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The Problem
Learning to automatically classify text documents. Eg:

• Emails

• News Articles, Current Events (websites, RSS feeds)

• “Folksonomies” (Wikipedia, CiteULike)

• Bookmarks (Web browser, del.ic.ous, Google Bookmarks)

• Other (e.g. File System, Medical Text Classification)

Each of these examples is (or could be):

• Text

• Multi-label

• Organised in a Hierarchy

• On-line / Streamed (not Batch Learning)

• Affected by Human Interaction
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Multi-label Classification

Given a label set L = {Sports, Environment, Science, Politics};

“Single-label” (Multi-class) Classification

For a text document d, the task is to select a label l ∈ L

Multi-label Classification

For a text document d select a label subset S ⊆ L

E.g.:

Example Labels (S ⊆ L)

Document 1 {Sports,Politics}

Document 2 {Science,Politics}

Document 3 {Sports}

Document 4 {Environment,Science}
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Multi-label Classification

Done by transforming a multi-label problem into a single-label

problem, i.e. with a Problem Transformation method:

1. (LC) Label Combination Method

2. (BC) Binary Classifiers Method

3. (RT) Ranking Threshold Method

Then employ a standard single-label algorithm on the resulting

data.

E.g. : Naive Bayes, C4.5, Bagging with C4.5, Support Vector

Machines, k Nearest Neighbour, Neural Networks, AdaBoostM1.

Then transform result back to multi-label representation.
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1. Label Combination Method (LC)
Each combination of labels becomes a single label. A single-label

classifier C learns to classify from the resulting combinations. One

decision per label.

E.g.: (C) Document X either belongs to

Sports+Politics

or Science+Politics

or Sports

or Science+Environment

• May generate many unique combinations for few documents

• What if a document about Sports and Science turns up?

• Can run very slow if no. of unique combinations grows large
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2. Binary Classifiers Method (BC)
Single-label [binary] classifiers are created for each possible label.

Multiple decisions per document.

E.g. Four classifiers C1 · · ·C4, one for each label. Document X

(C1) belongs to Sports? YES/NO...

(C2) belongs to Environment? YES/NO...

(C3) belongs to Science? YES/NO...

(C4) belongs to Politics? YES/NO...

• Slow, need as many classifiers as labels.

• Assumes that all labels are independent

• Often way too many labels are selected
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3. Ranking Threshold Method (RT)
A single-label classifier C outputs a ranking of its confidence for

each label.

E.g.: Document X

(C) is 95.5% likely to belong to Science

(C) is 81.2% likely to belong to Environment

(C) is 60.9% likely to belong to Sports

(C) is 21.3% likely to belong to Politics

e.g. Threshold = 80.0%

• Not all single-label classifiers can output their “confidence”

• Assumes that all labels are independent

• Difficulty in selecting a good threshold

• Often the threshold encloses way too many labels
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Hierarchical Classification (Option 1 - Global)
Uses 1 Problem Transformation method and single-label classifier.

Information about the hierarchy is incorporated into the process.

Americas.
US

Americas
Canada

MidEast.
Iraq

MidEast.
Iran

Sports.
Soccer

Sports.
Rugby

Sci/Tech

root

+ Higher accuracy

− Can run very slow and use up a lot of memory

− Difficult to maintain; inflexible

On-line Hierarchical Multi-label Text Classification 8



Hierarchical Classification (Option 2 - Local)
Each internal node with its own Problem Transformation Method.

US Canada Iraq Iran Soccer Rugby

Sci/TechAmericas Mid.East Sports

root

+ Divides up the problem: easy to maintain; efficient; intuitive

− Error propagation; accuracy unimpressive

− Overhead involved in setting up the hierarchical structure
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Experiments — 20Newsgroups — Accuracy
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Experiments — 20Newsgroups — Build Time
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Experiments — Enron — Accuracy
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Experiments — Enron — Build Time
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Experiments — NewsArticles — Accuracy
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Experiments — NewsArticles — Build Time
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Initial Conclusions

Performance is poor.

• All Problem Transformation methods have significant

disadvantages

• Multi-label data is more complex than single-label data

• Multi-label text datasets can be very different, no method best

for all

• On-line data is invariably susceptible to “Concept Drift”

• . . . but it is very costly to build / rebuild classifiers
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Current Work

• Analysis and modelling of on-line hierarchical multi-label text

data

• Analysing the performance/flaws of Problem Transformation

methods

• Investigating adaptive and incremental learning methods
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“Multi-label-ness”: Documents per Label

• 80/20 rule. Typically most labels used not used very often.
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“Multi-label-ness”: Labels per Documents

• Most documents have only a few labels.
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On-line data: Creation of Labels Over Time

• Most labels are used for the first time (created) very early on.
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On-line data: Label Combinations Over Time

• New label combinations continue to appear for some time.
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On-line data∗: Label Activity Over Time

• Labels occur and reoccur in “bursts”

• → Topic/“burst” detection∗
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On-line data∗: Label Activity Over Time

• Label often co-occur in bursts.

• Labels may be unused for periods of time
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Other Things I found

• Some labels are particularly troublesome

• Some label combinations are particularly troublesome

• Some Problem Transformation methods do better or worse

depending on variations of:

– The length and type of text documents

– The no. of training examples seen

– The no. of possible labels it can choose from

– The no. of unique combinations of those labels

– Etc.
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Future Work

• Continue analysis

• Improve Problem Transformation methods

• Design a novel hierarchical multi-label classification framework,

for on-line text data streams, able to adapt to and learn from

human interference (manual labelling).
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. . . Questions? . . . Comments?
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