Reflection Cryptanalysis of PRINCE-like Ciphers

Hadi Soleimany1, Céline Blondeau1, Xiaoli Yu2,3, Wenling Wu2, Kaisa Nyberg1, Huiling Zhang2, Lei Zhang2, Yanfeng Wang2

1Department of Information and Computer Science, Aalto University School of Science, Finland

2Institute of Software, Chinese Academy of Sciences, P. R. China

3Graduate University of Chinese Academy of Sciences, P. R. China

FSE 2013
Outline

1. Description of PRINCE-like Ciphers
2. Distinguishers
3. Key Recovery
4. Various Classes of α-reflection
5. Conclusions
1 Description of PRINCE-like Ciphers

2 Distinguishers

3 Key Recovery

4 Various Classes of α-reflection

5 Conclusions
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

$$\begin{align*}
PRINCE_{core} & \\
\downarrow k_0 & \quad \downarrow k_0' \\
\end{align*}$$
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

\[k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n - 1)) \]
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

![Diagram of PRINCEcore](image)

- $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n - 1))$
- With a property called α-reflection:

$$D(k_0 || k'_0 || k_1)(()) = E(k'_0 || k_0 || k_1 \oplus \alpha)(())$$
Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits \(k = k_0 || k_1 \).

\[k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n - 1)) \]

- With a property called \(\alpha \)-reflection:

\[D(k_0 || k'_0 || k_1)() = E(k'_0 || k_0 || k_1 \oplus \alpha)() \]

- Independently of the value of \(\alpha \), the designers showed that PRINCE is secure against known attacks.
Description of PRINCE-like Cipher

The 2 midmost rounds
Description of PRINCE-like Cipher

Total 12 rounds
Description of PRINCE-like Cipher

The first rounds
Description of PRINCE-like Cipher

\[\begin{align*}
R_{C_1} & \quad R_{C_2} & \quad R_{C_3} & \quad R_{C_4} & \quad R_{C_5} & \quad R_{C_6} & \quad R_{C_7} & \quad R_{C_8} & \quad R_{C_9} & \quad R_{C_{10}} & \quad R_{C_{11}} & \quad R_{C_{12}} \\
\Phi_1 & \quad \Phi_2 & \quad \Phi_3 & \quad \Phi_4 & \quad \Phi_5 & \quad \Phi_6 & \quad \Phi_7 & \quad \Phi_8 & \quad \Phi_9 & \quad \Phi_{10} & \quad \Phi_{11} & \quad \Phi_{12} \\
S & \quad M' & \quad S^{-1} & \quad S & \quad M & \quad M^{-1}
\end{align*} \]

The last rounds
Description of PRINCE-like Cipher

Related constants:

\[RC_{2R-r+1} = RC_r \oplus \alpha, \text{ for all } r = 1, \ldots, 2R \]
Description of PRINCE-like Cipher

The whitening key
Description of PRINCE

- PRINCE-like cipher with \(n = 64 \).
- Constant is defined as \(\alpha = \text{0xc0ac29b7c97c50dd} \).
- The S-layer is a non-linear layer where each nibble is processed by the same Sbox.
Description of PRINCE

- M' is an involutory 64×64 block diagonal matrix ($\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0$).
\(M' \) is an involutory \(64 \times 64 \) block diagonal matrix (\(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0 \)).

\[
\hat{M}_0 = \begin{pmatrix}
M_0 & M_1 & M_2 & M_3 \\
M_1 & M_2 & M_3 & M_0 \\
M_2 & M_3 & M_0 & M_1 \\
M_3 & M_0 & M_1 & M_2
\end{pmatrix}, \quad \hat{M}_1 = \begin{pmatrix}
M_1 & M_2 & M_3 & M_0 \\
M_2 & M_3 & M_0 & M_1 \\
M_3 & M_0 & M_1 & M_2 \\
M_0 & M_1 & M_2 & M_3
\end{pmatrix}.
\]
Description of PRINCE

- M' is an involutory 64×64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0)$.

\[
\hat{M}_0 = \begin{pmatrix}
M_0 & M_1 & M_2 & M_3 \\
M_1 & M_2 & M_3 & M_0 \\
M_2 & M_3 & M_0 & M_1 \\
M_3 & M_0 & M_1 & M_2 \\
\end{pmatrix}, \quad \hat{M}_1 = \begin{pmatrix}
M_1 & M_2 & M_3 & M_0 \\
M_2 & M_3 & M_0 & M_1 \\
M_3 & M_0 & M_1 & M_2 \\
M_0 & M_1 & M_2 & M_3 \\
\end{pmatrix}.
\]

- The second linear matrix M for PRINCE is obtained by composition of M' and a permutation SR of nibbles by setting $M = SR \circ M'$.

1. Description of PRINCE-like Ciphers

2. Distinguishers

3. Key Recovery

4. Various Classes of α-reflection

5. Conclusions
Previous Works: Reflection Attack

- It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).
Previous Works: Reflection Attack

- It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).
Previous Works: Reflection Attack

- It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).
Previous Works: Reflection Attack

- It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).

\[\Delta = 0 \]
Previous Works: Reflection Attack

- It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).

\[
\Delta = 0
\]

This work

Using **probabilistic** reflection property instead of deterministic approach.
Fixed Points

Definition

Let \(f : A \rightarrow A \) be a function on a set \(A \). A point \(x \in A \) is called a fixed point of the function \(f \) if and only if \(f(x) = x \).
Fixed Points

Definition

Let \(f : A \rightarrow A \) be a function on a set \(A \). A point \(x \in A \) is called a fixed point of the function \(f \) if and only if \(f(x) = x \).

Lemma

Let \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) be a linear involution. Then the number of fixed points of \(f \) is greater than or equal to \(2^{n/2} \).
Fixed Points

Definition
Let \(f : A \rightarrow A \) be a function on a set \(A \). A point \(x \in A \) is called a fixed point of the function \(f \) if and only if \(f(x) = x \).

Lemma
Let \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) be a linear involution. Then the number of fixed points of \(f \) is greater than or equal to \(2^{n/2} \).

Idea
Take advantage of \(\alpha \)-reflection property and the fact that always fixed points exist in midmost rounds of PRINCE-like ciphers.
Characteristic \mathcal{I}_1

\[
Pr[M'(x) = x] = \frac{|F_{M'}|}{2^n}
\]
Characteristic \mathcal{I}_1

\[Pr[M'(x) = x] \]

\[\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}. \]
Characteristic \mathcal{I}_1

\[Pr[M'(x) = x] \]

\[\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}. \]
Characteristic \mathcal{I}_2

\[
P_{\mathcal{I}_2} = 2^{-n} \# \{ x \in \mathbb{F}_2^n | S^{-1}(M'(S(x))) \oplus x = \alpha \}.
\]
Characteristic \mathcal{I}_2

\[\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \{ x \in \mathbb{F}^n_2 \mid S^{-1}(M'(S(x))) \oplus x = \alpha \} . \]
Characteristic \mathcal{I}_2

\[\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \{ x \in \mathbb{F}_2^n \mid S^{-1}(M'(S(x))) \oplus x = \alpha \} . \]
Characteristic \mathcal{I}_2

If $P_{\mathcal{I}_2} = 0$ then we have impossible differential.
<table>
<thead>
<tr>
<th></th>
<th>Description of PRINCE-like Ciphers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Distinguishers</td>
</tr>
<tr>
<td>3</td>
<td>Key Recovery</td>
</tr>
<tr>
<td>4</td>
<td>Various Classes of α-reflection</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Key Recovery

![Diagram of key recovery process]

The diagram illustrates the key recovery process in PRINCE-like ciphers. The input P is modified by k_0 and RC_1 to produce S. The modified S is then transformed by M and followed by $R_{2R-1} \circ \cdots \circ R_2$. This is further transformed by M^{-1} and S^{-1}. The final output C is modified by $RC_1 \oplus \alpha$ and k'. The key recovery process involves finding k_0 and k_1.
Key Recovery

\[
P \xrightarrow{k_0} S \xrightarrow{RC_1} M \xrightarrow{R_{2R-1} \circ \cdots \circ R_2} M^{-1} \xrightarrow{S^{-1}} R_{C_1} \oplus \alpha \xrightarrow{k'_0} C
\]
Key Recovery

\[
M^{-1}(\Delta) = \Delta^*
\]

\[
\Delta
\]

\[
P \xrightarrow{k_0} S \xrightarrow{k_1} M \xrightarrow{\mathcal{R}_{2R-1} \circ \cdots \circ \mathcal{R}_2} M^{-1} \xrightarrow{S^{-1}} RC_1 \oplus \alpha \xrightarrow{k_0'} C
\]
Key Recovery Nibble by Nibble

\[
\Delta^*(j) = S(P(j) \oplus k_0(j) \oplus k_1(j) \oplus RC_1(j)) \\
\oplus S(C(j) \oplus k'_0(j) \oplus k_1(j) \oplus RC_{2R}(j))
\]
Key Recovery for Passive Nibble

\[P(j) \oplus k_0(j) \oplus C(j) \oplus k'_0(j) \oplus \alpha(j) = 0, \]

- The difference after passing through the S-boxes is still zero.
- The value of \(k_1(j) \) need not be known.
1. **Description of PRINCE-like Ciphers**

2. **Distinguishers**

3. **Key Recovery**

4. **Various Classes of α-reflection**

5. **Conclusions**
To maximize P_C we can either use

- Cancellation idea.
- Branch and Bound algorithm.
Cancellation Idea

\[
\begin{align*}
R_{C, R-1, R+1}^{R, R+1} & \quad (R_{C, R-1, R+1}^{R, R+1}) \\
k_1 & \quad \alpha
\end{align*}
\]
Cancellation Idea

With $P = \Pr_X [S(X) \oplus S(X \oplus \alpha) = M^{-1}(\alpha)]$
Cancellation Idea

\[R + \circ \cdot \circ \]

\[k_1 \oplus R_{C_{R-v}} \]

\[k_1 \oplus R_{C_{R-v-1}} \]

\[M^{-1} \rightarrow S^{-1} \rightarrow M^{-1} \rightarrow S^{-1} \rightarrow M^{-1} \rightarrow S^{-1} \]

\[\alpha \]

\[\alpha \]

\[0 \]

\[k_1 \oplus R_{C_{R+v+1}} \]

\[k_1 \oplus R_{C_{R+v+2}} \]
Cancellation Idea
Cancellation Idea

With $\mathcal{P} = \Pr_X [S(X) \oplus S(X \oplus \alpha) = M^{-1}(\alpha)]$ there is an iterative characteristic over four rounds of a PRINCE-like cipher.
Best α with Cancellation Idea on 12 rounds

<table>
<thead>
<tr>
<th>α</th>
<th>Δ^*</th>
<th>$w(\Delta^*)$</th>
<th>P_{C4}</th>
<th>Data Compl.</th>
<th>Time Compl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x800400800000000</td>
<td>0x8800400040000000</td>
<td>4</td>
<td>2^{-22}</td>
<td>57.95</td>
<td>71.37</td>
</tr>
<tr>
<td>0x8040000040800000</td>
<td>0x8080000040400000</td>
<td>4</td>
<td>2^{-22}</td>
<td>57.95</td>
<td>71.37</td>
</tr>
<tr>
<td>0x0000408000008040</td>
<td>0x0000404000008080</td>
<td>4</td>
<td>2^{-22}</td>
<td>57.95</td>
<td>71.37</td>
</tr>
<tr>
<td>0x0000000048008004</td>
<td>0x0000000044008008</td>
<td>4</td>
<td>2^{-22}</td>
<td>57.95</td>
<td>71.37</td>
</tr>
<tr>
<td>0x0000440040040000</td>
<td>0x0000440040040000</td>
<td>4</td>
<td>2^{-14}</td>
<td>60.27</td>
<td>73.69</td>
</tr>
<tr>
<td>0x800800000000800</td>
<td>0x800800000000800</td>
<td>4</td>
<td>2^{-14}</td>
<td>60.27</td>
<td>73.69</td>
</tr>
</tbody>
</table>
Examples of α with Branch and Bound Algorithm on 12 Rounds

<table>
<thead>
<tr>
<th>α</th>
<th>Δ^*</th>
<th>$w(\Delta^*)$</th>
<th>P_{C4}</th>
<th>Data Compl.</th>
<th>Time Compl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0108088088010018</td>
<td>0x0000001008000495</td>
<td>5</td>
<td>2^{-26}</td>
<td>2^{62.78}</td>
<td>2^{80.2}</td>
</tr>
<tr>
<td>0x0088188080018010</td>
<td>0x00000100c09d0008</td>
<td>5</td>
<td>2^{-26}</td>
<td>2^{62.78}</td>
<td>2^{80.2}</td>
</tr>
<tr>
<td>0x0108088088010018</td>
<td>0x000000100800d8cc</td>
<td>6</td>
<td>2^{-26}</td>
<td>2^{62.83}</td>
<td>2^{84.25}</td>
</tr>
<tr>
<td>0x0001111011010011</td>
<td>0x1101100110000100</td>
<td>7</td>
<td>2^{-28}</td>
<td>2^{63.45}$(a = 32)$</td>
<td>2^{88.87}</td>
</tr>
</tbody>
</table>
Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.
Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?
Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

$$
\alpha = \begin{bmatrix}
0x7 & 0x1 & 0xc & 0xb \\
0x9 & 0x5 & 0x9 & 0x3 \\
0x9 & 0xa & 0x5 & 0x9 \\
0x3 & 0x6 & 0x8 & 0xd \\
\end{bmatrix}
$$
Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

\[
\alpha = \begin{bmatrix}
0x7 & 0x1 & 0xc & 0xb \\
0x9 & 0x5 & 0x9 & 0x3 \\
0x9 & 0xa & 0x5 & 0x9 \\
0x3 & 0x6 & 0x8 & 0xd \\
\end{bmatrix}, \quad M^{-1}(\alpha) = \begin{bmatrix}
0x7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0xb \\
0 & 0 & 0xd & 0 \\
0 & 0x9 & 0 & 0 \\
\end{bmatrix}.
\]
Assume α is such that $M^{-1}(\alpha) = \begin{bmatrix} * & 0 & 0 & 0 \\ 0 & 0 & 0 & * \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \end{bmatrix}$ where $*$ can be any arbitrary value. For six rounds $R_{R-2} \circ \cdots \circ R_{R+3}$, the following truncated characteristic:

$$Y_{R+3}^O \oplus X_{R-2}^I = \begin{bmatrix} * & 0 & 0 & 0 \\ * & 0 & 0 & * \\ * & 0 & * & 0 \\ * & * & 0 & 0 \end{bmatrix} \oplus \alpha,$$

holds with probability $P_{F_{M'}} = \frac{|F_{M'}|}{2^n} = 2^{-32}$.
Truncated Attack

Similar characteristics can be obtained for \(\alpha \) such that:

\[
M^{-1}(\alpha) = \begin{bmatrix}
0 & 0 & 0 \\
\ast & 0 & 0 \\
0 & 0 & \ast \\
0 & \ast & 0
\end{bmatrix}
\quad \text{or} \quad
M^{-1}(\alpha) = \begin{bmatrix}
0 & 0 & \ast \\
0 & 0 & 0 \\
\ast & 0 & 0 \\
0 & 0 & \ast
\end{bmatrix}
\quad \text{or}
\]

\[
M^{-1}(\alpha) = \begin{bmatrix}
0 & 0 & 0 & \ast \\
0 & 0 & \ast & 0 \\
\ast & 0 & 0 & 0
\end{bmatrix}
\]

- This truncated characteristic over six rounds exists for
 \(4 \times (2^{16} - 1) \approx 2^{18} \) values of \(\alpha \),
- Key recovery attack on 8 rounds can be done by data complexity \(2^{35.8} \) and time complexity of \(2^{96.8} \) memory accesses in addition of \(2^{88} \) full encryption.
1 Description of PRINCE-like Ciphers

2 Distinguishers

3 Key Recovery

4 Various Classes of α-reflection

5 Conclusions
Conclusions

- We introduced new generic distinguishers on PRINCE-like ciphers.
- The security of PRINCE-like ciphers depends strongly on the choice of the value of α.
- We identified special classes of α for which 4, 6, 8 or 10 rounds can be distinguished from random.
- The weakest class allows an efficient key-recovery attack on 12 rounds of the cipher.
- Our best attack on PRINCE with original α breaks a reduced 6-round version.
- New design criteria for the selection of the value of α for PRINCE-like ciphers are obtained.
Thanks for your attention!