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The Problem

Learning to automatically classitfy text documents. Eg:
e Fmails
e News Articles, Current Events (websites, RSS feeds)
e “Folksonomies” (Wikipedia, CiteULike)
e Bookmarks (Web browser, del.ic.ous, Google Bookmarks)

e Other (e.g. File System, Medical Text Classification)

Each of these examples is (or could be):

o Text

e Multi-label

e Organised in a Hierarchy

e On-line / Streamed (not Batch Learning)
o Affected by Human Interaction

On-line Hierarchical Multi-label Text Classification



Multi-label Classification

Given a label set L = {Sports, Environment, Science, Politics};

“Single-label” (Multi-class) Classification
For a text document d, the task is to select a label [ € L

Multi-label Classification

For a text document d select a label subset S C L
Example Labels (S C L)

Document 1 {Sports,Politics}

Document 2 {Science,Politics}

Document 3 {Sports}

Document 4 | {Environment,Science}
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Multi-label Classification

Done by transforming a multi-label problem into a single-label

problem, i.e. with a Problem Transformation method:

1. (LC) Label Combination Method

2. (BC) Binary Classifiers Method

3. (RT) Ranking Threshold Method

Then employ a standard single-label algorithm on the resulting
data.

E.g. : Naiwve Bayes, C4.5, Bagging with C4.5, Support Vector
Machines, k Nearest Neighbour, Neural Networks, AdaBoostM]I.

Then transform result back to multi-label representation.
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1. Label Combination Method (LC)
Each combination of labels becomes a single label. A single-label

classifier C' learns to classity from the resulting combinations. One

decision per label.

E.g.: (C) Document X either belongs to
Sports+Politics

or Science+Politics

or Sports

or Science+Environment

e May generate many unique combinations for few documents

e What if a document about Sports and Science turns up?

e Can run very slow if no. of unique combinations grows large
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2. Binary Classifiers Method (BC)

Single-label [binary| classifiers are created for each possible label.

Multiple decisions per document.

E.g. Four classifiers C - - - Cy, one for each label. Document X
(C7) belongs to Sports? YES/NO...

(C3) belongs to Environment? YES/NO...

(C'3) belongs to Science? YES/NO...

(C4)

Cy) belongs to Politics? YES/NO...

e Slow, need as many classifiers as labels.
e Assumes that all labels are independent

e Often way too many labels are selected
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3. Ranking Threshold Method (RT)

A single-label classifier C' outputs a ranking of its confidence for
each label.

E.g.: Document X
(C) is 95.5% likely to belong to Science

(

is 81.2% likely to belong to Environment

C)
(C) is 60.9% likely to belong to Sports
C)

(C) is 21.3% likely to belong to Politics
e.g. Threshold = 80.0%

e Not all single-label classifiers can output their “confidence”
Assumes that all labels are independent
Difficulty in selecting a good threshold

Often the threshold encloses way too many labels
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Hierarchical Classification (Option 1 - Global)

Uses 1 Problem Transformation method and single-label classifier.

Information about the hierarchy is incorporated into the process.
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+ Higher accuracy

— Can run very slow and use up a lot of memory

— Difficult to maintain; inflexible
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Hierarchical Classification (Option 2 - Local)
Each internal node with its own Problem Transformation Method.
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+ Divides up the problem: easy to maintain; efficient; intuitive
— Error propagation; accuracy unimpressive

— Overhead involved in setting up the hierarchical structure

On-line Hierarchical Multi-label Text Classification



Experiments — 20Newsgroups — Accuracy
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Experiments — 20Newsgroups — Build Time
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Experiments — Enron — Accuracy
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Experiments — Enron — Build Time
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Experiments — NewsArticles — Accuracy
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Experiments — NewsArticles — Build Time
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Initial Conclusions

Performance is poor.

e All Problem Transformation methods have significant

disadvantages
Multi-label data is more complex than single-label data

Multi-label text datasets can be very different, no method best

for all

On-line data is invariably susceptible to “Concept Drift”

... but it is very costly to build / rebuild classifiers
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Current Work

e Analysis and modelling of on-line hierarchical multi-label text
data

e Analysing the performance/flaws of Problem Transformation
methods

e Investigating adaptive and incremental learning methods
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“Multi-label-ness”: Documents per Label

Reuters RCV1: Documents per Label

Each Label {103 in total)

Mo. Documents given this label

e 80/20 rule. Typically most labels used not used very often.
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“Multi-label-ness”: Labels per Documents

Typical label subset sizes (label sets 53-103)
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e Most documents have only a few labels.
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On-line data: Creation of Labels Over Time

Label [Topic] Creation (On-line data)
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e Most labels are used for the first time (created) very early on.
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On-line data: Label Combinations Over Time

Unigque Label Combinations (On-line data)
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New label combinations continue to appear for some time.
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On-line data*: Label Activity Over Time

News Articles: Label Activity Over Time
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e [abels occur and reoccur in “bursts”

e — Topic/“burst” detection*
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On-line data*: Label Activity Over Time

News Articles: Label Activity Over Time
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e Label often co-occur in bursts.

e Labels may be unused for periods of time
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Other Things I found

e Some labels are particularly troublesome
e Some label combinations are particularly troublesome
e Some Problem Transformation methods do better or worse
depending on variations of:
The length and type of text documents
The no. of training examples seen
The no. of possible labels it can choose from

The no. of unique combinations of those labels

Etc.
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Future Work

e Continue analysis
e Improve Problem Transformation methods

e Design a novel hierarchical multi-label classification framework,
for on-line text data streams, able to adapt to and learn from

human interference (manual labelling).
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... Questions? ...Comments?
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