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Abstract. In this paper bounded model checking of asynchronous con-
current systems is introduced as a promising application area for answer
set programming. As the model of asynchronous systems a generalization
of communicating automata, 1-safe Petri nets, are used. It is shown how
a 1-safe Petri net and a requirement on the behavior of the net can be
translated into a logic program such that the bounded model checking
problem for the net can be solved by computing stable models of the
corresponding program. The use of the stable model semantics leads to
compact encodings of bounded reachability and deadlock detection tasks
as well as the more general problem of bounded model checking of linear
temporal logic. Some experimental results on solving deadlock detection
problems using the translation and the Smodels system are presented.

1 Introduction

In this paper we put forward symbolic model checking [2, 3] as a promising appli-
cation area for answer set programming systems. In particular, we demonstrate
how bounded model checking problems of asynchronous concurrent systems can
be reduced to computing stable models of logic programs.

Verification of asynchronous systems is typically done by enumerating the
set of reachable states of the system. Tools based on this approach (with various
enhancements) include, e.g., the Spin system [12], which supports extended state
machines communicating through FIFO queues, and the PROD tool [17] based
on Petri nets. The main problem with enumerative model checkers is the amount
of memory needed to store the set of reachable states.

Symbolic model checking is widely applied especially in hardware verifica-
tion. The main analysis technique is based on (ordered) binary decision diagrams
(BDDs). In many cases the set of reachable states can be represented very com-
pactly using a BDD encoding. Although the approach has been successful, there
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are difficulties in applying BDD-based techniques, in particular, in areas outside
hardware verification. The key problem is that some Boolean functions do not
have a compact representation as BDDs and the size of the BDD representation
of a Boolean function is very sensitive to the variable ordering used. Bounded
model checking [1] has been proposed as a technique for overcoming the space
problem by replacing BDDs with satisfiability (SAT) checking techniques be-
cause typical SAT checkers use only polynomial amount of memory. The idea is
roughly the following. Given a sequential digital circuit, a (temporal) property
to be verified, and a bound n, the behavior of a sequential circuit is unfolded up
to n steps as a Boolean formula S and the negation of the property to be veri-
fied is represented as a Boolean formula R. The translation to Boolean formulae
is done so that S ∧ R is satisfiable iff the system has a behavior violating the
property of length at most n. Hence, bounded model checking provides directly
interesting and practically relevant benchmarks for any answer set programming
system capable of handling propositional satisfiability problems.

Until now bounded model checking has been applied to synchronous hard-
ware verification and little attention has been given to knowledge representation
issues such as developing concise and efficient logical representation of system be-
havior. In this work we study the knowledge representation problem and employ
ideas used in reducing planning to stable model computation [15]. The aim is to
develop techniques such that the behavior of an asynchronous concurrent system
can be encoded compactly and the inherent concurrency in the system could be
exploited in model checking the system. To illustrate the approach we use a
simple basic Petri net model of asynchronous systems, 1-safe Place/Transition
nets, which is an interesting generalization of communicating automata [5].

The structure of the rest of the paper is the following. In the next section
we introduce Petri nets and the bounded model checking problem. Then we de-
velop a compact encoding of bounded model checking as the problem of finding
stable models of logic programs. We first show how to treat reachability prop-
erties such as deadlocks and then demonstrate how to extend the approach to
cope with properties expressed in linear temporal logic (LTL). We discuss initial
experimental results and end with some concluding remarks.

2 Petri nets and bounded model checking

We will now introduce P/T-nets. They are one of the simplest forms of Petri
nets. We will use as a running example the P/T-net presented in Fig. 1.

A triple 〈P, T, F 〉 is a net if P ∩ T = ∅ and F ⊆ (P × T ) ∪ (T × P ). The
elements of P are called places, and the elements of T transitions. Places and
transitions are also called nodes. The places are represented in graphical notation
by circles, transitions by squares, and the flow relation F with arcs. We identify
F with its characteristic function on the set (P × T ) ∪ (T × P ). The preset of
a node x, denoted by •x, is the set {y ∈ P ∪ T |F (y, x) = 1}. In our running
example, e.g., •t2 = {p1, p2}. The postset of a node x, denoted by x•, is the set
{y ∈ P ∪ T |F (x, y) = 1}. Again in our running example p2• = {t2, t3, t5}.
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Fig. 1. Running Example

A marking of a net 〈P, T, F 〉 is a mapping P 7→ IN. A marking M is identified
with the multi-set which contains M(p) copies of p for every p ∈ P . A 4-tuple
Σ = 〈P, T, F, M0〉 is a net system (also called a P/T-net) if 〈P, T, F 〉 is a net and
M0 is a marking of 〈P, T, F 〉. A marking is graphically denoted by a distribution
of tokens on the places of the net. In our running example in Fig. 1 the net has
the initial marking M0 = {p1, p2}.

A marking M enables a transition t ∈ T if ∀p ∈ P : F (p, t) ≤ M(p). If t is

enabled, it can occur leading to a new marking (denoted M
t
→M ′), where M ′ is

defined by ∀p ∈ P : M ′(p) = M(p)−F (p, t)+F (t, p). In the running example t2

is enabled in the initial marking M0, and thus M0
t2
→M ′, where M ′ = {p3, p4}.

A marking Mn is reachable in Σ if there is an execution, i.e., a (possibly
empty) sequence of transitions t1, t2, . . . , tn and markings M1, M2, . . . , Mn−1

such that: M0
t1→ M1

t2→ . . . Mn−1
tn→ Mn. A marking M is reachable within a

bound n, if there is an execution with ≤ n transitions, with which M is reachable.

A marking M is 1-safe if ∀p ∈ P : M(p) ≤ 1. A P/T-net is 1-safe if all its
reachable markings are 1-safe. We will restrict ourselves to finite P/T-nets which
are 1-safe, and in which each transition has both nonempty pre- and postsets.

Given a 1-safe P/T-net Σ, we say that a set of transitions S ⊆ T is con-
currently enabled in the marking M , if (i) all transitions t ∈ S are enabled in
M , and (ii) for all pairs of transitions t, t′ ∈ S, such that t 6= t′, it holds that
•t ∩ •t′ = ∅. If a set S is concurrently enabled in the marking M , we can fire it

in a step (denoted M
S
→ M ′), where M ′ is the marking reached after firing all

of the transitions in the step S in arbitrary order. It is easy to prove by using
the 1-safeness of the P/T-net Σ that all possible interleavings of transitions in a
step S are enabled in M , and that they all lead to the same final marking M ′. In
our running example in the marking M ′ = {p3, p4} the step {t1, t4} is enabled,

and will lead back to the initial marking M0. This is denoted by M ′ {t1,t4}
→ M0.

Notice also that for any enabled transition, the singleton set containing only
that transition is always (trivially) a step.



We say that a marking Mn is reachable in step semantics in a 1-safe P/T-net if
there is a step execution, i.e., a (possibly empty) sequences S1, S2, . . . , Sn of steps

and M1, M2, . . . , Mn−1 of markings such that: M0
S1→ M1

S2→ . . .Mn−1
Sn→ Mn.

A marking M is reachable within a bound n in the step semantics, if there is a
step execution with at most n steps, with which M is reachable.

We will refer to the “normal semantics” as interleaving semantics. Note that
if a marking is reachable in n transitions in the interleaving semantics, it is
also reachable in n steps in the step semantics. However, the converse does not
necessarily hold. We have, however, the following theorem.

Theorem 1. For finite 1-safe P/T-nets the set of reachable markings in the
interleaving and step semantics coincide.

Linear temporal logic (LTL). The linear temporal logic LTL is one of the most
widely used logic for specifying properties of reactive systems [3]. The basic idea
is to specify properties that the system should have using LTL. A model checker
is then used to check whether all (infinite) behaviors of the system are models
of the specification formula. If not, then the model checker outputs a behavior
of the system which violates the given specification.

Given a finite set AP of atomic propositions, the syntax of LTL1 is given by:

ϕ ::= p ∈ AP | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | ϕ1 R ϕ2 .

An ω-word over 2AP is an infinite sequence w = x0 x1 . . . such that xi ∈ 2AP

for all i ≥ 0. For an ω-word w we define w(i) = xi, and denote by w(i) the suffix
of w starting at xi. We define the relation w |= ϕ inductively as follows:

– w |= p iff p ∈ w(0) for p ∈ AP

– w |= ¬ϕ1 iff not w |= ϕ1

– w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2

– w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

– w |= ϕ1 U ϕ2 iff there exists a j ≥ 0 such that w(j) |= ϕ2 and for all 0 ≤ i < j,
w(i) |= ϕ1

– w |= ϕ1 R ϕ2 iff for all j ≥ 0, if for every i < j w(i) 6|= ϕ1 then w(j) |= ϕ2 .

We define some shorthand LTL formulas: > ≡ p ∨ ¬p for some arbitrary fixed
p ∈ AP , ⊥ ≡ ¬>, 3 ϕ ≡ (>U ϕ), 2 ϕ ≡ (⊥R ϕ), and ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

The temporal operators are called: U for “until”, R for “release”, 3 for
“eventually”, and 2 for “globally”. Some examples of practical use of LTL for-
mulas in specification are: 2¬(cs1 ∧ cs2) (it always holds that two processes
are not at the same time in a critical section), 2(req → 3ack ) (it is always
the case that a request is eventually followed by an acknowledgement), and
((23sch1) ∧ (23sch2))→ (2(tr1 → 3cs1)) (if both process 1 and 2 are sched-
uled infinitely often, then always the entering of process 1 in the trying section
is followed by the process 1 eventually entering the critical section).

1 Note that we do not define the often used next-time operator X ϕ. This is a tradeoff
which allows the use of step semantics.



Given a 1-safe P/T net Σ, we use a chosen subset of the places as the atomic

propositions AP . An infinite (interleaving) execution M0
t1→M1

t2→ . . . satisfies ϕ

iff the corresponding ω-word w = (M0 ∩AP ), (M1 ∩AP ), . . . satisfies ϕ. We say
that Σ satisfies ϕ iff every infinite execution starting from the initial marking M0

satisfies ϕ. Alternatively, Σ does not satisfy ϕ if there exists an infinite execution
starting from M0 which satisfies ¬ϕ. We call such an execution a counterexample.

The temporal logic LTL specifies properties of infinite executions. In many
cases it suffices to reason about simple temporal properties. A typical example
is the reachability of a marking satisfying some condition C which roughly cor-
responds to finding a counterexample for a formula 2¬C. An important reach-
ability based property is deadlock detection.

Definition 1. (Deadlock) Given a 1-safe P/T-net Σ, is there a reachable
marking M which does not enable any transition of Σ?

Most analysis questions including deadlock detection and LTL model check-
ing are PSPACE-complete in the size of a 1-safe Petri net, see e.g., [6]. In bounded
model checking we fix a bound n and look for counterexamples which are shorter
than the given bound n. For example, in the case of bounded deadlock detection
in step semantics we look for step executions reaching a deadlock in n steps.
It is easy to show that, e.g., the bounded deadlock detection problem in step
semantics is NP-complete (when the bound n is given in unary coding).

This idea can also be applied to LTL model checking. Biere et.al. [1] introduce
bounded LTL model checking. They also discuss how to ensure that a given bound
n is sufficient to guarantee completeness. Unfortunately, getting an exact bound
is often computationally infeasible, and easily obtainable upper bounds are too
large. In the case of 1-safe P/T-nets they are exponential in the number of
places in the net. Therefore the bounded model checking results are usually not
conclusive if a counterexample is not found. Thus bounded model checking is at
its best in “bug hunting”, and not as easily applicable in verifying systems to be
correct.

3 From bounded model checking to answer set

programming

In this section we show how to solve bounded LTL model checking problems using
answer set programming. We start with the simpler reachability properties and
then extend the approach to handle full LTL model checking.

For encoding bounded model checking problems we use normal logic pro-
grams with the stable model semantics [8]. A normal rule is of the form

a← b1, . . . , bm, not c1, . . . , not cn (1)

where each a, bi, cj is a ground atom. We employ three extensions which can be
seen as compact shorthands for normal rules. We use integrity constraints, i.e.,



rules with empty head. Such a constraint like the one on the left can be taken
as a shorthand for a rule given on the right

← b, not c ; f ← not f, b, not c

where f is a new atom. For expressing the choice whether to include an atom in
a stable model we use choice rules. They are normal rules where the head is in
brackets with the idea that the head can be included in a stable model only if
the body holds but it can be left out, too. Such a construct can be represented
using normal rules by introducing a new atom. For example, the choice rule on
the left corresponds to the two normal rules on the right where a′ is a new atom.

{a} ← b, not c ; a← not a′, b, not c

a′ ← not a

Finally, a compact encoding of conflicts is needed, i.e., rules of the form

← 2{a1, . . . , an} (2)

saying that a stable model cannot contain any two atoms out of a set of atoms
{a1, . . . , an}. Such a rule can be expressed, e.g., by adding a rule f ← not f, ai, aj

for each pair ai, aj from {a1, . . . , an}, i.e., using O(n2) rules. Choice and con-
flict rules are simple cases of cardinality constraint rules [16]. The Smodels sys-
tem (http://www.tcs.hut.fi/Software/smodels/) provides an implementa-
tion for cardinality constraint rules and includes primitives supporting directly
such constraints without translating them first to corresponding normal rules.

3.1 Reachability checking

Now we devise a method for translating bounded reachability problems of 1-safe
P/T-nets to tasks of finding stable models. Consider a net N = 〈P, T, F 〉 and a
step bound n ≥ 1. We construct a logic program ΠA(N, n), which captures the
possible executions of N up to n steps, as follows.

– For each place p ∈ P , include a choice rule {p(0)} ← .

– For each transition t ∈ T , and for all i = 0, 1, . . . , n− 1, include a rule

{t(i)} ← p1(i), . . . , pl(i) (3)

where {p1, . . . , pl} is the preset of t. Hence, a stable model can contain a
transition instance in step i only if its preset holds at step i.

– For each place p ∈ P , for each transition tk in the preset of p, and for all
i = 0, 1, . . . , n− 1, include a rule

p(i + 1)← tk(i) . (4)

These say that p holds in the next step if at least one of its preset transitions
is in the current step.



{t1(i)} ← p3(i)
{t2(i)} ← p1(i), p2(i)
{t3(i)} ← p2(i)
{t4(i)} ← p4(i)
{t5(i)} ← p2(i)

p1(i + 1)← t1(i)
p2(i + 1)← t4(i)
p3(i + 1)← t2(i)
p4(i + 1)← t2(i)
p4(i + 1)← t3(i)
p5(i + 1)← t5(i)
← 2{t2(i), t3(i), t5(i)}

p1(i + 1)← p1(i), not t2(i)
p2(i + 1)← p2(i), not t2(i),

not t3(i), not t5(i)
p3(i + 1)← p3(i), not t1(i)
p4(i + 1)← p4(i), not t4(i)
p5(i + 1)← p5(i)
where i = 0, 1, . . . n − 1

{p1(0)} ←
{p2(0)} ←
{p3(0)} ←
{p4(0)} ←
{p5(0)} ←

Fig. 2. Program ΠA(N, n)

– For each place p ∈ P , and for all i = 0, 1, . . . , n− 1, include a rule

← 2{t1(i), . . . , tl(i)} (5)

where {t1, . . . , tl} is the set of transitions having each p in their preset and
l ≥ 2. This rule states that at most one of the transitions that are in conflict
w.r.t. p can occur.

– For each place p, and for all i = 0, 1, . . . , n− 1,

p(i + 1)← p(i), not t1(i), . . . , not tl(i) (6)

where {t1, . . . , tl} is the set of transitions having p in their preset. This is
the frame axiom for p stating that p holds if no transition using it occurs.

Consider net N in Fig. 1 for which program ΠA(N, n) is given in Fig. 2. In
ΠA(N, n) the initial marking is not constrained but any Boolean combination
C of marking conditions can be captured with a set of rules ΠM(C, i) [16]. For
example, to eliminate stable models not satisfying a condition C at step i saying
that M(p1) = 1 and (M(p2) = 0 or M(p3) = 1), it is sufficient to use rules
ΠM(C, i):

← not c(i)
c(i)← p1(i), cp̄2∨p3(i)

cp̄2∨p3(i)← not p2(i)
cp̄2∨p3(i)← p3(i)

Our approach can solve a reachability problem for a set of initial markings
given by a condition C0 where the markings to be reached are specified by
another condition C.

Theorem 2. Let N = 〈P, T, F 〉 be a 1-safe P/T-net for all initial markings
satisfying a condition C0. Net N has an initial marking satisfying C0 such that
a marking satisfying a condition C is reachable in at most n steps iff ΠM(C0, 0)∪
ΠA(N, n) ∪ΠM(C, n) has a stable model.

The deadlock detection problem is now just a special case of a reachability
property, just add rules ΠM(C, n) = ΠD(N, n) eliminating stable models where
some transition is enabled. Program ΠD(N, n) includes for each transition t ∈ T

and its preset {p1, . . . , pl}, a rule

← p1(n), . . . , pl(n) . (7)

For our running example, the rules ΠD(N, n) are

← p3(n) ← p1(n), p2(n) ← p2(n) ← p4(n) .



3.2 Bounded LTL model checking

Our strategy for finding counterexamples for LTL formula ϕ (i.e., executions
satisfying ¬ϕ) is exactly the same as in [1]. There it is shown to be an approx-
imation of the unbounded version which becomes equivalent to the unbounded
case if the bound used is sufficiently increased. We (as they do) require that all
reachable states of the system have a successor (i.e., there are no deadlocks). In
this case the reachability of a marking satisfying a condition C is equivalent to
finding a counterexample for an LTL formula of the form 2¬C.

We look for two different kinds of counterexamples. On the left in Fig. 3 is
a loop counterexample, and on the right is a counterexample without loop. Loop
counterexamples specify an infinite execution themselves, while counterexamples
without a loop specify a prefix of an execution, which can be always extended
to an infinite execution (by the deadlock freeness assumption). The arcs of the
figure denote the “next state” of each state. Notice in the loop counterexample
that if M(i−1) is equivalent to the last state Mn, the state Mi is the “next state”
of Mn. Our semantics is cautious in the case without loop, and extending the
execution into an infinite one in any way will yield a counterexample.2

M0 MnM1 . . .

il(i)

M0 M(i−1) Mn

il(i + 1)

M(i−1) ≡ Mn

el(i − 1) nl(i)

il(n)

Fig. 3. Two counterexample possibilities

An LTL formula is said to be in positive normal form when all negations
in the formula appear directly before an atomic proposition. A formula can be
put into positive normal form with the following equivalences (and their duals):
¬¬ϕ ≡ ϕ, ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2, and ¬(ϕ1 U ϕ2) ≡ ¬ϕ1 R¬ϕ2.

Given an LTL formula f in positive normal form (when the formula to be
model checked is ϕ, the formula f is equivalent to ¬ϕ with negations pushed in),
and a bound n ≥ 1 we construct a program ΠLTL(f, n) as follows.

– Guess which state is equivalent to the last. For all 0 ≤ i ≤ n− 1 add rule

{el(i)} ← . (8)

– Disallow guessing two or more. (Guessing none is allowed though.) Add rule

← 2{el(0), el(1), . . . , el(n− 1)} . (9)

2 Actually the counterexamples without loop are exactly the informative safety coun-
terexamples of [13].



Formula type Translation Formula type Translation

p, for p ∈ AP f(i)← p(i) ¬p, for p ∈ AP f(i)← not p(i)

f1 ∨ f2
f(i)← f1(i)
f(i)← f2(i)

f1 ∧ f2 f(i)← f1(i), f2(i)

f1 U f2

f(i)← f2(i)
f(i)← f1(i), f(i + 1)
f (n + 1)← nl(i), f(i)

f1 R f2

f(i)← f2(i), f1(i)
f(i)← f2(i), f(i + 1)
f (n + 1)← nl(i), f(i)
f(n + 1)← l, not cstate(f)
cstate(f)← il(i), not f2(i)

Fig. 4. Translation of an LTL formula f

– Check that the guess is correct. For all 0 ≤ i ≤ n− 1, p ∈ P include rules

← el(i), p(i), not p(n) ← el(i), p(n), not p(i) .

– Specify auxiliary loop related atoms. For all 0 ≤ i ≤ n− 1, include rules

l ← el(i) nl(i + 1)← el(i) il(i + 1)← el(i) il(i + 1)← il(i) .

See Fig. 3 for an example. The nl(i) atom is in a model for the “next state”
of the last state, while il(i) is in the model for all states in the loop.

– Require that if a loop exists, the last step contains a transition to disallow
looping by idling. Add the rule

← l, not t1(n− 1), . . . , not tk(n− 1) (10)

where {t1, . . . , tk} = T , i.e., the set of all transitions.
– Allow at most one visible transition in a step to eliminate steps which cannot

be interleaved to yield a counterexample. For all 0 ≤ i ≤ n− 1, add rule

← 2{t1(i), . . . , tk(i)} (11)

where {t1, . . . , tk} is the set of visible transitions, i.e., the transitions whose
firing changes the marking of a place p appearing in the formula f .

We recursively translate the formula f by first translating its subformulae, and
then f as follows. For all 0 ≤ i ≤ n, add the rules given by Fig. 4.3 Finally we
require that the top level formula f should hold in the initial marking

← not f(0) . (12)

With this program ΠLTL(f, n) we get our main main result.

Theorem 3. Let f be an LTL formula in positive normal form and N = 〈P, T, F 〉
be a 1-safe and deadlock free P/T-net for all initial markings satisfying a con-
dition C0. If ΠM(C0, 0) ∪ΠA(N, n) ∪ΠLTL(f, n) has a stable model, then there
is an execution of N from an initial marking satisfying C0 which satisfies f .
3 An equivalence explaining the release translation: f1 R f2 ≡ (2f2) ∨ (f2 U (f2 ∧ f1)).



The size of the program in Theorem 3 is linear in the size of the net and
formula, i.e., O((|P |+ |T |+ |F |+ |f |) · n). The semantics of LTL is defined over
interleaving executions. A novelty of the translation is that it allows concurrency
between invisible transitions.

Forcing interleaving semantics. We can create the interleaving semantics ver-
sions of bounded model checking problems by adding a set of rules ΠI(N, n). It
includes for each time step 0 ≤ i ≤ n− 1 a rule

← 2{t1(i), . . . , tm(i)} (13)

where {t1, . . . , tm} is the set of all transitions. These rules eliminate all stable
models having more than one transition firing in a step.

Corollary 1. Let ΠS(N, n) be a program solving a bounded model checking prob-
lem in the step semantics using any of the translations above. Then the program
ΠS(N, n) ∪ΠI(N, n) solves the same problem in the interleaving semantics.

3.3 Relation to previous work

In previous work on bounded model checking little attention has been given
to the knowledge representation problem of encoding succinctly the unfolded
behavior and the temporal property. We address this problem and develop an
encoding of the behavior of an asynchronous system which is linear in the size of
the system description (Petri net) and in the number of steps. Moreover, it allows
the exploitation of the inherent concurrency of the system in model checking.

Our approach could be used as a basis for a similar treatment using propo-
sitional logic and satisfiability (SAT) checkers. For simple temporal properties
such as reachability and deadlock this is fairly straightforward to develop us-
ing the ideas of Clark’s completion and Fages’ theorem [7]. This is because our
encoding produces acyclic programs except for the choice rules which need a
special treatment. To achieve a compact SAT encoding is more challenging be-
cause propositional logic lacks cardinality constraint rules (2). Their mapping
to propositional formulae can result to a quadratic blow-up which is sometimes
significant as conflicts may involve even hundreds of transitions.

For general LTL model checking a succinct SAT encoding is challenging. The
compactness of our encoding is due to the fact that stable model semantics sup-
ports the smallest fixed point evaluation of recursive rules which is exploited in
translating the U and R operators. Because of these recursive rules a similar com-
pact SAT encoding is not immediate. In [1] a SAT encoding is given. However,
it is more complicated than our linear size encoding but remains polynomial.

4 Experiments

We have implemented the deadlock detection and LTL model checking transla-
tions presented in the previous section. The translation is given a fixed initial
marking M0, which allows the following optimizations to be implemented:



Problem |P | |T | St. n St. s Int. n Int. s States
DARTES(1) 331 257 32 0.5 32 0.5 >1500000
DP(6) 36 24 1 0.0 6 0.1 728
DP(8) 48 32 1 0.0 8 0.3 6560
DP(10) 60 40 1 0.0 10 3.3 59048
DP(12) 72 48 1 0.0 12 617.4 531440
ELEV(1) 63 99 4 0.0 9 0.4 163
ELEV(2) 146 299 6 0.5 12 3.9 1092
ELEV(3) 327 783 8 5.6 15 139.0 7276
ELEV(4) 736 1939 10 157.2 >13 1215.2 48217
HART(25) 127 77 1 0.0 >5 1.0 >1000000
HART(50) 252 152 1 0.0 >5 5.7 >1000000
HART(75) 377 227 1 0.0 >5 15.5 >1000000
HART(100) 502 302 1 0.0 >5 35.9 >1000000
KEY(2) 94 92 >25 1937.9 >26 56.1 536
MMGT(3) 122 172 7 11.1 10 87.2 7702
MMGT(4) 158 232 8 687.3 >11 1874.1 66308
Q(1) 163 194 9 0.1 >17 2733.7 123596

Fig. 5. Experiments

– Place and transition atoms are added only from the time step they can first
appear on. Only atoms for places p(0) in the initial marking are created
for time i = 0. Then for each 0 ≤ i ≤ n − 1: (i) Add transition atoms for
all transitions t(i) such that all the place atoms in the preset of t(i) exist.
(ii) Add place atoms for all places p(i + 1) such that either the place atom
p(i) exists or some transition atom in the preset of p(i + 1) exists.

– Duplicate rules are removed. Duplicates can appear in (5),(7).

As benchmarks we use a set of deadlock detection benchmarks collected by
Corbett [4], converted to 1-safe P/T-nets by Melzer and Römer [14]. The models
were picked from those which have a deadlock. For each model and both seman-
tics we incremented the used bound until a deadlock was found. We report the
time for Smodels to find the first stable model using this bound. In some cases
a model could not be found within a reasonable time in which case we report
the time used to prove that there is no deadlock within the reported bound. Un-
fortunately, we did not have a large collection of LTL model checking examples,
and benchmarking the LTL translation is left for further work. The experimental
results can be found in Fig. 5. The columns are:

– Problem: The problem name with the size of the instance in parenthesis.
– |P |: Number of places in the original net.
– |T |: Number of transitions in the original net.
– St. n: The smallest integer n such that a deadlock could be found using the

step semantics / in case of > n the largest integer n for which we could prove
that there is no deadlock within that bound using the step semantics.

– St. s: The time in seconds to find the first stable model / to prove that there
is no stable model. (See St. n above.)

– Int. n and Int. s: defined as St. n and St. s but for the interleaving semantics.
– States: Number of reachable states of the P/T-net (if known).4

4 These differ from the ones reported in [11] where unfortunately there are some errors.



The times reported are the average of 5 runs of the time for smodels 2.26

as reported by the /usr/bin/time command on a 450Mhz Pentium III PC
running Linux. The used tools, nets, and logic programs are available from:
<http://www.tcs.hut.fi/~kepa/experiments/LPNMR2001/>.

In many of the experiments the step semantics version found a deadlock with
a smaller bound than the interleaving one. Also, when the bound needed to find
the deadlock was fairly small, the bounded model checker was performing well.
In the examples ELEV(4), HART(x) and Q(1) we were able to find the coun-
terexample only when using step semantics. In the KEY(2) example we were
not able to find a counterexample with either semantics, even though the prob-
lem is known to have only a small number of reachable states. In contrast, the
DARTES(1) problem has a large state-space, and despite of it a counterexample
of length 32 was obtained. Overall, the results are promising, in particular, for
small bounds and the step semantics.

5 Conclusions

We introduce bounded model checking of asynchronous concurrent systems mod-
eled by 1-safe P/T-nets as an interesting application area for answer set program-
ming. We present mappings from bounded reachability, deadlock detection and
LTL model checking problems of 1-safe P/T-nets to stable model computation.
Our approach is capable of doing model checking for a set of initial markings at
once. This is usually difficult to achieve in current enumerative model checkers
and often leads to state space explosion. We handle asynchronous systems using
a step semantics whereas previous work on bounded model checking only uses
the interleaving semantics [1]. Furthermore, our encoding is more compact than
the previous approach employing propositional satisfiability [1]. This is because
our rule based approach allows to represent executions of the system, e.g. frame
axioms, succinctly and supports directly the recursive fixed point computation
needed to evaluate LTL formulae.

The first experimental results indicate that stable model computation is quite
a competitive approach to searching for short executions of the system leading
to deadlock and worth further study. More experimental work and comparisons
are needed to determine the strength of the approach. In particular, for compar-
ing with SAT checking techniques, it would be interesting to develop a similar
treatment of asynchronous systems using a SAT encoding and compare it to the
logic program based approach.

Relating the net unfolding method (see [9, 14] and further references there)
to bounded model checking would be interesting. There are also alternative se-
mantics to the two presented in this work [10], applying them to bounded LTL
model checking is left for further work.
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