A Distributed Particle Filter Implementation for Tracking in a Wireless Sensor Network

Jesse Read, Katrin Achutegui, Joaquín Míguez

Universidad Carlos III de Madrid.

July 2, 2013

Initially: A Particle Filter in a WSN ?

The IMOTE2 (\approx 13 MHz) ...

- sensing nodes J takes sensor measurements
- central processing node P

not enough processing power!

Previously: A Distributed Particle Filter in a WSN

The IMOTE2 ($\approx 13N$ MHz) ...

- sensing node J takes sensor measurements
- N processing nodes P

• It worked! Tracking (a person) in an indoor scenario, accuracy of 0.5*m*, using light sensor readings; Extremely efficient, but ...

Further development is limited by

- CPU / network / battery limitations; and
- \bullet difficulty involved with working with $T{\rm INY}OS.$

Solution: A Hierarchical WSN

- Dedicated sensing nodes (J) TELOSB, low spec
 - \bullet basic $T{\rm INYOS}$ sensor-program, just send sensor readings
- Dedicated processing nodes (P) PANDABOARD, 1.2 GHz, LINUX, standard WIFI connection
 - ample processing, and high-bandwidth
 - development in any language (e.g., PYTHON)

New Framework: Distributed Particle Filter

• Each PF shares sensor observations / particles with other nodes to form a DPF

- Define layout
- 2 Define target function
- Optime observation function

Then connect Ps to each other in a loop; algorithm begins.

1. Define Layout: layout.py

For example ...

- 3.6×7.2 metres, indoors
- single light source (a window)
- 10 TELOSB motes

How the target/particles move.

$$\mathbf{x}_t \sim p(\mathbf{x}|\mathbf{x}_{t-1})$$

- $\mathbf{x} \in \mathbb{R}^4$ (2D position and velocity)
- 2.0m/s max speed, 0.1m/s min speed
- change angle randomly (and at the scenario boundary)

3. Define Observation Function: observation.py

Weight each particle according to observations.

 $w = \rho(\mathbf{y}_t | \mathbf{x}_t)$

- binary observations $y_{j,t} \in \{0,1\}$ for each sensor j at time t
- detection zone Z_j: area between sensor j and light source(s)

FPR / FNR: false positive / negative rate

A Distributed Particle Filter

N Processing Elements (PE), running in parallel, each with *M* particles; At each timestep *t*, each PE n = 1, ..., N:

- receive a particle $\mathbf{x}_{i,t} \leftarrow \mathbf{x}_{i,t}^{(n-1)}$ from PE n-1
- **2** read observation \mathbf{y}_t from sensors
- for all its particles $m = 1, \ldots, M$:
 - **1** $\mathbf{x}_{m,t} \sim p(\mathbf{x}|\mathbf{x}_{m,t-1})$ move
 - 2 $w_{m,t} \leftarrow p(\mathbf{y}_t | \mathbf{x}_{m,t})$ weight
- resample particles
- $i \leftarrow \text{index of best particle (highest weight)}$
- send particle $\mathbf{x}_{i,t}$ to PE n+1

VIDEO: deploying, configuring and running a WSN for tracking

Simulation Results

Adding more sensors . . .

Now: ≤ 0.2m accuracy; ≈ 0.05 seconds per timestep.
Before: ≈ 0.5m accuracy; 1.00 seconds per timestep

J. Read, K.Achutegui, J.Míguez (UC3M)

A DPF for Tracking in a WSN

July 2, 2013 14 / 17

Best ways to work with TINYOS:

As little as possible

It seems that ...

- Motes are not likely to get much more powerful; but
- PandaBoard'-type ARM boards getting popular (also, e.g., RaspberryPI, BeagleBoard).

So, can have the best of both worlds:

- benefits from distributed network
- sufficient processing power
- development (almost) as usual

Future Work

- Fusion of observations from different kinds of sensors (light, acoustic intensity, RSSI)
- Multi-target tracking
- Deployment in different/larger scenarios, with a larger network

A Distributed Particle Filter Implementation for Tracking in a Wireless Sensor Network

Jesse Read, Katrin Achutegui, Joaquín Míguez

Universidad Carlos III de Madrid.

July 2, 2013