Multi-label Classification with Classifier Chains

Jesse Read

Aalto University School of Science, Department of Information and Computer Science and Helsinki Institute for Information Technology Helsinki, Finland

Helsinki. March 28, 2014

Jesse Read	(Aalto/	'HIIT)
------------	---------	--------

A B < A B </p> Helsinki. March 28, 2014 1 / 32

< 67 ▶

Contents

Introduction: Multi-label Classification

4 Reflection, Summary, and Future Work

3

A B A A B A

< 一型

Introduction: Multi-label Classification

Binary classification: Is this a picture of a beach? \in {yes, no} **Multi-class classification**: Which class does this picture belong to?

 $\in \{\texttt{beach}, \texttt{sunset}, \texttt{foliage}, \texttt{field}, \texttt{mountain}, \texttt{urban}\}$

Multi-label classification: Which labels are relevant to this picture?

 \subseteq {beach, sunset, foliage, field, mountain, urban}

i.e., each instance can have multiple labels instead of a single one!

Introduction: Single-label vs. Multi-label

Table : Single-label $Y \in \{0, 1\}$

Build classifier *h*, such that $\hat{y} = h(\tilde{x})$.

3

Introduction: Single-label vs. Multi-label

Table : Multi-label $Y_1, \ldots, Y_L \in 2^L$

					beach	sunset	foliage	mountain	urban	field
X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6
1	0.1	3	1	0	0	1	1	0	1	0
0	0.9	1	0	1	1	0	0	0	0	0
0	0.0	1	1	0	0	1	0	0	0	0
1	0.8	2	0	1	1	0	0	1	0	1
1	0.0	2	0	1	0	0	0	1	0	1
0	0.0	3	1	1	?	?	?	?	?	?

Build classifier(s) h or h, such that $\hat{\mathbf{y}} = [y_1, \dots, y_L] = h(\tilde{\mathbf{x}})$.

イロト 不得下 イヨト イヨト 二日

Introduction: Another Example

Table : The IMDB Dataset

	abandoned	accident		violent	wedding	horror	romance		comedy	action
example	X_1	X_2		X_{1000}	X_{1001}	Y_1	Y_2		Y_{27}	Y_{28}
1	1	0		0	1	0	1		0	0
2	0	1		1	0	1	0		0	0
3	0	0		0	1	0	1		0	0
4	1	1		0	1	1	0		0	1
5	1	1		0	1	0	1		0	1
:	:	:	·	:	÷	÷	:	·	:	÷
120919	1	1		0	0	0	0		0	1

Jesse Read (Aalto/HIIT)

æ

(日) (周) (三) (三)

Applications / Datasets

	\mathcal{X} (data inst.)	${\mathcal Y}$ (labels)	L	Ν	D	LC
Music	audio data	emotions	6	593	72	1.87
Scene	image data	scene labels	6	2407	294	1.07
Yeast	genes	biological fns	14	2417	103	4.24
Genbase	genes	biological fns	27	661	1185	1.25
Medical	medical text	diagnoses	45	978	1449	1.25
Enron	e-mails	labels, tags	53	1702	1001	3.38
Reuters	news articles	categories	103	6000	500	1.46
TMC07	textual reports	errors	22	28596	500	2.16
Ohsumed	medical articles	disease cats.	23	13929	1002	1.66
IMDB	plot summaries	genres	28	120919	1001	2.00
20NG	posts	news groups	20	19300	1006	1.03
MediaMill	video data	annotations	101	43907	120	4.38
Del.icio.us	bookmarks	tags	983	16105	500	19.02

- L number of labels
- N number of examples
- D number of input feature attributes
- LC: Label Cardinality $\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{L} y_j^{(i)}$ (average number of labels per example)

3

6 / 32

(日) (同) (三) (三)

Evaluation Metrics

Compare prediction $\hat{\mathbf{y}}^{(i)} = \mathbf{h}(\tilde{\mathbf{x}}^{(i)}) = [\hat{y}_1, \dots, \hat{y}_L]$ with true labels $\mathbf{y}^{(i)}$.

 $\bullet~0/1~{\rm LOSS}:$ label vectors must match exactly

$$0/1 \text{ LOSS}^1 := rac{1}{N} \sum_{i=1}^N \mathcal{I}[\mathbf{\hat{y}}^{(i)}
eq \mathbf{y}^{(i)}]$$

• HAMMING LOSS: predicting all 0s will incur relatively little loss

Hamming loss :=
$$\frac{1}{NL} \sum_{i=1}^{N} \sum_{j=1}^{L} \mathcal{I}[\hat{y}_j^{(i)} \neq y_j^{(i)}]$$

- It is usually not possible to minimize both at the same time:
- For general evaluation, use multiple and contrasting evaluation measures; other measures: JACCARD INDEX, F-MEASURE, (can be micro or macro averaged).

Related Applications

Multi-target / multi-output / multi-dimensional classification / regression

Table : Multi-output; each 'output' $Y_j \in \{1, \ldots, K\}$ or $Y_j \in \mathbb{R}$

					sex	cat.	type	rate
X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	F	4	А	0.3
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	M	2	В	0.2
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5	М	2	А	0.4
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	X_5	F	3	С	0.8

Related Applications

Structured Output Prediction

Figure : Structured learning: A multi-label problem with large *L*; underlying *structure*. Here we want to segment the *relevant* 'pixels' $\mathbf{y} \in 2^L$ occupied by object(s), given some sensor observations $\mathbf{x} = [x_1, \dots, x_d]$.

Binary Relevance (BR)

L independent models (one for each label): $\mathbf{h} = (h_1, \dots, h_L)$; where each $h_j : \mathcal{X} \to \{0, 1\}$

• For input $\tilde{\mathbf{x}}$, predict *independently*:

$$\hat{y}_j = h_j(\mathbf{\tilde{x}})$$

 $\equiv \operatorname*{argmax}_{y_j \in \{0,1\}} p(y_j | \mathbf{\tilde{x}})$

(probabilistically speaking, although h_j can be any off-the-shelf binary classifier: SVMs, Decision Trees, etc.)

Thus:
$$\hat{\mathbf{y}} = [\hat{y}_1, \dots, \hat{y}_L] = \mathbf{h}(\mathbf{\tilde{x}}) = [h_1(\mathbf{\tilde{x}}), \dots, h_L(\mathbf{\tilde{x}})]$$

A B F A B F

Image: Image:

Binary Relevance (BR)

BR may perform poorly. In real multi-label data,

$$p(\mathbf{y}|\mathbf{x})
eq \prod_{j=1}^{L} p(y_j|\mathbf{x})$$

Example

In the IMDB dataset,

$$P(y_{\text{adult}} = 1, y_{\text{family}} = 1) = 0$$

whereas

$$P(y_{\mathsf{adult}} = 1) P(y_{\mathsf{family}} = 1) > 0$$

3

イロト イポト イヨト イヨト

Typical multi-label paper:

"The BR method does not model label co-occurrences / correlations / dependencies. We present a method which does [efficiently] and outperforms BR [and other multi-label methods]."

The main challenge has been to

- model label dependencies; and
- O this efficiently.

A B A A B A

Classifier Chains² (CC)

Inspiration from the chain rule

$$p(\mathbf{y}|\mathbf{x}) = p(y_1|\mathbf{x}) \prod_{j=2}^{L} p(y_j|\mathbf{x}, y_1, \dots, y_{j-1})$$

• Build
$$\mathbf{h} = (h_1, \dots, h_L)$$
; each $h_j : \mathcal{X} \times \{0, 1\}^{j-1} \rightarrow \{0, 1\}$

 \bullet For any $\boldsymbol{\tilde{x}},$ predict

$$\hat{y}_j = h_j(\mathbf{\tilde{x}}, \hat{y}_1, \dots, \hat{y}_{j-1})$$

 $\equiv \underset{y_j \in \{0,1\}}{\operatorname{argmax}} p(y_j | \mathbf{\tilde{x}}, \hat{y}_1, \dots, \hat{y}_{j-1})$

• CC is a greedy approximation; similar complexity to BR.

$$\hat{\mathbf{y}} = [\hat{y}_1, \dots, \hat{y}_L] = \mathbf{h}(\tilde{\mathbf{x}}) \equiv [h_1(\tilde{\mathbf{x}}), h_2(\tilde{\mathbf{x}}, \hat{y}_1), \dots, h_L(\tilde{\mathbf{x}}, \hat{y}_1, \dots, \hat{y}_{L-1})]$$

²[Read et al., 2009], MLJ

 $\boldsymbol{\hat{y}} = \boldsymbol{h}(\boldsymbol{\tilde{x}}) = [?,?,?]$

Jesse Read (Aalto/HIIT)

Classifier Chains

Helsinki. March 28, 2014 12 / 32

- 2

<ロ> (日) (日) (日) (日) (日)

$$\hat{y}_1 = h_1(\tilde{\mathbf{x}}) = \operatorname{argmax}_{y_1} p(y_1|\tilde{\mathbf{x}}) = 1$$

 $\boldsymbol{\hat{y}} = \boldsymbol{h}(\boldsymbol{\tilde{x}}) = [\boldsymbol{1},?,?]$

- 2

・ロト ・ 理ト ・ ヨト ・ ヨト

•
$$\hat{y}_1 = h_1(\tilde{\mathbf{x}}) = \operatorname{argmax}_{y_1} p(y_1|\tilde{\mathbf{x}}) = 1$$

• $\hat{y}_2 = h_2(\tilde{\mathbf{x}}, \hat{y}_1) = \ldots = 0$

 $\boldsymbol{\hat{y}} = \boldsymbol{h}(\boldsymbol{\tilde{x}}) = [1, \boldsymbol{0}, ?]$

3

<ロ> (日) (日) (日) (日) (日)

$$\hat{y}_1 = h_1(\tilde{\mathbf{x}}) = \operatorname{argmax}_{y_1} p(y_1 | \tilde{\mathbf{x}}) = 1
\hat{y}_2 = h_2(\tilde{\mathbf{x}}, \hat{y}_1) = \ldots = 0
\hat{y}_3 = h_3(\tilde{\mathbf{x}}, \hat{y}_1, \hat{y}_2) = \ldots = 1$$

 $\boldsymbol{\hat{y}} = \boldsymbol{h}(\boldsymbol{\tilde{x}}) = [1,0,\boldsymbol{1}]$

3

<ロ> (日) (日) (日) (日) (日)

- Improves over BR; similar build time (if L < D); parallelizable; able to use any off-the-shelf classifier as h_i
- But, errors may be propagated down the chain

A D > A A P >

Bayes Optimal Probabilistic Classifier Chains³ (PCC)

Bayes-optimal Probabilistic CC, recovers the chain rule, predicts

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} p(\mathbf{y} | \mathbf{x})$$

$$= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} \left\{ p(y_{1} | \mathbf{x}) \prod_{j=2}^{L} p(y_{j} | \mathbf{x}, y_{1}, \dots, y_{j-1}) \right\}$$

Test all possible paths ($\mathbf{y} = [y_1, \dots, y_L] \in 2^L$ in total)

³[Dembczyński et al., 2010], ICML'10 Jesse Read (Aalto/HIIT) Classifier Chains

Bayes Optimal Probabilistic Classifier Chains³ (PCC)

Example

• $p(\mathbf{y} = [0, 0, 0]) = 0.040$ • $p(\mathbf{y} = [0, 0, 1]) = 0.040$ • $p(\mathbf{y} = [0, 1, 0]) = 0.288$ • ... • $p(\mathbf{y} = [1, 0, 1]) = 0.252$ • ... • $p(\mathbf{y} = [1, 1, 1]) = 0.090$ return $\operatorname{argmax}_{\mathbf{y}} p(\mathbf{y} | \tilde{\mathbf{x}})$

• Better accuracy than CC, but only appropriate for $L \lesssim 15$

³ [Dembczyński et al., 2010], ICML'1	.0		E	୬୯୯
Jesse Read (Aalto/HIIT)	Classifier Chains	Helsinki. March 28, 20	14	13 / 32

Monte-Carlo search for Classifier Chains⁴ (MCC)

MCC: Sample the 'chain'.

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}_t|t=1,...,T} p(\mathbf{y}_t|\mathbf{x})$$

⁴[Read et al., 2013b], Pattern Recognition

∃ →

Monte-Carlo search for Classifier Chains⁴ (MCC)

MCC: Sample the 'chain'.

Example

Sample T times . . .

- $p([1,0,1]) = 0.6 \cdot 0.7 \cdot 0.6 = 0.252$
- $p([0,1,0]) = 0.4 \cdot 0.8 \cdot 0.9 = 0.288$

return argmax_{y_t} $p(\mathbf{y}_t | \mathbf{x})$

⁴[Read et al., 2013b], Pattern Recognition

Monte-Carlo search for Classifier Chains⁴ (MCC)

• Tractable, unlike PCC (for $T \ll 2^L$); but similar accuracy (\succ CC).

⁴ [Read et al., 2013b], Pattern Recog	inition	• =	•	<	< ≣ >	æ	୬୯୯
Jesse Read (Aalto/HIIT)	Classifier Chains		Helsink	ki. Marc	h 28, 2014		14 / 32

Is the Sequence of Labels in the Chain Important?

Are these models equivalent?

 5 At least, not necessarily [Kumar et al., 2013, Read et al., 2013a] $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Is the Sequence of Labels in the Chain Important?

Are these models equivalent?

No⁵. Although

$$p(y_2|\mathbf{x})p(y_1|y_2,\mathbf{x}) = p(y_1|\mathbf{x})p(y_2|y_1,\mathbf{x})$$

p is only an estimated distribution; from finite and noisy data. And

$$p(y_1|\mathbf{x})p(y_2|\hat{y}_1,\mathbf{x})$$
, etc...

 5 At least, not necessarily [Kumar et al., 2013, Read et al., 2013a] $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Jesse Read (Aalto/HIIT)

MCC with s-Search⁶ (M_sCC)

Monte Carlo walk through the space of *chain sequences* $\mathbf{s} = [s_1, \dots, s_L]$

- For u = 1, ..., U:
 - **1** build MCC on chain sequence \mathbf{s}_u
 - ② test against some loss/payoff function J(s_u); accept if better (if J(s_u) > J(s_{u-1}))

Use $\mathbf{h}_{\mathbf{s}_U}$ as the final model.

Example

Scene data									
и	$\mathbf{s}_u = [s_1, \ldots, s_L]$	$\mathcal{J}(\mathbf{s}_u)$							
0	[4, 2, 0, 1, 3, 5]	0.623							
1	[4, 2, 0, 3, 1, 5]	0.628							
2	[4, 2, 0, 3, 5, 1]	0.638							
3	[4, 0, 2, 3, 5, 1]	0.647							
5	[4, 0, 5, 2, 3, 1]	0.653							
18	[5, 1, 4, 3, 2, 0]	0.654							
23	[5, 4, 0, 1, 2, 3]	0.664							
128	[3, 5, 1, 0, 2, 4]	0.668							
176	[5, 3, 1, 0, 4, 2]	0.669							
225	[5, 3, 1, 4, 0, 2]	0.670							
$\mathcal{J}(\mathbf{s}) := \mathbf{I}$	EXACTMATCH(Y, h _s (X)) (hig	her is better)							

⁶[Read et al., 2013a], Pattern Recognition

MCC with s-Search⁷ (M_sCC)

Monte Carlo walk through the space of *chain sequences* $\mathbf{s} = [s_1, \ldots, s_L]$

- The space is L! large, ... but a little search can go a long way.
- Can add temperature to freeze s_u from left to right over time
- Can use a population of chain sequences: $\mathbf{s}_{u}^{(1)}, \ldots, \mathbf{s}_{u}^{(M)}$
- Another approach is to use 'beam search' ⁶

⁶Beam search algorithms for multi-label learning [Kumar et al., 2013], MLJ

⁷[Read et al., 2013a], Pattern Recognition

Jesse Read (Aalto/HIIT)

An Empirical Look

Table : Average predictive performance (5 fold CV, EXACT MATCH)

	L	BR	CC	PCC	MCC	M_sCC
params:					T = 100	U = 50
Music	6	0.30	0.29	0.35	0.35	0.37
Scene	6	0.54	0.55	0.64	0.64	0.68
Yeast	14	0.14	0.15		0.21	0.23
Genbase	27	0.94	0.96		0.96	0.96
Medical	45	0.58	0.62		0.63	0.62
Enron	53	0.07	0.10		0.10	0.09
Reuters	101	0.29	0.35		0.37	0.37

- MCC = PCC, but tractable to larger datasets.
- $M_sCC \succ MCC$: the chain order makes a difference

An Empirical Look

	L	BR	CC	PCC	MCC	MsCC
params:					T = 100	U = 50
Music	6	0	2	1	5	18
Scene	6	12	44	15	90	684
Yeast	14	11	66		149	731
Genbase	27	11	56		1695	774
Medical	45	9	86		3420	1038
Enron	53	102	349		3884	2986
Reuters	101	106	1259		1837	4890

Table : Average running time (5 fold CV, seconds)

- MCC = PCC, but tractable to larger datasets.
- $M_sCC \succ MCC$: the chain order makes a difference
- although a little slower . . .

3

(日) (周) (三) (三)

Why not order the chain based on:

- Easiest-to-predict labels first
- Most-frequent labels first
- Most-'dependent' labels first/last (marginal dependence)
- Empirical performance (i.e., conditional dependence, M_sCC)

Performance can be improved most by modelling label dependence.

・ 同 ト ・ 三 ト ・ 三 ト

Generally, methods model

- Marginal dependence (e.g., stacked-BR⁸)
- Conditional dependence (e.g, M_sCC⁹)
- Random dependence (e.g., RAkEL¹⁰)
- No dependence (e.g., BR)

⁸Discriminative Methods for Multi-labeled Classification [Godbole and Sarawagi, 2004]

⁹Monte Carlo Methods for ... Classifier Chains [Read et al., 2013b]

¹⁰ RAndom k-labEL subsets for Multi-label Classification [Tsoumakas and Vlahavas; 2007] 🗇 🔸 🗧 🕨 🛓 🔊 🔍

Marginal vs. Conditional Dependence

Marginal dependence

When the joint is **not** the product of the marginals.

$$p(y_2) \neq p(y_2|y_1)$$

Conditional in/dependence

$$p(y_2|y_1,\mathbf{x}) \neq p(y_2|\mathbf{x})$$

$$(Y_1)$$
 (Y_2) (Y_1) (Y_2)

• Have to build and measure models / take into account the input space

→ 3 → 4 3

From a Chain to a Tree

Why a chain (sequence)? We can formulate any structure, with

$$\hat{\mathbf{y}} = p(\mathbf{y}|\mathbf{\tilde{x}}) = \operatorname*{argmax}_{\mathbf{y} = [y_1, \dots, y_L]} \prod_{j=1}^L p(y_j | \mathbf{pa}_j, \mathbf{\tilde{x}})$$

where $\mathbf{pa}_{j} = \mathbf{parents}$ of node *j*.

• If
$$\mathbf{pa}_j := \{y_1, \dots, y_{j-1}\}$$
 we recover CC

How do we find a good structure?

- Iabel dependence!
- difficult to find, but can benefit accuracy, train/test time.

Jesse Read (Aalto/HIIT)

Employ CC in a 'tree' (a 'Classifier Tree'):

Weight all edges with (marginal) label dependencies

- Find a maximum spanning tree (MST)
- Schoose some directionality (a root node)
- Employ any classifier, e.g., CC with Naive Bayes

^{11 [}Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], 'Ensemble of Bayes Nets' for MLC, IJCAI 13 using standard message passing for inference – complexity permitting

Employ CC in a 'tree' (a 'Classifier Tree'):

- Weight all edges with (marginal) label dependencies
- Find a maximum spanning tree (MST)

- Oboose some directionality (a root node)
- Employ any classifier, e.g., CC with Naive Bayes

¹¹[Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], 'Ensemble of Bayes Nets' for MLC, IJCAI 13 using standard message passing for inference – complexity permitting

Employ CC in a 'tree' (a 'Classifier Tree'):

- Weight all edges with (marginal) label dependencies
- Find a maximum spanning tree (MST)
- Schoose some directionality (a root node)

Employ any classifier, e.g., CC with Naive Bayes

¹¹[Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], 'Ensemble of Bayes Nets' for MLC, IJCAI 13 using standard message passing for inference – complexity permitting

Employ CC in a 'tree' (a 'Classifier Tree'):

- Weight all edges with (marginal) label dependencies
- Find a maximum spanning tree (MST)
- Ochoose some directionality (a root node)
- Employ any classifier, e.g., CC with Naive Bayes

^{11 [}Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], 'Ensemble of Bayes Nets' for MLC, IJCAI 13 using standard message passing for inference – complexity permitting

Employ CC in a 'tree' (a 'Classifier Tree'):

- Weight all edges with (marginal) label dependencies
- Find a maximum spanning tree (MST)
- Ochoose some directionality (a root node)
- Employ any classifier, e.g., CC with Naive Bayes

- Can get comparable accuracy to CC (but not always)
- Only uses *marginal / unconditional* dependencies.

¹¹ [Zaragoza et al., 2011], IJCAI 11; and related [Alessandro et al., 2013], 'Ensemble of Bayes Nets' for MLC, IJCAI 13 using standard message passing for inference – complexity permitting

Classifier 'Graphs' (\approx Bayesian Network)

LEAD¹² uses an efficient method to measure conditional label dependence:

Proposition

Given two classification problems (e.g., BR with L = 2),

 $y_1 = h_1(x) + e_1$ and $y_2 = h_2(x) + e_2$

the dependence between e_1 , $e_2 \approx$ the conditional dependence between Y_1 , Y_2 .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Classifier 'Graphs' (\approx Bayesian Network)

LEAD¹² uses an efficient method to measure conditional label dependence:

- train BR, h_1, \ldots, h_L
- e measure dependence among errors, e₁,..., e_L
- find a directed structure
- Ilug in (e.g.,) CC

Basically: measure dependence among e_j instead of Y_j .

¹² 'LEArning with label Dependence' [Zhang and Zhang, 2010], KDD '10

Is it better to invest resources in one good model; or many approximate (or even random) models? Perhaps the *main challenge* is actually to

- model label dependencies get good multi-label predictions; and
- O this efficiently.

A B F A B F

Getting a good Classifier 'Graph'

Is it necessary (for best peformance) to

- model label dependence?
- ... conditional dependence?
- ... 'complete' dependence?

Table : Average JACCARD INDEX : rank, under $5 \times CV$ [L = 6].

	BR	BCC-R	BCC-M	BCC-C	ECC	PsCC
Music	0.517	0.545 (5)	0.567 (4)	0.582 (3)	0.588 (2)	0.594 (1)
Scene	0.595	0.646 (3)	0.646 (3)	0.643 (5)	0.647 (2)	0.705 (1)

- BR: independent classifiers
- BCC with Random structure / based on Marginal and Conditional dependence
- ECC: Ensemble of random CC (complete random dependence)
- P_sCC : best of all (6! = 720) possible chain orders; Bayes-optimal (2⁶) inference.

E Sac

イロト 不得下 イヨト イヨト

Getting a good Classifier 'Graph'

Is it necessary (for best peformance) to

- model label dependence? Yes
- ... conditional dependence? Not necessarily
- ... 'complete' dependence? It helps, but can be expensive.

Table : Average JACCARD INDEX : rank, under $5 \times CV$ [L = 6].

	BR	BCC-R	BCC-M	BCC-C	ECC	PsCC
Music	0.517	0.545 (5)	0.567 (4)	0.582 (3)	0.588 (2)	0.594 (1)
Scene	0.595	0.646 (3)	0.646 (3)	0.643 (5)	0.647 (2)	0.705 (1)

- BR: independent classifiers
- BCC with Random structure / based on Marginal and Conditional dependence
- ECC: Ensemble of random CC (complete random dependence)
- P_sCC : best of all (6! = 720) possible chain orders; Bayes-optimal (2⁶) inference.

E Sac

イロト 不得下 イヨト イヨト

So far ...

Modelling dependence helps; modelling complete dependence is (unsurprisingly) best, but not always practical: BCC has L - 1 'links' in the chain, vs $\frac{L(L-1)}{2}$ for ECC and M_sCC. Can either

- find one (or several) good model(s); or
- use many random models.

Although 'randomly dependent' models can perform quite well,

- "quite well" \neq very well,
- they are not so interpretable, and
- are not necessarily the most efficient.

Super-Label Classifier

A super label is just a class with > 2 possible values, e.g.:

 $Y_{1,4} \in \{00,10,01\}$ (some values can be pruned)

- Form super-labels based on dependence
- Prune values
- Solution Plug in any multi-output-capable classifier (e.g., CC)

Can make this hierarchical ('meta labels'), as in HOMER¹³.

¹³[Tsoumakas et al., 2008], ECML/PKDD 2008

Super-Label Classifier

Figure : Performance (Parkinson's data) for L, L - 1, ..., 2, 1 classes, i.e., from BR to LP.

Table : Performance on the Enron dataset (L = 53).

	BR	SCC
Exact Match	0.121	0.169
Ham. Loss	0.057	0.054
Time (s)	43.67	9.02
Num. Labels	53	6
Values/label	2	4.5

A model based on label dependence can perform more accurately and much faster (including the time to measure dependence).

Some Alternative Approaches

Other problem transformation methods include

- Labelset approaches, e.g., [Tsoumakas and Vlahavas, 2007]'s RAkEL i.e., casting to a multi-class problem (∈ {0000,...,0001,1111})
- Pairwise, e.g., [Fürnkranz et al., 2008] i.e., casting to pair-wise problems

Well-known algorithm adaptation methods; include multi-label

- Neural Networks, e.g., [Zhang and Zhou, 2006]
- Decision Trees, e.g., [Clare and King, 2001]
- k-Nearest Neighbours, e.g., [Zhang and Zhou, 2007]
- Maximum Margin method, e.g., [Elisseeff and Weston, 2002]

Recent Trends and Challenges

Specific to multi-label learning:

- 'Big data', scalability
 - Thousands to millions of labels
- 2 Data streams
 - Learning (e.g., label dependencies) incrementally
 - Dealing with concept drift in the label space
- Missing values and partially/weakly labelled data
 - In multi-label classification we often don't know that they're missing! (If an image is *not* labelled foliage, does it have no foliage?)
 - Manually-multi-labelled data is even more expensive to obtain

Summary and Future Work

- The area of *multi-label classification* has expanded rapidly over the last few years, and is now overlapping with many related areas
- Most attention has focussed on modelling label dependence
- *Classifier chains* is a family of methods suitable for this but there are many different approaches.

< 同 ト く ヨ ト く ヨ ト

Summary and Future Work

- The area of *multi-label classification* has expanded rapidly over the last few years, and is now overlapping with many related areas
- Most attention has focussed on modelling label dependence
- *Classifier chains* is a family of methods suitable for this but there are many different approaches.
- It is apparent that ...
 - Efforts to find the perfect label-dependency model aren't always rewarded
 - Multi-label problems are getting much bigger.
 - There are many related open problems, for example, data streams.
 - A lot of literature from other areas is very relevant.

くほと くほと くほと

Thank you!

Questions?

Jesse Read (Aalto/HIIT)

Classifier Chains

Helsinki. March 28, 2014 32 / 32

3

<ロ> (日) (日) (日) (日) (日)