifiers

BCC with Random structure / based on Marginal and Conditional dependence

ECC: Ensemble of random CC (complete random dependence)

PsCC: best of all (6! = 720) possible chain orders; Bayes-optimal (26) inference.
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So far . . .

Modelling dependence helps; modelling complete dependence is
(unsurprisingly) best, but not always practical: BCC has L− 1 ‘links’ in the

chain, vs L(L−1)
2 for ECC and MsCC. Can either

find one (or several) good model(s); or

use many random models.

Although ‘randomly dependent’ models can perform quite well,

“quite well” 6= very well,

they are not so interpretable, and

are not necessarily the most efficient.

Jesse Read (Aalto/HIIT) Classifier Chains Helsinki. March 28, 2014 26 / 32



Super-Label Classifier

A super label is just a class with > 2 possible values, e.g.:

Y1,4 ∈ {00, 10, 01} (some values can be pruned)

y2,6y1,4y3,5

x

1 Form super-labels based on dependence

2 Prune values

3 Plug in any multi-output-capable classifier (e.g., CC)

Can make this hierarchical (‘meta labels’), as in HOMER13.

13
[Tsoumakas et al., 2008], ECML/PKDD 2008

Jesse Read (Aalto/HIIT) Classifier Chains Helsinki. March 28, 2014 27 / 32



Super-Label Classifier

IC 4 3 2 CP
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Best Result

Worst Result

Figure : Performance (Parkinson’s data) for
L, L− 1, . . . , 2, 1 classes, i.e., from BR to LP.

Table : Performance on the Enron
dataset (L = 53).

BR SCC

Exact Match 0.121 0.169
Ham. Loss 0.057 0.054

Time (s) 43.67 9.02
Num. Labels 53 6
Values/label 2 4.5

A model based on label dependence can perform more accurately and
much faster (including the time to measure dependence).
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Some Alternative Approaches

Other problem transformation methods include

Labelset approaches, e.g., [Tsoumakas and Vlahavas, 2007]’s RAkEL

i.e., casting to a multi-class problem (∈ {0000, . . . , 0001, 1111})
Pairwise, e.g., [Fürnkranz et al., 2008]
i.e., casting to pair-wise problems

Well-known algorithm adaptation methods; include multi-label

Neural Networks, e.g., [Zhang and Zhou, 2006]

Decision Trees, e.g., [Clare and King, 2001]

k-Nearest Neighbours, e.g., [Zhang and Zhou, 2007]

Maximum Margin method, e.g., [Elisseeff and Weston, 2002]

Jesse Read (Aalto/HIIT) Classifier Chains Helsinki. March 28, 2014 29 / 32



Recent Trends and Challenges

Specific to multi-label learning:
1 ‘Big data’, scalability

I Thousands to millions of labels

2 Data streams
I Learning (e.g., label dependencies) incrementally
I Dealing with concept drift in the label space

3 Missing values and partially/weakly labelled data
I In multi-label classification we often don’t know that they’re missing!

(If an image is not labelled foliage, does it have no foliage?)
I Manually-multi-labelled data is even more expensive to obtain
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Summary and Future Work

The area of multi-label classification has expanded rapidly over the
last few years, and is now overlapping with many related areas

Most attention has focussed on modelling label dependence

Classifier chains is a family of methods suitable for this
but there are many different approaches.

It is apparent that . . .

Efforts to find the perfect label-dependency model aren’t always
rewarded

Multi-label problems are getting much bigger.

There are many related open problems, for example, data streams.

A lot of literature from other areas is very relevant.
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End

Thank you!

Questions?
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