# Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data

Jesse Read<sup>1</sup>, Albert Bifet<sup>2</sup>, Bernhard Pfahringer<sup>2</sup>, Geoff Holmes<sup>2</sup>

<sup>1</sup>Department of Signal Theory and Communications Universidad Carlos III Madrid, Spain



<sup>2</sup>Department of Computer Science University of Waikato Hamilton, New Zealand



Read, Bifet, Pfahringer, Holmes (UC3M, UoW) Batch-Incremental vs. Instance-Incremental

# Learning in Dynamic and Evolving Data

Data instances arrive

- ontinually; and
- potentially infinitely.

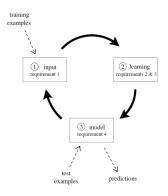
We make a classification for each instance; the true classifications can then be obtained (often via an *automatic* or *collaborative* process).

## Applications

- predicting consumer demand
- categorising / filtering news
- labelling / filtering e-mail
- tagging / filtering images, videos, text documents, etc.
- robotics: predicting obstacles, faults, etc.
- social networks

# Learning in Dynamic and Evolving Data

- new training examples incoming at any point
- 2 must work in finite memory
- expect concept drift
- In must be ready to produce a classification at any point



**Instance-Incremental**: Update the model with new training examples as soon as they are available.

- Naive Bayes
- Hoeffding Decision Trees
- Neural Networks
- k-Nearest Neighbour (model based on a moving window)

Batch-Incremental: Collect *w* training examples, then build a batch model with these examples (and drop an old model when memory is full), and repeat.

- Logistic Regression
- Decision Trees
- Support Vector Machines
- etc.

Authors tend to take one of the approaches...

- (Instance incremental) we must learn in a "true-incremental" fashion, using a classifier naturally suited to the job; or
- (Batch incremental) "true-incremental" is *not* necessary, we can learn in batches using *any* batch classifier we like.
- ... and then proceed with their paper.

Which approach to use, and why?

Instance-Incremental. . .

The model is updated with new training examples as soon as they are available.

Advantages:

- "naturally suited" for incremental learning
- fast

Disadvantages:

- restricted choice of classifier
- may require massive numbers of instances to learn
- may not adapt naturally to concept drift

Batch-Incremental...

Collect w training examples, then build a batch model with these examples (and drop an old model when memory is full), and repeat.

## Advantages:

- use your favourite classifier
- automatically deals with concept drift

## Disadvantages:

- the most recent data is not part of model
- have to phase out models over time as memory fills up
- may be slow to learn (running time)
- have to find a good batch size (what is w?)

#### Instance-Incremental Methods:

| NB     | Naive Bayes                                   |
|--------|-----------------------------------------------|
| SGD    | Stochastic Gradient Descent                   |
| HT     | Hoeffding Trees                               |
| LB-HT  | Leveraging Bagging Ensemble of HT with ADWIN  |
| kNN    | k-Nearest Neighbour                           |
| LB-kNN | Leveraging Bagging Ensemble of kNN with ADWIN |

where Leveraging Bagging [Bifet et al., 2010] of 10 models with the ADWIN change detector; kNN window (batch) size -w 1000.

## **Batch-Incremental Methods:**

| AWE-J48 | Accuracy Weighted Ensemble with C4.5 Decision Trees     |
|---------|---------------------------------------------------------|
| AWE-SVM | Accuracy Weighted Ensemble with Support Vector Machines |
| AWE-LR  | Accuracy Weighted Ensemble with Logistic Regression     |

 Real Datasets, varying domains, types and numbers of attributes:

- 20 NEWSGROUPS 386,000 text records, 19 shifts in concept
- IMDB 120,919 movie plot summaries, predicting the drama genre
- $\mathrm{CovType}$  581,012 instances predicting forest cover type
- $\bullet~\mathrm{POKER}$  1,000,000 hands, predicting the value of each hand
- ELECTRICITY 45,312 instances describing electricity demand

**Synthetic Data**, with varying concept drift, hundreds of thousands to millions of examples:

- $\bullet~{\rm SEA}$  generated from 3 attributes, abrupt drift
- $H_{YP}$  Rotating Hyperplane to produce concept drift
- $\bullet~\mathrm{RBF}$  Generator: fixed number of centroids which move
- $\bullet~{\rm LED}$  Generator: predict digit on a LED display

# Finding a good batch size (w)

|         | Average Accuracy over all datasets: |        |         |         |  |  |  |  |  |  |
|---------|-------------------------------------|--------|---------|---------|--|--|--|--|--|--|
|         | -w  100                             | -w 500 | -w 1000 | -w 5000 |  |  |  |  |  |  |
| kNN     | 66.32                               | 80.24  | 82.33   | 82.63   |  |  |  |  |  |  |
| AWE-J48 | 70.72                               | 77.36  | 76.90   | 73.76   |  |  |  |  |  |  |
| AWE-LR  | 68.77                               | 69.62  | 67.83   | 65.56   |  |  |  |  |  |  |
| AWE-SVM | 67.13                               | 70.77  | 70.07   | 67.67   |  |  |  |  |  |  |

#### Average Accuracy over all d

| Total Time (sec.) over all dataset |
|------------------------------------|
|------------------------------------|

|         | -w  100 | -w 500 | $-w \ 1000$ | -w 5000 |  |  |  |  |
|---------|---------|--------|-------------|---------|--|--|--|--|
| kNN     | 2,180   | 9,993  | 18,349      | 71,540  |  |  |  |  |
| AWE-J48 | 3,809   | 6,883  | 10,865      | 28,429  |  |  |  |  |
| AWE-LR  | 9,659   | 66,757 | 10,247      | 10,112  |  |  |  |  |
| AWE-SVM | 13,860  | 5,800  | 6,414       | 39,298  |  |  |  |  |

| Total R | AM Hours | over all | datasets: |
|---------|----------|----------|-----------|
|---------|----------|----------|-----------|

|         | -w  100 | -w 500 | $-w \ 1000$ | -w 5000 |
|---------|---------|--------|-------------|---------|
| kNN     | 0.13    | 1.11   | 2.98        | 41.27   |
| AWE-J48 | 1.96    | 8.49   | 21.81       | 221.66  |
| AWE-LR  | 12.65   | 48.07  | 22.47       | 67.52   |
| AWE-SVM | 3.19    | 4.12   | 9.36        | 255.96  |
|         |         |        |             |         |

• kNN: more is better, but huge trade off with complexity after -w 1000 • AWE-\*: -w 500 gives best results

イロト イポト イヨト イヨト

|                | -w 100 | -w 500 | -w 1000 | -w 5000 |
|----------------|--------|--------|---------|---------|
| 20 Newsgroups  | 94.30  | 94.74  | 95.06   | 94.60   |
| IMDB           | 55.09  | 53.59  | 53.54   | 54.33   |
| CovType        | 55.79  | 87.82  | 85.58   | 76.05   |
| Electricity    | 78.47  | 75.27  | 74.37   | 65.10   |
| Poker          | 76.06  | 77.89  | 79.32   | 75.98   |
| CovPokElec     | 68.03  | 81.60  | 81.45   | 74.32   |
| LED(50000)     | 70.60  | 71.99  | 72.03   | 71.37   |
| SEA(50)        | 84.95  | 88.03  | 88.56   | 88.68   |
| SEA(50000)     | 84.63  | 87.71  | 88.16   | 88.43   |
| HYP(10,0.0001) | 66.69  | 71.58  | 73.41   | 78.63   |
| HYP(10,0.001)  | 70.95  | 75.79  | 77.69   | 79.94   |
| RBF(0,0)       | 69.42  | 83.01  | 84.96   | 87.38   |
| RBF(50,0.0001) | 69.12  | 79.30  | 77.05   | 60.75   |
| RBF(10,0.0001) | 68.49  | 81.79  | 82.78   | 80.79   |
| RBF(50,0.001)  | 53.78  | 50.95  | 38.55   | 24.50   |
| RBF(10,0.001)  | 65.18  | 76.76  | 77.92   | 79.36   |
| Average        | 70.72  | 77.36  | 76.90   | 73.76   |

Table: Finding the best window size for AWE-J48.

- best batch size depends on the dataset
- smaller batches much better on a moving concept, e.g. on RBF(50,0.001)

## Experiments: Results

|                | NB            | kNN           | HT            | AWE-J48       | LB-HT         | SGD           | AWE-LR        | AWE-SVM       | LB-kNN        |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 20 Newsgroups  | 68.1 <b>8</b> | 94.9 <b>2</b> | 94.3 <b>6</b> | 94.7 <b>4</b> | 94.4 <b>5</b> | 94.9 <b>2</b> | 88.4 <b>7</b> | 95.6 <b>1</b> | DNF           |
| IMDB           | 60.4 <b>6</b> | 60.8 <b>5</b> | 63.5 <b>2</b> | 53.6 <b>9</b> | 61.8 <b>4</b> | 63.8 <b>1</b> | 54.0 <b>8</b> | 54.5 <b>7</b> | 62.4 <b>3</b> |
| CovType        | 60.5 <b>9</b> | 92.2 <b>2</b> | 80.3 <b>7</b> | 87.8 <b>4</b> | 88.6 <b>3</b> | 60.7 <b>8</b> | 84.5 <b>5</b> | 84.2 <b>6</b> | 92.4 <b>1</b> |
| Electricity    | 73.4 <b>6</b> | 78.4 <b>4</b> | 79.2 <b>3</b> | 75.3 <b>5</b> | 88.8 <b>1</b> | 57.6 <b>9</b> | 70.5 <b>7</b> | 68.6 <b>8</b> | 80.8 <b>2</b> |
| Poker          | 59.5 <b>9</b> | 69.3 <b>5</b> | 76.1 <b>3</b> | 77.9 <b>2</b> | 95.0 <b>1</b> | 68.9 <b>6</b> | 60.9 <b>7</b> | 60.4 <b>8</b> | 70.3 <b>4</b> |
| CovPokElec     | 24.2 <b>9</b> | 78.4 <b>5</b> | 79.3 <b>3</b> | 81.6 <b>2</b> | 92.4 <b>1</b> | 68.1 <b>8</b> | 70.1 <b>6</b> | 69.8 <b>7</b> | 79.1 <b>4</b> |
| LED(50000)     | 54.0 <b>8</b> | 63.2 <b>7</b> | 68.7 <b>6</b> | 72.0 <b>4</b> | 73.2 <b>1</b> | 11.8 <b>9</b> | 73.0 <b>2</b> | 72.8 <b>3</b> | 69.8 <b>5</b> |
| SEA(50)        | 85.4 <b>9</b> | 86.8 <b>6</b> | 86.4 <b>7</b> | 88.0 <b>4</b> | 88.2 <b>3</b> | 85.4 <b>8</b> | 89.4 <b>2</b> | 89.6 <b>1</b> | 88.0 <b>5</b> |
| SEA(50000)     | 85.4 <b>8</b> | 86.5 <b>6</b> | 86.4 <b>7</b> | 87.7 <b>5</b> | 88.8 <b>3</b> | 85.2 <b>9</b> | 89.0 <b>2</b> | 89.2 <b>1</b> | 87.7 <b>4</b> |
| HYP(10,0.0001) | 91.2 <b>3</b> | 83.3 <b>7</b> | 89.0 <b>4</b> | 71.6 <b>9</b> | 88.1 <b>5</b> | 79.5 <b>8</b> | 93.7 <b>1</b> | 93.4 <b>2</b> | 87.1 <b>6</b> |
| HYP(10,0.001)  | 70.9 <b>9</b> | 83.3 <b>5</b> | 78.8 <b>6</b> | 75.8 <b>7</b> | 84.8 <b>4</b> | 71.1 <b>8</b> | 91.8 <b>2</b> | 92.0 <b>1</b> | 86.9 <b>3</b> |
| RBF(0,0)       | 51.2 <b>6</b> | 89.0 <b>3</b> | 83.2 <b>4</b> | 83.0 <b>5</b> | 89.7 <b>2</b> | 16.6 <b>9</b> | 46.9 <b>8</b> | 50.5 <b>7</b> | 90.6 <b>1</b> |
| RBF(50,0.0001) | 31.0 <b>8</b> | 89.4 <b>2</b> | 45.5 <b>7</b> | 79.3 <b>3</b> | 76.7 <b>4</b> | 16.6 <b>9</b> | 54.9 <b>6</b> | 57.9 <b>5</b> | 90.5 <b>1</b> |
| RBF(10,0.0001) | 52.1 <b>7</b> | 89.3 <b>2</b> | 79.2 <b>5</b> | 81.8 <b>4</b> | 85.5 <b>3</b> | 16.6 <b>9</b> | 51.0 <b>8</b> | 52.8 <b>6</b> | 90.7 <b>1</b> |
| RBF(50,0.001)  | 29.1 <b>8</b> | 84.0 <b>1</b> | 32.3 <b>7</b> | 51.0 <b>4</b> | 55.7 <b>3</b> | 16.6 <b>9</b> | 46.5 <b>6</b> | 50.4 <b>5</b> | 82.1 <b>2</b> |
| RBF(10,0.001)  | 52.0 <b>6</b> | 88.3 <b>2</b> | 76.4 <b>5</b> | 76.8 <b>4</b> | 81.8 <b>3</b> | 16.6 <b>9</b> | 49.4 <b>8</b> | 50.7 <b>7</b> | 88.9 <b>1</b> |
| Avg. Rank      | 7.44 <b>8</b> | 4.00 <b>3</b> | 5.12 <b>6</b> | 4.69 <b>4</b> | 2.88 <b>2</b> | 7.56 <b>9</b> | 5.31 <b>7</b> | 4.69 <b>4</b> | 2.69 <b>1</b> |
| Avg. Accuracy  | 59.3 <b>7</b> | 82.3 <b>2</b> | 74.9 <b>4</b> | 77.4 <b>3</b> | 83.3 <b>1</b> | 51.9 <b>8</b> | 69.6 <b>6</b> | 70.8 <b>5</b> |               |
| Tot. Time (s)  | 260           | 18349         | 417           | 6883          | 9877          | 42            | 66757         | 5800          | 166312        |
| Tot. RAM-Hrs   | 0.01          | 0.80          | 0.54          | 3.55          | 50.39         | 0.00          | 37.83         | 3.49          | 77.90         |

(Format: Accuracy Rank); RAM-Hrs = hours with 1 GB in memory

æ

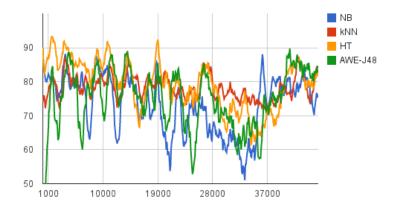
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Summary of Results

- Naive Bayes, SGD, HT are fast
- Batch- SVM, J48, LR perform better, slower
- kNN is the best single model
- Hoeffding Trees (HT) accurate on stable concepts; but
- batch Decision Trees (AWE-J48) are better on dynamic contexts
- Leveraging Bagging + ADWIN recovers HT losses, but at a large computational cost
- Leveraging Bagging + ADWIN with kNN is the best but slowest method
- Each method except Naive Bayes is in top-2 at least once

|                                                                      | NB            | kNN           | HT            | AWE-J48       | LB-HT         | SGD           | AWE-LR        | AWE-SVM       | LB-kNN        |
|----------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Avg. Rank                                                            | 7.44 <b>8</b> | 4.00 <b>3</b> | 5.12 <b>6</b> | 4.69 <b>4</b> | 2.88 <b>2</b> | 7.56 <b>9</b> | 5.31 <b>7</b> | 4.69 <b>4</b> | 2.69 <b>1</b> |
| Avg. Accuracy                                                        | 59.3 <b>7</b> | 82.3 <b>2</b> | 74.9 <b>4</b> | 77.4 <b>3</b> | 83.3 <b>1</b> | 51.9 <b>8</b> | 69.6 <b>6</b> | 70.8 <b>5</b> |               |
| Tot. Time (s)                                                        | 260           | 18349         | 417           | 6883          | 9877          | 42            | 66757         | 5800          | 166312        |
| Tot. RAM-Hrs                                                         | 0.01          | 0.80          | 0.54          | 3.55          | 50.39         | 0.00          | 37.83         | 3.49          | 77.90         |
| (Format: Accuracy <b>Rank</b> ): RAM-Hrs = hours with 1 GB in memory |               |               |               |               |               |               |               |               |               |

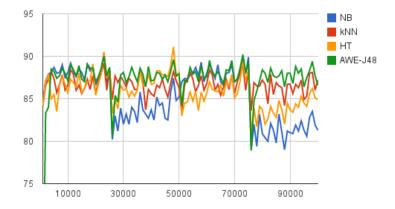
## Accuracy and Running Time over Time



Classification accuracy over time on the Electricity dataset.

Read,Bifet,Pfahringer,Holmes (UC3M,UoW) Batch-Incremental vs. Instance-Incremental

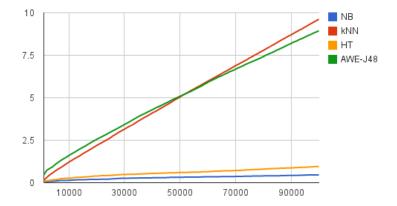
## Accuracy and Running Time over Time



Classification accuracy over time on the SEA dataset.

Read,Bifet,Pfahringer,Holmes (UC3M,UoW) Batch-Incremental vs. Instance-Incremental

## Accuracy and Running Time over Time



Cumulative running time over time on the SEA dataset.

Read,Bifet,Pfahringer,Holmes (UC3M,UoW) Batch-Incremental vs. Instance-Incremental

- Not sure? kNN is a safe bet!
- A good model of 1000 instances can be better than one of millions.
- If you go instance-incremental, find the concept drift!
- If you can spare the resources, go ensemble.
- And, as always choose your method according to your data.

- Not sure? kNN is a safe bet!
- A good model of 1000 instances can be better than one of millions.
- If you go instance-incremental, find the concept drift!
- If you can spare the resources, go ensemble.
- And, as always choose your method according to your data.

The End Questions ?? Bifet, A., Holmes, G., and Pfahringer, B. (2010).
Leveraging bagging for evolving data streams.
In ECML/PKDD (1), pages 135–150.



Wang, H., Fan, W., Yu, P. S., and Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In *KDD '03*, pages 226–235, New York, NY, USA. ACM.