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ABSTRACT

A fundamental problem in machine learning research, as well as in many other
disciplines, is finding a suitable representation of multivariate data, i.e. random
vectors. For reasons of computational and conceptual simplicity, the representa-
tion is often sought as a linear transformation of the original data. In other words,
each component of the representation is a linear combination of the original vari-
ables. Well-known linear transformation methods include principal component
analysis (PCA), factor analysis, and projection pursuit. In this thesis, we con-
sider two popular and widely used techniques: independent component analysis
(ICA) and nonnegative matrix factorization (NMF).

ICA is a statistical method in which the goal is to find a linear representation
of nongaussian data so that the components are statistically independent, or
as independent as possible. Such a representation seems to capture the essen-
tial structure of the data in many applications, including feature extraction and
signal separation. Starting from ICA, several methods of estimating the latent
structure in different problem settings are derived and presented in this thesis.
FastICA as one of most efficient and popular ICA algorithms has been reviewed
and discussed. Its local and global convergence and statistical behavior have been
further studied. A nonnegative FastICA algorithm is also given in this thesis.

Nonnegative matrix factorization is a recently developed technique for finding
parts-based, linear representations of non-negative data. It is a method for di-
mensionality reduction that respects the nonnegativity of the input data while
constructing a low-dimensional approximation. The non-negativity constraints
make the representation purely additive (allowing no subtractions), in contrast to
many other linear representations such as principal component analysis and inde-
pendent component analysis. A literature survey of Nonnegative matrix factor-
ization is given in this thesis, and a novel method called Projective Nonnegative
matrix factorization (P-NMF) and its applications are provided.
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Chapter 1

Introduction

1.1 Motivation and overview

A suitable representation of data is central to applications in fields such as ma-
chine learning, statistics, and signal processing. The manner in which data are
represented determines the course of subsequent processing and analysis. A useful
representation has two primary desiderata. First, an amenability to interpreta-
tion and second, computational feasibility. Central to obtaining useful represen-
tations is the process of dimensionality reduction, wherein one constructs a lower
complexity representation of the input data. The reduced dimensionality offers
advantages such as denoising, computational efficiency, greater interpretability
and easier visualization, among others.

Linear algebra has become a key tool in almost all modern techniques for data
analysis. Linear models constitute a special class of general models because
of their tractable analytical properties. In this thesis, we discuss the problem
of linear source separation. In linear source separation, the model consists of
two parts: a set of sources and a linear mapping that links the sources to the
observations. This means that one wants to fit a general linear model to the data
without knowing almost anything of the sources nor of the linear mapping. This
process is usually called blind source separation (BSS). Independent component
analysis (ICA) is one of the most powerful techniques to solve the BSS problem.
With the assumption of the independence of the sources which is true in many
cases of the real world, ICA is able to separate the sources that are linearly mixed
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in several sensors.

In practice, most data takes the form of matrices. The need to process and
conceptualize large sparse matrices effectively and efficiently (typically via low-
rank approximations) is essential for many data mining applications, including
document and image analysis, recommendation systems, and gene expression
analysis. Naturally, many data are nonnegative. While performing dimensional-
ity reduction for inherently nonnegative data such as color intensities, chemical
concentrations, frequency counts etc., it makes sense to respect the nonnegativity
to avoid physically absurd and uninterpretable results. This viewpoint has both
computational as well as philosophical underpinnings. These lead to the problem
of nonnegative matrix approximation: Given a set of nonnegative inputs find a
small set of nonnegative representative vectors whose nonnegative combinations
approximate the input data.

1.2 Contributions of the thesis

The main contributions of this thesis are:

e With the nonnegative constraint to the sources, a nonnegative FastICA
algorithm was developed. The convergence of the algorithm was analysed.

e The global convergence of FastICA was studied and the statistical behaviour
of FastICA using inter-channel interference was analysed.

e A projective nonnegative matrix factorization was proposed. A family of
P-NMF algorithms based on different measures were developed.

e The orthogonality and sparseness of P-NMF were studied. Compared to the
NMF method, P-NMF gives more orthogonal columns in the base matrix.
Therefore, it is able to learn more localized features.

1.3 Publications of the thesis

This thesis consists of an introduction part and seven publications. Chapter 2
introduces independent component analysis, discusses its properties and the basic
results. Chapter 3 discusses the convergence of FastICA algorithms, both local
and global. Chapter 4 reviews the nonnegative ICA, and a nonnegative FastICA
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algorithm is presented. Chapter 5 presents the nonnegative matrix factorization
(NMF), summarizes the NMF algorithms and its applications. Chapter 6 briefly
introduces the projective NMF algorithms.

Publication I. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-
negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto,
Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent
Component Analysis and Blind Signal Separation (ICA 2004), Springer Lecture
Notes in Computer Science 3195, pp. 1-8, Granada, Spain, 2004.

In this work, a nonnegative FastICA algorithm was developed. It used the idea of
the FastICA algorithm with an additional constraint - the sources were assumed
to be nonnegative. The algorithm is ended in finite steps. The convergence of the
algorithm has also been ensured. The current author implemented the algorithm
and performed the experiments.

Publication II. Scott C. Douglas, Zhijian Yuan and Erkki Oja. Average Conver-
gence Behavior of the FastICA Algorithm for Blind Source Separation. In Rosca,
J., Erdogmus, D., Prncipe, J.C. and Haykin, S. (Eds.), Proceedings of the Sizth
International Symposium on Independent Component Analysis and Blind Signal
Separation (ICA 2006), Springer Lecture Notes in Computer Science 3889, pp.
790-798, Charleston, SC, USA, 2006.

In this work, the convergence behaviour of the FastICA algorithm has been in-
vestigated using a statistical concept called inter-channel interference (ICI). The
analysis of ICI confirms the cubic convergence speed of FastICA algorithm with
kurtosis based cost function. The average behavior of ICI obeys a ”1/3” rule.
The current author analysed the general case and proved that for any amount of
sources, the 71/3” rule is true.

Publication ITI. Erkki Oja and Zhijian Yuan. The FastICA Algorithm revisited:
convergence analysis. IEEFE Transactions on Neural Networks. pp.1370-1381, vol.
17:6, 2006.

In this work, the local convergence of FastICA algorithms with symmetrical or-
thogonalization is considered. FastICA algorithms have quadratic convergence
speed with the general cost function, and cubic with kurtosis cost function. These
generalize the behavior of the one-unit algorithms. The global convergence has
also been investigated with two sources and two mixtures. The current author
analysed the global convergence with general cost function.

Publication IV. Zhijian Yuan and Erkki Oja. Projective nonnegative matrix
factorization for image compression and feature extraction. In: Kalviainen, H.,
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Parkkinen, J. and Kaarna, A. (Eds.), Proceedings of the 14th Scandinavian Con-
ference on Image Analysis, Springer Lecture Notes in Computer Science 3540, pp.
333-342, Joensuu, Finland, 2005.

In this work, two Projective nonnegative matrix factorization algorithms based
on Fuclidean distance and Kullback-Leibler divergence have been developed. The
experiment shows that these methods give better localization and sparsity com-
pared to nonnegative matrix factorization methods. The current author imple-
mented the algorithms and performed the experiments.

Publication V. Zhirong Yang, Zhijian Yuan and Jorma Laaksonen. Projective
Nonnegative Matrix Factorization with Applications to Facial Image Processing.
International Journal on Pattern Recognition & Artificial Intelligence, Volume
21, Number 8, pp. 1353-1362, 2007.

In this work, the Projective nonnegative matrix factorization algorithms were
applied to facial images for clustering. The experimental results reveal better
image classification and reconstruction compared to traditional methods. The
current author was responsible for the algorithms.

Publication VI. Zhijian Yuan and Erkki Oja. A family of projective nonnega-
tive matrix factorization algorithms. In: Al-mualla, M. (Ed.), Proceedings of the
9th International Symposium on Signal Processing and its Applications (ISSPA),
Sharjah, United Arab Emirates, pp. 1-4, 2007.

In this work, several iterative positive projection algorithms were suggested, one
based on minimizing Euclidean distance and the others on minimizing the diver-
gence of the original data matrix and its non-negative approximation. Several
versions of divergence such as the Kullback-Leibler, Csiszar, and Amari diver-
gence are considered, as well as the Hellinger and Pearson distances. Experi-
mental results show that versions of P-NMF derive bases which are somewhat
better suitable for a localized and sparse representation than NMF, as well as
being more orthogonal. The current author implemented the algorithms and per-
formed the experiments.

Publication VII. Zhijian Yuan, Zhirong Yang and Erkki Oja. Projective non-
negative matrix factorization: Sparseness, Orthogonality, and Clustering. Sub-
mitted to a journal.

In this work, the sparseness, orthogonality, and clustering of the projective non-
negative matrix factorization algorithms were discussed. The algorithm is applied
to document clustering and MRI data set. The current author was responsible
for the algorithms and experiments.
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Chapter 2

Independent component
analysis

2.1 Linear ICA model

Independent Component Analysis (ICA) is a statistical and computational tech-
nique for revealing hidden factors that underlie sets of random variables, mea-
surements, or signals [9, 27, 37, 75]. It has a number of applications in many
fields such as speech enhancement systems, telecommunications, medical signal
processing and data mining [5, 27, 45, 82, 83, 98, 99]. The general (nonlinear)
ICA model can be expressed as

x = (s) (2.1)
where x = (z1, 29, - ,a:m)T is the vector of observed random variables, often
called the mixtures of unknown signals, s = (s1,82, -+ ,8,)7 is the vector of

latent variables called independent components (ICs) or source signals, and f is
a general unknown function. A special case of (2.1) is the linear ICA model, that

is, the function f is linear
x = As (2.2)

where the m x n matrix A is an unknown constant matrix called the mixing ma-
trix. The task is to identify the mixing matrix A, and separate the source signals
s while only knowing a sample of observed vectors x. To solve this problem, there
should be some assumptions/restrictions in linear ICA model [75]:
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1. Independence: the source variables are assumed to be statistically indepen-
dent. Independence is the principle assumption in ICA. Two variables x;
and zo are said to be independent if and only if the joint probability density
function (pdf) is the product of two marginal probability density functions

Pavay (T1582) = Pay (£1)Pa, (22)- (2.3)

2. Nongaussianity: the independent components must have at most one Gaus-
sian distribution. Gaussian sources cannot be separated by the indepen-
dence assumption since the higher-order cumulants are zero for Gaussian
distributions. With more than one Gaussian variables, we cannot achieve
the original independent components. All we can do is to whiten the data.

3. For simplicity, we assume that the unknown mixing matrix is square and
invertable. Thus, the number of the independent sources is equal to the
number of mixtures. This assumption can be relaxed. If the number of
mixtures is smaller than the number of the independent sources, the linear
ICA model (2.2) becomes overcomplete, see [74, 75, 93, 160].

Under the above assumptions, it is easy to see that there are still some indeter-
minancies:

1. The order and signs of the independent sources cannot be determined.

2. The variances (energies) of the independent sources cannot be determined.

2.2 Data preprocessing for ICA

It is often beneficial to reduce the dimensionality of the data before performing
ICA. It might well be that there are only a few latent components in the high-
dimensional observed data, and the structure of the data can be presented in a
compressed format. Estimating ICA in the original, high-dimensional space may
lead to poor results. For example, several of the original dimensions may contain
only noise. The dimension reduction should only remove the redundant dimen-
sions and the structure of the data is not flattened as the data are projected to a
lower dimensional space. In this section one of the most popular dimensionality
reduction methods is discussed: principal component analysis.

In addition to dimensionality reduction, another often used preprocessing step
in ICA is to make the observed signals zero mean and decorrelate them. The
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decorrelation removes the second-order dependencies between the observed sig-
nals. It is often accomplished by principal component analysis which will be
briefly described next.

2.2.1 Principal component analysis (PCA)

Principal Components Analysis (PCA) is a useful statistical technique that has
found application in many fields - from neuroscience to computer graphics - be-
cause it is a simple, non-parametric method of extracting relevant information
from high-dimensional data.

PCA involves a mathematical procedure that transforms a number of (possi-
bly) correlated variables into a (smaller) number of uncorrelated variables called
principal components.

Performing PCA is the equivalent of performing Singular Value Decomposition
(SVD) on the covariance matrix of the data. For an observed zero mean vector x
(for nonzero mean variable, centered by removing its mean), PCA starts to work
with the covariance matrix E{xx”}. The eigenvectors of this covariance matrix
form the principal components of the data set. The eigenvector associated with
the largest eigenvalue has the same direction as the first principal component.
The eigenvector associated with the second largest eigenvalue determines the
direction of the second principal component, and so on. Using PCA, it is easy
to reduce the high dimensional data to a lower dimension space without loss of
too much information: for a given reduced dimension 7, choosing the principal
components corresponding to the first r highest eigenvalues.

PCA is also called the (discrete) Karhunen-Loéve transform [77] (or KLT, named
after Kari Karhunen and Michel Loéve) or the Hotelling transform. PCA has
the distinction of being the optimal linear transformation for keeping the sub-
space that has largest variance. This advantage, however, comes at the price
of greater computational requirement if compared, for example, to the discrete
cosine transform. Unlike other linear transforms, PCA does not have a fixed set
of basis vectors. Its basis vectors depend only on the data set.
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2.3 Measuring the independence

2.3.1 Uncorrelation and whitening

Two variables z1, zo are uncorrelated if their covariance is zero:
cov(xy, ) = E{z120} — E{a1 }E{x2} = 0. (2.4)

It is easy to see that independent variables are uncorrelated by the definition
of independence. However, uncorrelatedness does not imply independence. For
example, assume that (y1,y2) are discrete valued and follow such a distribution
that the pair are with probability 1/4 equal to any of the following values: (0, 1),
(0,-1), (1,0), (—=1,0). Then y; and yy are uncorrelated, as can be simply calcu-
lated. On the other hand,

E{yiys} =0 # 1/4 = E{y7 }E{y3}. (2.5)

If y; and yo are independent, then y? and %3 will also be independent, which is not
true because of the above equation. Therefore the variables y; and y, cannot be
independent. Since independence implies uncorrelatedness, many ICA methods
constrain the estimation procedure so that it always gives uncorrelated estimates
of the independent components. This reduces the number of free parameters, and
simplifies the problem. PCA as an orthogonal linear transformation transforms
the variables into the uncorrelated components.

A zero mean random vector z is said to be white if its elements are uncorrelated
and have unit variance. That is, for the random vector z, its covariance matrix
(as well as correlation matrix) is equal to identity matrix:

E{zz"} =1 (2.6)

The way to make a random vector uncorrelated is called whitening or sphering.
For the random vector y, the whitening transform T which makes z = Ty white
is often given by )

T=D:E” (2.7)

where D is a diagonal matrix of the eigenvalues of the covariance matrix C =
E{yy”}, and E is the matrix whose columns are the unit-norm eigenvectors
of the covariance matrix C. By a simple calculation, it is easy to find that
E{zz!} = I which means the transform T is a whitening transform. One thing
we should notice is that any orthogonal matrix multiplied by T is also a whitening
transform.
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2.3.2 Entropy and cumulants

For a continuous variable  with probability density function p(z), the entropy
(often called the differential entropy) H (z) is defined as

H(z)=— /px(x) log py (z)dx. (2.8)

The entropy can be interpreted as a measure of randomness. The fundamental
result for entropy is that a Gaussian variable has the largest entropy among all
random variables of unit variance. Therefore, we can use entropy as a measure
of concussion.

The cumulants of the variable x are defined by the cumulant generating function
p(w):
: . Gw)"
¢(w) = In(E{exp(jwx)}) = Z Rk~ (2.9)
k=0
where j = y/—1. The coefficient term xj of this expansion is called the kth
cumulant. For a zero mean random variable z, the first four cumulants are

w1 =0, ky = B{2?}, k3 = B{2?}, ky = E{2?} — 3[E{x?}]%. (2.10)

The fourth cumulant k4 is called kurtosis. It is a classical measure of nongaus-
sianity. For a Gaussian random variable, its kurtosis is zero. Kurtosis can be
both positive or negative. Random variables that have a negative kurtosis are
called subgaussian, and those with positive kurtosis are called supergaussian.

Kurtosis, or rather its absolute value, has been widely used as a measure of non-
gaussianity in ICA and related fields because of its simplicity, both computational
and theoretical.

2.3.3 Mutual information

Mutual information was introduced by Shannon [119] in 1948. The mutual in-
formation of two random variables is a quantity that measures the mutual de-
pendence of the two variables. Formally, the mutual information of two discrete
random variables z and y with supports 3(z), ¥(y) can be defined as:

Iy = Y Y, p(x,y)loglfz(xi’y) (2.11)

2€5(z) yEX(y) z)p(y)
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where p(x, y) is the joint probability distribution function of z and y, and p(z) and
p(y) are the marginal probability distribution functions of 2 and y, respectively.
In the continuous case, we replace summation by a definite double integral:

1Y) = x o} M T
R R (212)

where p(x,y) is now the joint probability density function of z and y, and p(z)
and p(y) are the marginal probability density functions of z and y, respectively.
Mutual information I(x;y) is the amount of information gained about z when y
is learned, and vice versa. I(x,y) = 0 if and only if z and y are independent.

Mutual information has close relationship with entropy, it can be equivalently
expressed as

I(z;y) = H(z)— H(zly) (2.13)
= H(y) - H(ylz) (2.14)
= H(x)+ H(y) — H(z,y) (2.15)

where H(z|y) is called conditional entropy, and H(z,y) is called joint entropy.

For multiple variables x = (z1,- -+ ,z,), the mutual information is defined as

I = ZH(@-) — H(x). (2.16)

Mutual information can be interpreted as a measure using Kullback-Leibler di-
vergence. For two n—dimensional probability density functions p; and po, the
Kullback-Leibler divergence is defined as

D(p1,p2) = /P1(77) log z;gz% dn. (2.17)

Using Kullback-Leibler divergence implies an important fact that mutual informa-
tion is always nonnegative, and it is zero if and only if the variables are indepen-
dent. Therefore, minimizing mutual information gives as independent variables
as possible.

In linear ICA model (2.2), we need to search for a linear transformation matrix
W that produces maximally independent variables y = Wx:

Iy = ZH(yz') —H(y) = ZH(yi) — H(x) — log | det W|. (2.18)
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The above equation uses the form H(y) = H(x) + log | det W|. It can be derived
with y = Wx as follow:

H(y) = - / py(y)log py (y)dy (2.19)
= - / Px(x) log g;(‘);),dx (2.20)

—/px(x) logpx(x)dx+/px(x) log | det Wdx (2.21)
H(x) + log | det W|. (2.22)

The problem with mutual information is that it is difficult to estimate. Since us-
ing the definition of entropy, one needs an estimate of the density. This problem
has severely restricted the use of mutual information in ICA estimation. How-
ever, since mutual information is the natural information-theoretic measure of
the independence of random variables, we could use it as the criterion for finding
the ICA algorithms. Although ICA objective functions could be derived from
different starting points and criteria, they are often equivalent to the criteria in
the above equation (2.18).

2.4 ICA algorithms

Many scientists have made their contributions on ICA. We can roughly say that
most of the ICA algorithms start from one of the four different criteria: maximiza-
tion of non-Gaussianity of the components [71, 69], minimizing mutual informa-
tion [171], maximum likelihood (ML) estimation [1, 8, 104] and tensorial methods
[20, 21, 22]. In fact, there are quite close connections among non-Gaussianity,
mutual information and maximum likelihood, see [19, 75]. FastICA algorithms
use maximization of non-Gaussianity, we will introduce these in the next section.
Since negentropy is very difficult to compute, in practice, it is approximated by
cumulants.

ML based methods include Bell-Sejnowski algorithm, also called the infomax
principle [8] and natural gradient algorithm. FOBI (first-order blind identifica-
tion) and JADE (joint approximate diagonalization of eigenmatrices) are the two
well-known tensorial methods.
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2.4.1 Algorithms by maximum likelihood

In linear ICA model (2.2), we have the density function py(x) as following:

pa(x) = | det Blp(s) = |det B ][ pi(s.) (2.23)

where B = A™', and p; denote the densities of the independent components.
Assume that we have T observations of x, denoted by x(t),t = 1,--- ;7. Then
the likelihood of the data x can be considered as the function of the demixing
matrix B:

T n
L(B) = [ ldet B| <Hpi<b?x<t))) (2.24)

where B = (by,---,b,)T. The log-likelihood is

log pi (b x(t)) + T log | det B. (2.25)
1

n
log L(B) =)
t=1 i=
The Bell-Sejnowski algorithm [8], originally derived from the infomax principle,
can be easily derived by ML estimator. Applying the gradient method to equation
(2.25), we obtain
AB « [B]7! + E{g(Bx)x"}, (2.26)

where the function g = (¢1(y1), -+ , gn(yn)) is a component-wise vector function
that consists of the score function g; of the distributions of s;, defined as
P
g9i = (logp;)" = = (2.27)

3

The Bell-Sejnowski algorithm usually suffers from slow convergence. Further-
more, calculation of one iteration is rather intensive because of the matrix in-
version. This can be avoided by presphering the data, and especially by using
natural gradient.

The natural gradient method [1] simplifies the gradient method considerably, and
makes it better conditioned. The principle of the natural gradient is based on
the geometrical structure of the parameter space, and is related to the principle
of relative gradient that uses the Lie group structure of the ICA problem. In the
case of ICA, multiplying the right-hand side of (2.26) by BT B gives

AB « (I+E{g(y)y'})B. (2.28)

where y = Bx.
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2.4.2 Tensorial methods

Tensors are generalizations of linear operators, in particular, cumulant tensors
are generalizations of the covariance matrix. Minimizing the higher order cu-
mulants approximately amounts to higher order decorrelation, and can thus be
used to solve the linear ICA model. The most well-known among these tenso-
rial methods are fourth-order blind identification (FOBI) and joint approximate
diagonalization of eigenmatrices (JADE) [20, 21, 22].

The FOBI algorithm starts from the following matrix of the whitened data z,
¥ = E{zz"||z||*} (2.29)
Using the independence of the sources s;, we have
¥ = Whdiag(E{s}} +n - 1)W, (2.30)

where W is the orthogonal separating matrix. If the above diagonal matrix
has distinct elements, we can simply compute the decomposition on ¥, and the
separating matrix W is obtained immediately. However, FOBI works only un-
der the restriction that the kurtoses of the ICs are all different. This limits its
applications.

Jade is probably the most popular method among tensorial methods. Since eigen-
value decomposition can be viewed as diagonalization, in linear ICA model, the
matrix W diagonalizes F(M) for any M, where F represents the cumulant tensor
and M the corresponding eigenmatrices. Thus, we could take a set of different
matrices M;,i = 1,--- , k, and try to make the matrices WF(M,;)W7 as diagonal
as possible. One possible objective function of the joint diagonalization process
is

Jrapp(W) = 3 ||diag(WE (MW7) (231)

However, tensorial methods are normally restricted, for computational reasons,
to small dimensions, and they have statistical properties inferior to those methods
using nonpolynomial cumulants or likelihood.

2.5 FastICA

FastICA was first developed by Hyvérinen and Oja [71, 72] for the kurtosis cost
function in one unit case. Late, Hyvérinen et al [15, 67, 68, 69, 70] extended this
method to general forms. This section is mainly based on [66, 75].
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Consider the linear combination of x, y = b?'x, using equation (2.2), we have
y=bTx=bTAs=:q"s (2.32)

where q = A”b. That is, y is a linear combination of independent components
s;. The central limit theorem, a classical result in probability theory, states that
as the sample size n increases, the distribution of the sample average of these
random variables approaches the normal distribution. Thus, the sum of even
two independent variables is usually more Gaussian than the original variables.
Therefore, y is more Gaussian than any of the original source s; and becomes
least Gaussian when it is equals to one of the sources s;. Therefore, when we
maximize the nongaussianity of b?x with respect to vector b, it will give us one
of the independent components.

FastICA is a family of algorithms derived by maximizing nongaussianity. Negen-
tropy is used to measure the nongaussianity:

N({E) = H(xGauss) - H({E) (233)

where x is a random variable, and Zgeuss 18 @ Gaussian random variable of the
same correlation (and covariance) matrix as x. The general approximation of
negentropy N (x) using only one nonquadratic function G is [75]

N(z) = [E{G(x)} — E{G(v)}]? (2.34)
where v is a Gaussian variable of zero mean and unit variance.

We consider the whitened data z instead of x. Let y = w’z. According to

Kuhn-Tucker conditions, which are necessary conditions for an optimal solution
in nonlinear optimization problem with some regularity conditions satisfied [85],
the optima of E{G(y)} under the constraint E{(w’z)?} = ||w||?> = 1 are obtained
at the points where

E{zg(w'z) — pw} =0 (2.35)

where g is the derivative function of G, and 8 = E{wl'zg(wl'z)} is a constant
with wy the value of w at the optimum. Using Newton’s method, we get the
following approximative Newton iteration:

wh =w; — [B{zg(w]2)} - pwi]/[E{g' (w] 2)} - 5] (2.36)
wiy =w/[[w| (2.37)

where 3 = E{wTzg(wlz)} which is approximated using current value of w in-
stead of wg. Simplifying the above algorithm, the one unit FastICA algorithm is
derived as

w «— E{zg(w'z) — E{¢/(w'z)}w}, (2.38)
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w — w/||wl|. (2.39)

A useful modification of the fixed-point algorithm (2.36) is done by adding a
step size to ameliorate the uncertaincy of the convergence in Newton method,
obtaining the stabilized fixed-point algorithm

wh = w; +n[E{zg(w]2)} - fwi] (2.40)

wipr = w/[[w| (2.41)

Estimation of several independent components can be done by two ways: de-
flationary orthogonalization or symmetric orthogonalization. In deflationary or-
thogonalization, the independent components are found one by one, and orthog-
onalized by Gram-Schmidt method. Symmetric orthogonalization is done by first
doing one-unit algorithm for every vector w; in parallel, and then orthogonalizing
by a method using matrix square roots:

W — (WWT)~1/2w, (2.42)

A contrast function is any non-linear function which is invariant to permutation
and scaling matrices, and attains its minimum value in correspondence of the
mutual independence among the output components. A widely used contrast
function both in FastICA and also in many other ICA algorithms [23, 38, 118] is
the kurtosis. This approach can be considered as an extension of the algorithm
by Shalvi and Weinstein [142]. Using kurtoses, for the sphered data z, the one
unit FastICA algorithm has the following form:

w «— E{z(w'z)3} — 3w. (2.43)

After each iteration, the weighted vector w is normalized to remain on the con-
straint set. The final w gives one of the independent components as the linear
combination w’ z.

Different properties of the one-unit version have been illustrated by computer
simulations in [52] where the accuracy is also shown to be very good in most
cases. More references, see [62, 154].
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Chapter 3

Convergence of FastICA
algorithms

3.1 Local convergence

FastICA is not a gradient descent but an approximative Newton method. An
empirical comparison study [52] shows that FastICA outperformed some popular
gradient descent type ICA methods [2, 8, 23]. The convergence of the FastICA
algorithms was first proven by Hyvérinen & Oja in [69, 71, 75] for the one unit
case. To guarantee the convergence, the function g, which is used in FastICA
algorithms (2.38) is assumed to be a sufficiently smooth odd function, and the
following theorem holds [69, 75]

Theorem 1 Assume that the input data follows the ICA model with whitened
data: z = TAs where T is the whitening matriz, and that G is a sufficiently
smooth even function. Then the local mazima (resp. minima) of E{G(w”z)}

under the constraint ||w|| = 1 include those rows of the mizing matrix TA such
that the corresponding independent components s; satisfy
E{sig(si) — g'(si)} > O(resp. <0) (3.1)

where g(.) is the deriative of G(.), and ¢'(.) is the derivative of g(.).

From this theorem, using Taylor series to expand the expection in FastICA al-
gorithms (2.38), the convergence can be achieved. The details of the proof can
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be found in [75]. Further investigation of the proof revealed that the one unit
algorithm has at least quadratic convergence speed. If E{¢"(s;)} = 0, which is
true when the sources have symmetric distributions or the function g(x) = 23,
the convergence speed is cubic. For the kurtosis cost function case, the cubic

convergence was also ensured in [103, 42].

The monotonic convergence and the convergence speed for a general cost function
for the related gradient algorithm was considered in [134]. Considering algorithm
(2.40), P.A. Regalia and E. Kofidis derived the step size bounds which ensure
that FastICA has a monotonic convergence to a local extremum for any initial
condition.

3.2 Global convergence

The global convergence of FastICA was first considered in [103]. E. Oja analyzed
the kurtosis based FastICA algorithm with two sources. First, a simplifying linear
transformation is made by considering the matrices

U =W(TA), U= W(TA). (3.2)

Then, from eq. (2.2) we have Wz = W(TA)s = Us. Denoting the rows of
matrix U by ul, we have w!z = ul's. Multiplying both sides of the general one-

unit FastICA algorithm (2.38) from the left by (TA)” and remembering that
s = (TA)T'z yields now

&, = E{sg(u’s)} — E{g/(ul's)}u,. (3.3)
This form of the equation is much easier to analyze than (2.38) because now

the independent source vector s appears explicitly and we can make use of the
independence of its elements.

The normalization (2.42) is actually unaffected by this transformation. Multi-
plying both sides of (2.42) from the right by (TA) we get

W(TA) = (W(TA)(TA)"WT)~1/2W(TA)
where we have used the fact that TA(TA)? = 1. So, we have
U= (Uuh)~20 (3.4)

giving the equivalent orthonormalization for matrix U.
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Further, matrix U = diag(+1,---,£1), PU and UP with an orthogonal permu-
tation matrix P are the fixed points of (3.3,3.4) under the assumption

E{sig(si) —g¢'(si)} #0 (3.5)

for all sources s;,7 = 1,...,n. E. Oja [103] stated that these fixed points are
asymptotically stable and the order of convergence is three in kurtosis case. In
Publication III, E. Oja and the current author proved that this is also true for
general FastICA algorithms except the convergence speed is at least two instead
of three.

In Publication III, the asymptotic stability of U = diag(+1,---,41) means
that asymptotically the solution is arbitrarily close to one of the sign combina-
tions, but may flip from one combination to another one, within this set. Recently,
Shen et al [144] analyzed this flipping phenomenon in a more rigorous way.

Any 2 x 2 orthogonal matrix U can be parameterized with a single parameter
with the following form:

U— T +v1 — a2
T\ VI —a? —x ’

where |z| < 1. Since the off-diagonal elements have the same sign, to guarantee
orthogonality of the rows, only positive sign will be considered. After one iteration
step (3.3) and followed by symmetric orthogonalization (3.4), the change of the
elements u;; of matrix U is the same for all the elements, following the equation
[103]

3

Vb + (1 —22)3
The function f(z) has the unstable fixed points £4/1/2 and stable fixed points
0, £1 with the order of convergence to these points three, see Figure 3.2.

z— f(r) = (3.6)

In Publication III, the global convergence analysis for general FastICA algo-
rithms with two sources can be treated in a similar way. Consider the FastICA
algorithm (3.3) with symmetric orthogonalization (3.4). The changes of all the
elements of matrix U in one step of iteration follow the same algorithm

x — f(x) (3.7)

where

W11 — W22 det(T 0
V(11 —ti22)2+(tin1 +1i12)? et(U) <0,

By g det(T) > 0.
\/(ﬂ11+ﬂ22)2+(ﬂ21*ﬂ12)2, ¢ ( ) -
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Figure 3.1: Comparison of the iteration functions f(z) in the cubic and
fifth degree case

where the matrix U is the matrix after iteration (2.38) before symmetric orthog-
onalization (2.42), and @;; are the elements of U. We use two popular functions
of g(z) to illustrate this general result. One is g(x) = 2°, and the other one is
g(x) = tanh(z). Figure 3.1, 3.2, and 3.3 show the function f(x) with these two
nonlinearities and different source densities.

3.3 Statistical behavior of FastICA algorithms

In a practical situation, we always have finite samples. The theoretical expecta-
tions are replaced by sample averages, therefore, the limit of convergence is not
exactly as for the ideal case. There is a residual error due to the finite sample
size. A classical measure of error is the asymptotic (co)variance of the obtained
estimator. The goal of designing an ICA algorithm is then to make this error as
small as possible. For the FastICA algorithm, such an asymptotic performance
analysis for a general cost function was proposed in [68, 150].

S. Douglas [42, 43] gave a statistical analysis of the convergence behavior of the
FastICA algorithm using inter-channel interference (ICI). The linear ICA model
with the given m-dimensional data x(n) = [z1(n) -2, (n)]7, 1 <n < N is

x(n) = As(n), (3.8)
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Figure 3.2: Plot of the function f(z) with g(x) = tanh(z). Both s; and
s are binary distributed
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Figure 3.3: Plot of the function f(z) with g(x) = tanh(x). s; is binary
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where A is an unknown m x m mixing matrix, and s(n) = [s1(n) - s, (n)]? is
the source. We need to find the matrix W such that y(n) = Wz(n) contains the
estimates of the independent sources, where z(n) = Tx(n) is the whitening of
the x(n). The FastICA algorithm is

N
. 1
Witk+1) = Zg(wﬁz(n))z(n) — g/ (Whaz(n)wi (3.9)
n=1
Wi(k+1)
Wigpq) = —iAHD) 3.10
40 = T (3.10)

where the index k means the kth iterative step. Let C = WTA the inter-channel
interference (ICI) is given by

ICI, = i <M ~ 1) (3.11)

— \ maxi<j<m €3y
where the index k& means the kth iteration step, m is the dimension of sources
and c;ji, is the (¢, j)th element of the combined system coefficient matrix.

S. Douglas [42] analyzed the behavior of the ICI and stated that all the sta-
ble stationary points of the single-unit FastICA algorithm under normalization
conditions correspond to the desirable separating solutions. For the two equal
kurtosis sources, he states [44] that the weight vector w for the FastICA algo-
rithm evolves identically to that for the Rayleigh quotient iteration (RQI) applied
to a symmetric matrix T' diag {\1, A2 }I'T when T = PA is orthonormal, except
for the sign changes associated with the alternating update directions in the RQI.

Furthermore, he conjectured that the average behavior of ICI obeyed a “%” rule
with the nonlinearty g(y) = y* [42], and proved the two-source case [44]:
N
E{ICI} ~ <§> E{ICIy}. (3.12)

In Publication II, a joint work of S. Douglas, Z.Yuan and E. Oja, the general
case with kurtosis constrast function is solved. For m sources, the average ICI at
iteration k is actually equal to
1

E{ICIy} = gm(k1,- - ,/@m)(g)k + R(k, K1,y Em) (3.13)
where £; is the kurtosis of the ith source, g,,,(-) is a function that only depends on
the kurtoses of the sources, and R(k,-) is approximately proportional to (1/9)*
as k — oo.
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Figure 3.4: Evolutions of the average ICI as determined by various
methods, m =4, [43].

Figure 3.4 shows the actual performance of FastICA and the prediction equation
(3.12) with binary source. Because of the finite data records (10000 samples),
FastICA algorithm exhibits a limit E{ICI};} value. However, during its conver-
gence period, the prediction in equation (3.12) accurately describes the behavior
of the FastICA algorithm.

A series of work [150, 80, 81] use Cramer-Rao lower bound (CRB) to analyze
the performance of FastICA algorithms. The authors computed CRB for the
demixing matrix of FastICA algorithm based on the score functions of the sources,
which shows that FastICA is nearly statistically efficient. An improved algorithm
called efficient FastICA (EFICA) was proposed, based on the concept of statistical
efficiency. In EFICA, the asymptotic variance of the gain matrix, defined as the
product of the estimated unmixing matrix and the original mixing matrix, attains
the CRB which is the theoretical minimum for the variance.
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Nonnegative ICA

4.1 Nonnegative ICA algorithms

In the real world, many data have nonnegative properties. It is natural to consider
adding nonnegative constraint on the linear ICA model. The combination of
non-negativity and independence assumptions on the sources is refered as non-
negative independent component analysis [124, 126, 128]. Recently, Plumbley
[124, 125, 126, 127, 128] considered the non-negativity assumption on the sources
and introduced an alternative way of approaching the ICA problem. Using the
probability function Pr(-), he made the following definitions:

Definition 1 A source s is called non-negative if Pr(s < 0) = 0.

Definition 2 A non-negative source s is well-grounded if Pr(s < §) > 0 for any
0 >0.

From the definition, a well-grounded non-negative source s has non-zero pdf all
the way down to zero. Using these concepts, Plumbley proved the following key
result [124]:

Theorem 1. Suppose that s is a vector of non-negative well-grounded inde-
pendent unit-variance sources s;, i = 1,....,n, and y = Qs where Q is a square
orthonormal rotation, i.e. Q7Q = 1I. Then Q is a permutation matrix, i.e. the
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elements y; of y are a permutation of the sources s;, if and only if all y; are
non-negative.

The result of Theorem 1 can be used for a simple solution of the non-negative ICA
problem. The sources of course are unknown, and Q cannot be found directly.
However, it is a simple fact that an arbitrary rotation of s can also be expressed
as a rotation of a pre-whitened observation vector. Denote it by z = Vx with V
the whitening matrix. Assume that the dimensionality of z has been reduced to
that of s in the whitening, which is always possible in the overdetermined case
(number of sensors is not smaller than number of sources).

It holds now z = TAs. Because both z and s have unit covariance (for s, this is
assumed in Theorem 1), the matrix TA must be square orthogonal, although s
and z have non-zero means. We can write

y=Qs=Q(TA) 'z = Wz

where the matrix W is a new parametrization of the problem. The key fact is
that W is orthogonal, because it is the product of two orthogonal matrices Q
and (TA)T.

By Theorem 1, to find the sources, it now suffices to find an orthogonal matriz
W for which y = Wz is non-negative. The elements of y are then the sources.
This brings the additional benefit over other ICA methods that as a result we
will always have a positive permutation of the sources, since both the s and y
are non-negative. The sign ambiguity present in standard ICA vanishes here.

A suitable cost function for actually finding the rotation was also suggested by
Plumbley [124, 126, 128]. It is constructed as follows: consider the output trun-
cated at zero, y* = (yi, ..., 3;") with y;7 = max(0,y;), and use 2 = Wy ™ as a
reestimate of z = W7y. Then we can construct a suitable cost function given by

J(W) =E{|lz - 2|*} = E{z - WTy™|*}. (4.1)
Due to the orthogonality of matrix W, this is in fact equal to
J(W) =E{lly —y*[I”} = > E{min(0,5,)*}. (4.2)
i=1
Obviously, the value will be zero if W is such that all the y; are positive.

The minimization of this cost function gives various numerical algorithms [126,
128, 108, 109]. In fact, minimization of the least mean squared reconstruction
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error (4.1) has been proposed as an objective principle for many neural-network
principal component analysis (PCA) algorithms and PCA subspace algorithms
[164]. In particular, this led to the nonlinear PCA algorithm [?], where W (¢+1) =
W(t) + AW with

AW = nig(y)[z" — g(y")W] (4.3)

where g(yT) = (g9(y1), -+ ,9(yn))T, and g is a nonlinear function. Algorithm
(4.3) is a nonlinear version of the Oja and Karhunen PCA subspace algorithm
[107, 105], which used this algorithm with ¢g(y) = y.The nonlinear PCA algorithm
was shown to perform ICA on whitened data, if g is an odd, twice-differentiable
function [106].

)

Thus an obvious suggestion for our nonnegative ICA problem is the nonlinear
PCA algorithm (5) with the rectification nonlinearity g(y) = y* = max(y, 0),
giving us

AW = iyt [z’ — (y")TW] (4.4)

which we call the nonnegative PCA algorithm. The rectification nonlinearity
g(y) = max(y,0) is neither an odd function, nor is it twice differentiable, so the
standard convergence proof for nonlinear PCA algorithms does not apply. Mao
[100] gave a global convergence proof of the discrete time “non-negative PCA”
under certain assumptions.

In fact, the cost function (4.2) is a Liapunov function for a certain matrix flow
in the Stiefel manifold, providing a global convergence [109, 100, 101].

However, the problem with the gradient type of learning rules is slow speed of con-
vergence. It would be tempting therefore to develop a ”fast” numerical algorithm
for this problem, perhaps along the lines of the well-known FastICA method [75].
In Publication I, we introduced such an algorithm with convergence analysis.
A review is given in the following.

4.2 The nonnegative FastICA algorithm

The nonnegative FastICA algorithm, developed in Publication I, combined the
nonnegative constraint and FastICA algorithm. Non-centered but whitened data
z is used, which satisfies E{(z—E{z})(z—E{z})”} = I to keep the nonnegativity.
A control parameter p is added on the FastICA update rule (2.38), giving the
following update rule:

w — BE{(z — B{z})g-(w"2)} — uB{g" (w"2)}w, (4.5)
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where g_ is the function

9-(y) = —min(0,y) = { 07y’ Z ; 8.
and ¢’ is the derivative of g_. This formulation shows the similarity to the
classical FastICA algorithm. Substituting function g_ into (4.5) simplifies the
terms; for example, E{¢’ (Ww'z)} = —E{l|lwTz < 0}P{w’z < 0}, and E{(z —
E{z})g_(wTz)} = E{(z — E{z})(—wTz)|lwlz < 0}P{wTz < 0}. The scalar
P{w?Tz < 0}, appearing in both terms, can be dropped because the vector w
will be normalized anyway.

In (4.5), p is an adjustable parameter which keeps w nonnegative. It is deter-
mined by:
E{(z—-E Taz|lwT 0}T
i= min {(z {z})w'z|lw'z < 0} z
{z:2E€A)} E{1lwTz < 0}wTz

There the set A = {z : z7z(0) = 0}, with z(0) the vector satisfying ||z(0)|| = 1
and w’'z(0) = max(w?z). Computing this parameter is computationally some-
what heavy, but on the other hand, now the algorithm converges in a fixed number
of steps.

(4.6)

The nonnegative FastICA algorithm is shown below.

1. Whiten the data to get vector z.
2. Set counter p < 1.
3. Choose an initial vector w, of unit norm, and orthogonalize it as
p—1
T
Wp < Wp — Z(Wp W)W
j=1
and then normalize by wy, «— w,/||wp||.
4. If max,.0(w])'z) <0, update wy, by —w .
5. If min,4o(w; z) > 0, update w, by w, — w(r)(w(r)"w,)w,,, where w(r)
is the vector in the null space null(Z) with Z =: {z # 0 : w}z = 0}.

6. Update w, by the equation (4.5), replacing expectations by sample aver-
ages.

7. Let wy, «— wp/||wp]].
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8. If w, has not converged, go back to step (4).

9. Set p < p+ 1. If p < n where n is the number of independent components,
go back to step (3).

4.3 Analysis of the algorithm

To analyse the convergence of the above nonnegative FastICA algorithm, the
following orthogonal variable change is useful:

q=ATTTw (4.7)
where A is the mixture matrix and T is the whitening matrix. Then
wlz = q' (TA)"(TAs) = q’s. (4.8)
Note that matrix TA is orthogonal.

By theorem 1, our goal is to find the orthogonal matrix W such that Wz is
non-negative. This is equivalent to find a permutation matrix Q, whose rows will
be denoted by vectors q”, such that Qs is non-negative. In the space of the q
vectors, the convergence result of the non-negative FastICA algorithm must be a
unit vector q with exactly one entry nonzero and equal to one.

Using the above transformation in eq. (4.7), the definition of the function g_,
and the parameter p, the update rule (4.5) for the variable q becomes

q — uE{llq"s < 0}q — E{(s — E{s})(a"s)la" s < 0}. (4.9)

The idea to prove the convergence of non-negative FastICA algorithm, is to show
that after each iteration, the updated vector q keeps the old zero entries zero
and gains one more zero entry. Therefore, within n — 1 iteration steps, the vector
q is updated to be a unit vector e; for certain i. With total iterative steps
Z?:_lli = n(n — 1)/2, the permutation matrix Q formed. The details of the
proof can be found in the Publication.

It is obvious that most of the functions chosen in the classic FastICA also work in
this nonnegative FastICA algorithm. However, the adjustable parameter u will
change according to the choice of the function. One exception is the function
g(y) = v, since its original function G(y) is an even and smooth function, which
satisfies the requirement for the function G(y) in FastICA. However, it can only
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find one vector w such that w’'z is nonnegative, and therefore fails to separate

the independent components.
We first make the change of variable as before from w to q. Since g(q”s) = q”'s

and ¢'(q”'s) = 1, then the ith element of q is updated by

a; — E{si(q"s)} — q,. (4.10)

Simplify the right-hand side of equation (4.10), note that all the sources are unit
variance, we get

n
E{si(q"s)} —ai =E{s; > _q;s;)} — (4.11)

j=1

n
=E{sias)} +E{si D> as)}—a (4.12)
j=1,j#i
n
=EB{si} > q;E{s;}. (4.13)
j=1,j#i

The last equation uses the fact that all the sources s; for ¢ = 1,--- ,n are inde-

pendent. Then after normalization, the updated vector q does not depend on
the initial data. Therefore the matrix W cannot be found.

The computation of each iteration takes more time compared to FastICA. During
each iteration, the computational differences compared to classic FastICA come
from step 4, 5 and 6. The step 4 is a simple value assignment. In step 5, we
need to calculate the value of wgz once, and solve an m X n linear equation
(m is the number of vectors in the source space {s # 0 : q(k)Ts = 0}). Step
6 is the main update rule, just as in FastICA, and the extra calculation is the
expectation E{z—E{z}} and the parameter p. The total computation complexity
takes O(N?) with N the number of samples, more time compared to FastICA in
each step. However, one should note that as the analysis shows above, the total
number of iteration steps of our algorithm are less than or equal to n(n —1)/2.
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Chapter 5

Nonnegative matrix
factorization

5.1 Introduction

In the linear ICA model, its matrix form can be mathematically explained as the
factorization of data matrix X into two matrices A and S, where S is the basis
matrix and A is a coefficient matrix. Often the data to be analyzed is nonnega-
tive, and the low rank data are further required to be comprised of nonnegative
values in order to avoid contradicting physical realities. So the nonnegative con-
straint is proposed on all three matrices. This new model leads to a method
called Non-negative Matrix Factorization technique (NMF). Classical tools such
as factor analysis and principal component analysis cannot guarantee to maintain
the nonnegativity. The approach of finding reduced rank nonnegative factors to
approximate a given nonnegative data matrix thus becomes a natural choice.

The idea of Nonnegative matrix factorization (NMF) can be traced back to a
paper of P. Paatero and U. Tapper [116] in 1994, which was named Positive
matrix factorization (PMF). Suppose V is a positive m x n matrix, Paatero
and Tapper advocated a positive low-rank approximation WH by optimizing the
functional

Wi (A (V= WH)[[. (5.1)

where matrix A is the weighted matrix whose elements are associated to the
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elements of the matrix V.— WH, - denotes the Hadamard (also known as the
Schur or elementwise) product. Paatero and Tapper proposed an alternating
least squares algorithm (ALS) by fixing one matrix and solving the optimization
with respect to the other, and reversing the matrices. Later, Paatero developed a
series of algorithms [111, 112, 113] using a longer product of matrices to replace
the approximant WH.

Nonnegative matrix factorization gained more applications and became popular
because of Lee and Seung’s work [90, 91, 92]. Lee and Seung introduced the NMF
model defined as following?:

Given a nonnegative m x n data matrix V, find nonnegative m x r matrix W
and r X n matrix H with the reduced rank r such that the product of W and H
minimizes

F(W,H) = 2|V~ WH?. (52)

Here, W is often thought of as the basis matrix and H as the mixing matrix
associated with the data in V. The measure || - || could be any matrix norm, or
other measurements. The rank r is often chosen such that 7 << min(m,n). An
appropriate decision on the value of r is critical in practice, but the choice of r
is very often problem dependent.

Important challenges affecting the numerical minimization of (5.2) include the
existence of local minima due to the non-convexity of f(W,H) in both W and
H, and perhaps more importantly the lack of a unique solution which can be
easily seen by considering WDD™'H for any nonnegative invertible matrix D
with nonnegative inverse D1,

The objective function (5.2) of the general NMF model can be modified in several
ways to reflect the application need. For example, penalty terms can be added
in order to gain more localization or enforce sparsity; or more constraints such
as sparseness can be imposed.

5.2 The truncated singular value decomposition

The singular value decomposition (SVD) is a classic technique in numerical linear
algebra. For a given m X n matrix V, its n columns are the data items, for
example, a set of images that have been vectorized by row-by-row scanning. Then
m is the number of pixels in any given image. The Singular Value Decomposition

LFor clarity, we use here the same notation as in the original NMF theory by Lee and Seung
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(SVD) for matrix V is
V = QDR7, (5:3)

where Q (mxm) and R (nxm) are orthogonal matrices consisting of eigenvectors
of VVT and VTV, respectively, and D is a diagonal m x m matrix where the
diagonal elements are the ordered singular values of V.

Choosing the 7 largest singular values of matrix V to form a new diagonal r x r
matrix D, with r < m, we get the compressive SVD matrix U with given rank r,

U = QDR”. (5.4)

Now both eigenvector matrices Q and R have only r columns, corresponding to
the r largest eigenvalues. The compressive SVD gives the best approximation
(in Frobenius matrix norm) of the matrix V with the given compressive rank r
[16, 54].

In the case that we consider here, all the elements of the data matrix V are
non-negative. Then the above compressive SVD matrix U fails to keep the non-
negative property. In order to further approximate it by a non-negative matrix,
the following truncated SVD (tSVD) is suggested. We simply truncate away the
negative elements by

U= %(U—kabs(U)) (5.5)

where the absolute value is taken element by element.

However, it turns out that typically the matrix U in (5.5) has higher rank than
U. Truncation destroys the linear dependences that are the reason for the low
rank. In order to get an equal rank, we have to start from a compressive SVD
matrix U with lower rank than the given r. To find the truncated matrix U with
the compressive rank r, we search all the compressive SVD matrices U with the
rank from 1 to r and form the corresponding truncated matrices. The one with
the largest rank that is less than or equal to the given rank r is the truncated
matrix U what we choose as the final non-negative approximation. This matrix
can be used as a baseline in comparisons, and also as a starting point in iterative
improvements. We call this method truncated SVD (tSVD).

Note that the tSVD only produces the non-negative low-rank approximation U
to the data matrix V, but does not give a separable expansion for basis vectors
and weights, like the usual SVD expansion.
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5.3 The fundamental NMF algorithms

Quite many numerical algorithms have been developed for solving the NMF. The
methodologies adapted are following more or less the principles of alternating di-
rection iterations, the projected Newton, the reduced quadratic approximation,
and the descent search. Specific implementations generally can be categorized
into alternating least squares (ALS) algorithms [116], multiplicative update al-
gorithms [91, 92], gradient descent algorithm, and hybrid algorithm [122, 123].
Some general assessments of these methods can be found in [87, 151]. Actually,
the multiplicative update algorithm can also be considered as a gradient descent
method. Below we will briefly have a look at gradient descent methods and ALS
methods.

5.3.1 NMF algorithms by Lee and Seung

One of the fundamental NMF algorithms developed by Lee and Seung [91] based
on the optimal equation (5.2) with Frobenius norm is

Vi W,
Wia — Wia iHa ;Wia - = 5.6
 (wh),, =, W o0
V;
Hau — Hau Z Wia (WI‘f)“ . (57)

In practice, a small constant 10~ in each update rule is added to the denominator
to avoid division by zero. Lee and Seung used the gradient descent to form the
above multiplicative update algorithm by choosing the right step size. Lee and
Seung [92] claimed the convergence of the above algorithm, which is not true.
Lin [95, 96] pointed out their error, and proposed some modified algorithms of
Lee and Seung’s method. Gonzalez and Zhang [55] presented numerical examples
showing that Lee and Seungs algorithm [92] fails to approach a stationary point.

Most of gradient descent methods like the above multiplicative update algorithm
take a step in the direction of the negative gradient, the direction of steepest
descent. Since the step size parameters of W and H vary depending on the
algorithm, the trick comes in choosing the values for the stepsizes of W and H.
Some algorithms initially set these stepsize values to 1, then multiply them by
one-half at each subsequent iteration [13]. This is simple, but not ideal because
there is no restriction that keeps elements of the updated matrices W and H
from becoming negative. A common practice employed by many gradient descent
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algorithms is a simple projection step [140, 64, 26, 121]. That is, after each update
rule, the updated matrices are projected to the nonnegative orthant by setting
all negative elements to the nearest nonnegative value, 0.

5.3.2 Alternating least squares (ALS) algorithms

Another class of the fundamental NMF algorithms is the alternating least squares
(ALS). ALS algorithms were first used by Paatero [116]. The basic ALS Algo-
rithm for NMF is

1. Initialize W as random m x r matrix

2. (1s) Solve for H in matrix equation W/ WH = W1V,
(nonneg) Set all negative elements in H to 0.
(

Is) Solve for W in matrix equation HHY W? = HVT .

(nonneg) Set all negative elements in W to 0.

3. Repeat step 2 until convergence.

In this algorithm, a least squares step is followed by another least squares step in
an alternating fashion, thus giving rise to the ALS name. Although the function
(5.2) is not convex in both W and H, it is convex in either W or H. Thus,
given one matrix, the other matrix can be found with a simple least squares
computation [86].

In the above algorithm, a simple projection step, which sets all negative elements
resulting from the least squares computation to 0, is used to keep nonnegativity.
This simple technique also has a few added benefits. Of course, it aids sparsity.
Moreover, it allows the iterates some additional flexibility not available in other
algorithms, especially those of the multiplicative update class. One drawback of
the multiplicative algorithms is that once an element in W or H becomes 0, it
must remain 0. This locking of 0 elements is restrictive, meaning that once the
algorithm starts heading down a path towards a fixed point, even if it is a poor
fixed point, it must continue in that vein. The ALS algorithms are more flexible,
allowing the iterative process to escape from a poor path.

Depending on the implementation, ALS algorithms can be very fast. The im-
plementation shown above requires significantly less work than other NMF al-
gorithms and slightly less work than an SVD implementation. Improvements to
the basic ALS algorithm appear in [113, 87].
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5.4 NMF algorithms with application-dependent
auxiliary constraints

Since the popularization of the NMF problem by Lee and Seung, a great deal
of work has been devoted to the analysis, extension, and application of NMF
algorithms in science, engineering and medicine. The NMF problem has been
cast into alternate formulations by various authors. One of the improvements is
to develop the algorithms by using different objective functions. Lee and Seung
[92] provided an information theoretic formulation based on the Kullback-Leibler
divergence of V from WH. Dhillon and Sra [39] generalized the NMF methods
with Bregman divergence. Cichocki et al. [28] have proposed cost functions
based on Csiszdr’s ¢-divergence. Wang et al. [156] propose a formulation that
enforces constraints based on Fisher linear discriminant analysis for improved
determination of spatially localized features. Guillamet et al. [56] have suggested
the use of a diagonal weight matrix Q in a new factorization model, VQ ~ WHQ
in an attempt to compensate for feature redundancy in the columns of W.

Other approaches were done by proposing alternative cost function formulations.
Smoothness constraints have been used to regularize the computation of spectral
features in remote sensing data [123, 121]. Chen and Cichocki [24] employed
temporal smoothness and spatial correlation constraints to improve the analysis
of EEG data for early detection of Alzheimer’s disease. Hoyer [63, 64] employed
sparsity constraints on either W or H to improve local rather than global repre-
sentation of data. The extension of NMF to include such auxiliary constraints is
problem dependent and often reflects the need to compensate for the presence of
noise or other data degradations in V.

Below, we will give a brief review on some of the modified NMF algorithms.

5.4.1 NMF algorithms with sparsity constraints

The Nonnegative Sparse Coding (NNSC) [63] method is intended to decompose
multivariate data into a set of positive sparse components by using theory inher-
ited from Linear Sparse Coding. Combining a small reconstruction error with a
sparseness criterion, Patrik Hoyer’s NNSC [63] defines the objective function as:

E(V,WH) = %||V—WH||2+>\Zf(Hij) (5.8)

ij



44 Chapter 5. Nonnegative matrix factorization

where the form of f defines how sparseness on H is measured and A controls
the trade-off between sparseness and accuracy of the reconstruction. In [63],
the author used a linear activation penalty function to measure the sparseness,
leading to the following objective function:

1
E(V,WH) = §||V—WH||2+)\ZHU. (5.9)

j

The iterative algorithm is

W — W — u(WH - V)HT. (5.10)
(WIV),
(WTWH);; + A)

where ;1 > 0 denotes the step-size. After each iteration for W, any negative
values in W are set to zero, and then each column of W is normalized.

Later, Hoyer extended the above NNSC to NMF with sparseness constraints
(NMFSC) [64]. NMFSC minimizes

E(W,H) = ||V - WH|? (5.12)
under the optional sparseness constraints
sparseness(w;) = Sy, Vi (5.13)

sparseness(h;) = Sy, Vi (5.14)

where S, and Sy, are the desired sparseness values for W and H, respectively,
and are user-defined parameters. The sparseness criteria proposed in [64] uses
a measure based on the relationship between the L1 and L2 norm of a given n
dimensional vector x:

\/ﬁ_(z”xil)/\/ fo (5 15)
i1 . .
The details of NMFSC algorithm can be found in Hoyer [64].

sparseness(x) =

Liu [97] modified the above method [63] by simply using a divergence measure in-
stead of Fuclidean least-square type functional. Thus, the sparse NMF functional
is:

P

D(V,WH) ZZ(V”m ) ~ Vi + (W )—i—aZH” (5.16)

i=1 j=1
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for a« > 0.

This method forces sparseness via minimizing the sum of all H;;. The update
rule for matrices W and H are:

f=1 (Wiavib)/ Zzzl (Wikab)
14+«

H(Lb — Hab (517)

> i (Vi) /370 (WarHig) W, e N (5.18)
Z?=1 H,; e Zj Wi

W, — We

Furthermore, Principal Sparse Non-Negative Matrix Factorization (PSNMF) (Hu
et al. [65]) defined a support measurement for every column vector w; of W:

support(w;) = % (5.19)
ij Trij

Then selecting the principal k rules as the Ratio Rules by minimizing

[ S2F | support(w;)
min L > threshold (5.20)
ko \ Do, support(w;)

5.4.2 Local NMF

To gain more localization information, Li [94] developed a method called Local
NMF (LNMF). LNMF requires three additional constraints on the NMF basis:

1. A basis component should not be further decomposed into more compo-
nents, so as to minimize the number of basis components required to rep-
resent V. That is, we wish >, ij should be as small as possible with
> Wi; =1, so that W contains as many non-zero elements as possible.
This can be imposed by minimizing Y _,(WTW);;.

2. Different bases should be as orthogonal as possible, so as to minimize re-
dundancy between different bases. This can be imposed by minimizing

Zi;éj (WTW)ij :

3. Only components giving most important information should be retained.
Given that every image in 'V has been normalized into certain range, the
total “activity” on each retained component, defined as the total squared
projection coeflicients summed over all training images, should be maxi-
mized. This can be imposed by maximizing Y ,(HHT);;.
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Using constrained divergence, LNMF has the following objective function

Vi
+a Z(WTW)ij - Z(HHT)n‘ (5.22)
ij i
where a, 3 > 0 are some constrains. The update rules are
Wio 3, Vins—r— W.
Wia — r e Woellor o Wi (5.23)

E]‘ H,; Zj Wia

Ha — a W'La 5.24
H \/ H Z Z W'Lj ij, ( )

We note that the parameters «, 8 have disappeared in the learning rules. In the
original analysis of the algorithm, a middle parameter ~, which is a function of
but without clear expression, is used. The ratio £ is set to be not too large. This
means that the learning rules should be sensitive to the the parameters «, 3. But
the values of the parameters «, 3 are hard to choose since the middle parameter
~ is unclear.

Xu et al. [163] proposed a method called Constrained NMF, which is a very
similar algorithm as LNMF. Xu et al. [163] added three additional constraints
on the matrices W and H, which is aimed to obtain the semantic relations as
orthogonal as possible. Constrained NMF has the following objective function:

Vi;
D(VHWH) = Z (V,L'j log W — Vi + (WH)”> (525)
i,j Y
+a) (W'w),; - BZW WmLVZ HHT);  (5.26)
i#]

where «, 3 and 7 are positive constants. The update rules are

Wi 32, Vinswim, 1
Wiq (527)
ZjHa] ZjHaj+2aZj;£aWij_2ﬂ
Wia
W, — 5.28
ia Zj Wja ( )

1 Vi,
H,, — 8vH,, E W——# 1+ 1-1]. 5.29
ap 47 < YIg, i ia Zj Winjy, + ) ( )
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5.4.3 Constrained NMF

In general, we can state the constrained NMF optimization problem as

WITIIEII%O{HV — WH||% + a1 (W) + 8J2(H)}. (5.30)
The functions J; (W) and Jo(H) are penalty terms used to enforce certain con-
straints on the solution of Equation (5.30), and «a and [ are their corresponding
Lagrangian multipliers, or regularization parameters. Different penalty terms
may be used depending upon the desired effects on the computed solution. The
above NNSC, NMFSC, LNMF and constraint NMF algorithms can be considered
as special cases for solving equation (5.30) by choosing different penalty terms.

Pauca et al [121] presented an NMF algorithm with incorporating additional
constraints (CNMF) by setting

JU(W) = [[W]]%, Jo(H) = || H||*. (5.31)

The update rules become

(VHT)ij — VV ij VV ij
T T WHET),, T S, Wy (5.32)
WTV),; — BH;
H'L'j — H'L'j ( )” ﬁ ] (533)

(WTWH);;

5.4.4 NonSmooth NMF

NonSmooth Nonnegative Matrix Factorization (nsNMF) [120], is defined as:
V ~ WSH (5.34)

where the “smoothing” matrix S € R?%? is a positive symmetric matrix defined
as:

9
S=(1-0)I+ 511T, (5.35)

where I is the identity matrix, 1 is a vector of ones, and the parameter 0 satisfies
0<6<1.

The nsNMF algorithm is very straightforward to derive by simply substituting
the nsNMF model into the divergence functional in (4) and following the same
procedure to minimize the functional as performed.
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The interpretation of S as a smoothing matrix can be explained as follows: Let x
be a positive vector. Consider the transformed vector y = Sx. If § = 0, then y =
x and no smoothing on x has occurred. However, as § — 1, the vector y tends to
the constant vector with all elements almost equal to the average of the elements
of x. This is the smoothest possible vector in the sense of “nonsparseness” because
all entries are equal to the same nonzero value, instead of having some values close
to zero and others clearly nonzero. Note that the parameter 6 controls the extent
of smoothness of the matrix operator S. However, due to the multiplicative
nature of the model, strong smoothing in S will force strong sparseness in both
the basis and the encoding vectors in order to maintain faithfulness of the model
to the data. Therefore, the parameter # controls the sparseness of the model.
Note that, when # = 0, the model corresponds to the basic NMF.

5.4.5 A class of NMF algorithms using different measures

In Cichocki [28], the authors discuss a wide class of cost functions for NMF using
Csiszar’s p-divergences defined as

N
De(zlly) = Zzw(z—:), (5.36)
k=1

where yi, > 0, 2z, > 0 and ¢ : [0,00) — (—00,00) is a function which is convex on
(0,00) and continuous at zero. To use the Csiszar’s p-divergences as a distance
measure, we assume that ¢(1) = 0 and that it is strictly convex at 1.

Choosing different function ¢ gives us many different distance measurements, for
example:

1. Hellinger distance: If o(u) = (v/u —1)?, then Doy = >, (VUik — /Zik)*-
2. Pearson’s distance: If p(u) = (u—1)2, then De—p = >0 (Yir — 2zik)?/ Zik-

3. Amari’s alpha divergences: If p(u) = u(uf~t —1)/(8% — 8) + (1 — u)/f, then

(8) _ (/7)1 zik — Y
Dy (ZIIY)—%::M ST (5.37)

For 8 — 1 we get the generalized Kullback-Leibler divergence and § — 1 the
generalized dual Kullback-Leibler divergence. Table 1 [28] lists the learning al-
gorithms based on different cost functions derived from Csiszar’s ¢-divergences.

A series of work on NMF type algorithms have been done by Cichocki and his
team [29, 30, 31, 32, 33, 34, 35, 36, 169].
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5.5 Convergence issues and optimality

5.5.1 First order optimality condition

The problem of minimizing the function f(W,H) defined in (5.2) with nonneg-
ative constraints W > 0 and H > 0 is equivalent to minimizing the function

9(B,F) = L[|V — (B-B)(F - F)[} (5.39)

for any m x r matrix E and r x n matrix F, where E - E denotes the Hadamard
product of two matrices. Taking the partial derivative of g with respect to E
and F respectively, one can get the first order optimality condition, which is also
regarded as the Kuhn-Tucker condition [18, 26].

Theorem 2 If (E,F) is a local minimizer of the objective function g defined in
(5.38), then we have

E- (V- (E-E)(F-F)(F -F)")
F-(E-E)Y(V—(E-E)F-F)))

0
0.

Consequently, we have the Kuhn-Tucker condition for NMF optimal problem,

Corollary 1 The necessary condition for (W,H) to solve the NMF optimal
problem is
W.(V-WHH") =0 (5.41)

H - (WI(V-WH)) =0. (5.42)
and furthermore, we have the following inequalities

(V-WHHT <0 (5.43)
WT(V - WH) <0. (5.44)

5.5.2 Convergence issues

In Lee and Seung’s NMF algorithms [91, 92], they claimed that their algorithms
converge to a local minimum. However, a closer inspection of these proofs re-
vealed that, while these two algorithms do guarantee continual descent, this does
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not rule out the possibility of descending to a saddle point [48, 55, 96]. In fact, nu-
merical experiments have shown that these two NMF algorithms may converge to
a saddle point that does not satisfy the first-order optimality conditions of a local
minimum [55]. Nevertheless, some experiments show that saddle point solutions
can give reasonable results in the context of the problem, a finding confirmed by
experiments with ALS- type algorithms in other contexts [53, 148, 161, 162]. It
would be beneficial to determine what percentage of fixed points are local min-
ima as opposed to saddle points for particular applications. It may be that in
practice, while saddle points are possible, the algorithms often converge to local
minima. In general, one should input the fixed point solution produced by an
NMEF algorithm into optimality conditions [26, 55] to determine if it is indeed a
minimum. If the solution passes the optimality conditions, then it is at least a
local minimum.

Most NMF algorithms conduct an alternating process, approximating W, then
H, and so on. Mathematically, algorithms following this alternating process are
actually variants of a simple optimization technique which is known under vari-
ous names such as alternating variables, coordinate search, or the method of local
variation [102]. No global convergence has been proven for this method in the
most general cases. Powell [129, 130] and Zangwill [168] prove convergence for
special classes of objective functions, such as convex quadratic functions. Further-
more, it is known that an ALS algorithm that properly enforces nonnegativity,
for example, through the nonnegative least squares (NNLS) algorithm of [86],
will converge to a local minimum [14, 96].

Quite many NMF algorithms use a fixed number of iterations as the conver-
gence criterion. However, a fixed number of iterations is not a mathematically
appealing way to control the number of iterations executed because the most
appropriate value for maximum number of iterations is problem-dependent. The
first paper to mention this convergence criterion problem is Lin [96], which in-
cludes experiments and comparisons. Another alternative is also suggested in
[87].

5.6 Initialization and uniqueness

All NMF algorithms are iterative and they are sensitive to the initialization of W
and H [157]. Some algorithms require that both W and H be initialized [63, 64,
91, 92, 121], while others require initialization of only W [116, 111, 140]. In all
cases, a good initialization can improve the speed and accuracy of the algorithms,
as it can produce faster convergence to an improved local minimum [148]. A good
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initialization can sidestep some of the convergence problems mentioned above,
which is precisely why they are so important.

Most NMF algorithms use random matrices as the initializations for the factors
W and H. It is well-known that random initialization does not generally provide
a good first estimate for NMF algorithms [148], especially those of the ALS-type
of [137, 139]. Wild et al. [158, 157, 159] provided a method called the centroid
initialization, built from the centroid decomposition [40]. The authors showed
that it is a much better alternative to random initialization. Unfortunately, this
decomposition is expensive as a preprocessing step for the NMF.

In [87], the authors propose four initialization methods,

1. SVD-centroid initialization. It initializes W with a centroid decomposition
of the low dimensional SVD factor [145]. While the centroid decomposition
of V can be too time-consuming, the centroid decomposition of the SVD
factor is fast because it is much smaller than V.

2. Random Acol initialization. It forms an initialization of each column of the
basis matrix W by averaging r random columns of V. It makes more sense
to build basis vectors from the given data, the sparse document vectors
themselves, than to form completely dense random basis vectors, as random
initialization does.

3. Random C initialization. This method is similar to the random Acol
method, except it chooses p columns at random from the longest (in the
2-norm) columns of V, which generally means the densest columns since
often the data matrices are sparse. The idea is that these might be more
likely to be the centroid centers.

4. Co-occurrence matrix. It first forms a matrix C = VV7 which the autnors
[138] called a co-occurrence matrix. Next, the method for forming the
columns of initial W described as Algorithm 2 of [138] is applied to C. The
co-occurrence method is very expensive.

It is easy to see that the optimal solution for NMF problem is not unique. In
fact, the NMF problem does not have a unique global minimum. Consider that
a minimum solution given by the matrices W and H can also be given by an
infinite number of equally good solution pairs such as WD and D~'H for any
nonnegative D and D~'. Since scaling and permutation cause uniqueness prob-
lems, some algorithms enforce row or column normalizations at each iteration
to alleviate these. Sufficient conditions for uniqueness of solutions to the NMF
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problem can be considered in terms of simplicial cones [10], and have been studied
in [41].

5.7 Some applications

5.7.1 Environmetrics and chemometrics

The application of NMF in environmetrics and chemometrics comes from a series
of work done by Paatero et al. [3, 111, 112, 113, 115, 116]. They applied the
ideas of PMF to environmental data as early as 1991 [117]. Later Paatero [113]
applied his multi-linear engine to analyze atmospheric emission and pollution
data. A paper discussing the application of orthogonal projection approach,
alternating least squares and PMF to analyze chromatographic spectral data
(which is used to analyze mixtures of chemicals) was presented by Frenich et al.
[49]. The results obtained by these three methods are compared by evaluating
measures of dissimilarity between real and estimated spectra. Qin et al. [131]
used PMF on a large aerosol database incorporating error estimates through the
W matrix. Paatero et al. [114] discuss the resolution of the problem of rotational
indeterminacy in the PMF (and extended algorithms) solutions using a specific
two factor model as an example. Ramadan et al. [132] applied PMF to pollutant
concentrations. Sajda et al. [135] applied their constrained version of NMF to
recovering constituent spectra in 3D chemical shift imaging.

5.7.2 Image processing

Starting from Lee and Seung [91, 92], many NMF algorithms have been devel-
oped for applications in image processing. Since the image data are represented
as nonnegative matrix arrays, it is desirable to process data sets of images rep-
resented by column vectors as composite objects, or as separated parts. It is
suggested that the factorization in the linear model would enable the identifi-
cation and classification of intrinsic ’parts’ that make up the object being im-
aged by multiple observations [41, 91], see Figure 5.2. More specifically, since
IV = WHIP = X" [Jv; = Why [P = X7 [[v; — X4_, Wi |[2, cach column
v; of a nonnegative matrix V now represents m pixel values of one image. The
columns wy of W are basis elements in R”. The columns of H, belonging to
R", can be thought of as coefficient sequences representing the n images in the
basis elements. In other words, the NMF model can be thought of as that there
are standard parts wy, in a variety of positions and that each image represented
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as a vector v; is made by superposing these parts together in specific ways by
a mixing matrix represented by H. Those parts, being images themselves, are
necessarily nonnegative. The superposition coefficients, each part being present
or absent, are also necessarily nonnegative.

Feng et al. [47] used their local NMF algorithm for learning a spatially localized,
parts-based representation for images. They compare their method to PCA and
NMF to demonstrate the situations where a spatially localized approach has
advantages (such as highly occluded faces during face recognition). Guillamet
and Vitria [59] suggest using the Earth Movers Distance as a relevant metric
for doing face recognition using NMF. Spratling [149] evaluates the empirical
performance of some NMF algorithms for recognizing elementary image features,
especially in the presence of occlusion.

Other work on face and image processing applications of NMF includes [56, 57,
58, 60, 155, 88, 89, 170, 157].

5.7.3 Text mining

Lee and Seung [91] also used their NMF methods to text documents and high-
lighted the ability of NMF to tackle semantic issues such as synonymy. Owing
to the low-rank approximations produced NMF is a natural candidate for a clus-
tering procedure. Xu et al. [166] described clustering experiments with NMF,
wherein they compared NMF against spectral methods, suggesting that the for-
mer can obtain higher accuracy. Other related work on text analysis using NMF
includes [6, 12, 40, 122, 140]. An application to email surveillance was discussed
in [11].

5.7.4 Bioinformatics

Brunet et al. [17] apply NMF to form metagenes to infer biological information
from cancer-related microarray data. They use the KL-Divergence based NMF
algorithm and also provide heuristic methods for model selection. Kim and Tidor
[79] apply NMF for performing dimensionality reduction to aid in the identifica-
tion of subsystems from gene microarray data. They hinged their arguments on
the ability to detect local features from the data using NMF. Other applications
include lung cancer prognosis [76], analysis of lung cancer profiles [50], sparse
NMF for cancer class discovery [51], gene data [7, 133], and Alzheimer’s disease
[25].
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5.7.5 Miscellaneous applications

Nonnegative matrix factorization also has many other applications, such as com-
puter vision [141], linear sparse coding [46, 61, 63, 152], neural learning process
[93], sound recognition [78], remote sensing and object characterization [123, 159],
polyphonic music [146, 147], object characterization [123], spectral data analy-
sis [122], learning sound dictionaries [4], mining ratio-rules [65], and multiway
clustering [6, 143].
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Table 1. New Multiplicative NMF algorithms with regularization and/or sparsity con-

straints
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Figure 5.1: This table is taken from [28]
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Figure 5.2: Non-negative matrix factorization (NMF) with a database
of m = 2429 facial images, each consisting of n = 19 x 19 pixels, and
constituting an n x m matrix V. NMF learns to represent faces with a
set of basis images resembling parts of faces [91].
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Chapter 6

The Projective NMF
method

The Projective nonnegative matrix factorization (P-NMF) method was first de-
veloped in Publication IV. It simplifies the parameters of the standard non-
negative matrix factorization. Publication V, VI, VII analyse and extend this
method further. In this chapter, a review based on these publications will be
given.

6.1 Definition of the problem

The idea of the projective NMF comes from the compressive SVD method. The
compressive SVD is a projection method. It projects the nonnegative m x n data
matrix V onto the subspace of the first r eigenvectors of the data covariance
matrix:
X =QQ"Vv.

where matrix QQT is the projection matrix on the eigenvector subspace. Gener-
ally, matrix Q is not nonnegative. To keep the property of the nonnegativity, we
try to find a nonnegative m x m approximative projection matrix P with given
rank 7, which minimizes the difference ||V — PV||. Any symmetrical projection
matrix of rank r can be written in the form

P=ww7
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with W an m X r matrix, and its columns are orthogonal. Thus, we can try to
solve the problem by searching for a nonnegative m x r matrix W.

Based on this, Projective Non-negative Matrix Factorization (P-NMF) was intro-
duced in Publication IV, which finds the solution to the following optimality
problem
min ||V - WW7V||, (6.1)
W>0

where || - || is a matrix norm. Note that with the positivity constraint, the
orthogonality of W is not ensured any more, and the method is projective only
approximately.

Lee and Seung’s NMF algorithms [92] are parts based, localized algorithms. The
base images in Figure 5.2 reveal this important characteristic. However, the over-
lap between the neighbourhood base images are still a little bit heavy. Therefore,
some application-dependent auxiliary constraints, such as sparsity, have been
added to produce algorithms to gain more localized and sparse information. Ac-
tually, although the orthogonality of the base matrix W is not ensured, more
orthogonal base matrix W means less overlap between the neighbourhood base
images, and more localized and sparse information. Instead of adding a penalty
term in the objective function, the projective method uses projection matrix
with nonnegative restriction, which leads to only one parameter matrix, and the
orthogonality seems to be approached approximately.

6.2 Projective NMF algorithms

The Projective Non-negative Matrix Factorization (P-NMF) uses only one pa-
rameter matrix W instead of W and H in Non-negative Matrix Factorization.
The weight matrix H in NMF is simply replaced by W'V in P-NMF algorithms.
The update rules could be obtained similar to Lee and Seung’s algorithms [92].
First, we give two auxiliary results:

Lemma 1 For the given matrices W and 'V, the minimization of the Frobenius
norm f(\) = ||V — AWWTV||? corresponding to \ is reached at

W WIVVT
T rWWIVVIWWT'

(6.2)

Lemma 2 For the given matrices W and 'V, the minimization of the Kullback-
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Leibler divergence f(\) = D(V|[A\WWTV) corresponding to \ is reached at

>ij Vij

A=
Zij (WWTV)M

(6.3)

The proofs of these two lemmas are straightforward: take the gradient of f(\) to
A, and find the value of A by setting %&)‘) =0.

By the same technique used in Lee and Seung’s algorithms [92], the update rules
for Euclidean distance is:

2(VVIW),
W, W, 6.4
7T Wi WWIVVIW),; + (VVIWWIW),, (6.4)
The 'normalization’ step followed according to Lemma 1 is
W — W/trtWWTVVT [trWWTVVTWWT, (6.5)

and for the Kullback-Leibler divergence measure, the update rule becomes
Wij — Wij X (66)
> Vi (WIV)j5/ (WWT V)i + 357, Wi, Vi / (WWTV) )

6.7
S (WY + 55 Wiy Vi) 07
with the 'normalization’ step according to Lemma 1
> Vii
W W, | (6.8)
\/Zij (WWTV);

The nonincreasing of the two algorithms is complicated, and has just been given
by Yang and Oja [167]. Below, we will prove that in the case that the basis
matrix W is a vector, both update rules (6.4 with the normalization 6.5) and
(6.6 with normalization 6.8) make the objective function value nonincreasing.

First, let us prove this for the Euclidean error norm. Use the notations W and W
be the updated vectors of vector W under equations (6.4) and (6.5), respectively.
Let AW := W — W. Set

GW): = |[V-WWTV|2_[|[V_-WW V|?
= Tr(VV' —2WW'VVT +t WWIVvVIwwT)
—Tr (VVT —oWW vvT ¢ WWTVVTWWT)

- Tr (WTVVT — WWTVVT)
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The above equations use the following equations,

Tr(WWIvVvIww?’) WIVVIW . Tr(WWT)
= Tr(WWIVvVvhywTw

= Tr(WWTvvT),

note that ||WWT||F = [[WWT||p = 1. Similar results for matrix W hold.
With a simple calculation,

- WwWw7T
WWT - ﬁ
(1w
. WW7
T WITW
we have
T xwT T
aw) = ZWW VV) o wwTvvT)
WIW

1 N N N N
= wrw (WTVVTW - WTVVTWWTW)

The update rule equation (6.4) becomes

T )
Wi=W, Wq;WTV?s;‘\,V :—V(){/'VTWL; ' (6:9)
Since
WIVVIW = (W +AW)TVVT(W + AW)
WIVVIW + 2WTVVTAW + AWTVVTAW
and

WIW = (W +AW)T(W + AW)
= WI'W +2WTAW + AWTAW
= 14+2WTAW + AWTAW
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Thus, using the fact AWTVVTAW > 0

QWIVVTAW + AWTVVTAW - 2WTAWWTVVTW

G(W) = ——
WT'wW
AWTAWWTVVTW
WIW
- > 2AW, ((VVIW), — Wi“/:TVYTW) -3, AWZWIVVTW
o WT'w
1 2(VVTW),; + 2W,WTVVTW
- — Y aw? ( it —WIVVIW
WTW Wi
> 0.
For the divergence case, we use the same technique as Lee’s [91].
The update rule equation (6.6) becomes
. Vie (1/W; Vi./(WI'V
W, = w, 2 Vi (I s 21 Vi) (WTV),) (6.10)
Do (WIV) + 35, WiVig)
Let
Vij T
F(W) = Viilog ——F— —V,;; +  WW'V),, 6.11
(W) Z( o T~ Vot (WWIV) ) )
and
G(W,W') = > (VilogVy; — Vi) + Z WWIV),; (6.12)

2
t

WLV,
ZV” Wt (1ogW W, V,; —log

e 1
Wiy )

We need to show that G is an auxiliary function of F. It is easy to see that
G(W,W) = F(W). To show G(W, W) > F(W), use the convexity of the log
function:

W,V
- logZWaVaj < — Z ag log % (6.14)
a a a

holds for all nonnegative a, that sum to unity. Setting

WiV,

WTV]‘. (6.15)

Qg =
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We have

WLV,

—log(WW'V);; < = >V, ——a WV,

i,7,a

WV,
(1ogWiWaVaj —log a_dJ )

(WHTV;
(6.16)
which imply that G is an auxiliary function of F.

Furthermore, the minimum of G(W, W?) with respect to W is determined by
setting the following gradient to zero

WiV,

8G(W W ) Z Z Vaj + Zi Vz] (Wt)T\;
b ASSASE WV, + ZWMJ =0.

OW, . - W,
(6.17)
Solving the above equations, we have
i (L/WELS V. wHTv

Wi W > Vik (L/WE+ 30, Vi / (WH)TV)i) (6.18)

2o (WHTV) + 525, WiVik)

This proves that the algorithm in divergence when W is a vector causes the
objective function value to be nonincreasing.

P-NMF was shown to work well, especially, it gives a more localized and sparse
representation than general NMF algorithms, see Publication IV, V, VII. The
question we address here is whether variants of the method can be developed us-
ing some other distance or divergence measures, and how would these variants
compare with NMF in terms of localized, sparse representations and the orthog-
onality of the basis vectors.

6.3 P-NMTF algorithms with different divergence
measurements

The algorithms for minimizing these distances and preserving positivity follow
the same idea as in NMF and P-NMF: starting from a gradient descent, we find
a suitable step size such that the algorithms become multiplicative instead of
additive. When everything is positive or non-negative initially, this property will
be maintained by the multiplicative update rules and a non-negative solution is
guaranteed after convergence.
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1. For Amari’s alpha divergence

V; WWwWTv i A-1_1
DY WwWTV(v) = 3 vy Vel i)

— B(B—1)
VY., V.
n zk: (WW \;)zk Vik

Computing the partial differential of fo) (WWTV||V) with respect to W

DY (WWIVV) 3 Vit/ (WWIV) i)
k,l 6
5 (Va/ (WZVTV)u)ﬁ

8W,L' j

WiV

+ Z (Wi Vi+ Wi, Vi)
Tl

we obtain the following algorithm:

> (Vie/ (WWTV) )W,V
Yo WiV + 3, (WTV)
ki (Vi/ (WWTV) )P W Vi

Yo Wi Vi + 3, (WTV)

Wij = Wy

+ Wij

2. For Hellinger distance
Dy (WW'V|[V) =Y (/ (WWTV)i — /(V)ir)?,
ik

Applying gradient method

ODg(WWTV||V)
aWij

= Z (Wi Vi + Wy Vi)
ol

-3 \/sz/(WWTV)sziju
ol

=S Vi (WWTV) Wi Vg
kl

Wi, Vy
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we get the update rule

>kt VVi/ (WWTV) WiV
>k Wi Vi + 22 (WEV) i
W, Soka VVi/(WWTV) Wi Vi
2o Wi Vi + 22 (WTV)jy

Wij — Wy,

3. For Pearson’s distance
(WWTV)y — Vi)?
(WWTV),,

Dp(WW'V[[V)=>"
ik

ODp(WWTVI||V)
5‘wij

= Z (Wi Vi + Wi, Vi)
Kl

- (( NN Wi Vil

The update rule is

V)2
R e W Vi
I Wi Vi + 3, (WTV) 5

LW Vv
B Zk,l (WWTV),;;)2 kj ¥kl
I Wi Vi + 3, (WTV)

W73<—W

+W

4. For Pearson’s dual distance
(WWTV); — V)2

Dup(WWIV[V) =} Vi

ik

ODap(WWTV|[V) > 2(WWTV),,

Wi V;
ow = Vi S
2(WWTV),
+ Z T1ijvk*l
kL

- Z 2(Wg;i Vi + W, Vi)
Kl
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The update rule is

Wij — Wij X
Zkl ijVil —+ ZZ(WTV)jl
T
P Q(W‘\;/VMV)M Vit + 2 Q(Wiw VAW Vi

The optimal choice of the above algorithms depends on the distribution of data.
If such knowledge is not available, we may run all these algorithms to find an
optimal solution. In some tasks and distributions there are particular divergence
measures that are uniquely suited. On the other hand, if the approximating
model fits the true distribution well, then it does not matter which divergence
measure is used, since all of them will give similar results, see Figure 6.2.

6.4 P-NMF with regularization

In the standard NMF, we can impose some additional constraints such as sparsity
[63, 64], 'smoothing’ [120] , etc. Kompass [84] generalized a divergence measure
for nonnegative matrix factorization with adding regularization terms

Vi - (WWIV)

T — .
Dy o(WWTV|[V) = %:Vzk G- (6.19)
WWLV), —V;
+Z wwiv)i /3) = (6.20)
+awfw( )- (6.21)

where the regularization term aw fw (W) is used to enforce a certain application
dependent characteristic of solutions such as smoothness or sparsity. If we set
aw = 0, it reduces to special Csiszar’s ¢-divergence case, for example, § = 2, it
simplifies to Euclidean distance; 8 — 1, it tends to Kulback-Leibler divergence.
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Applying gradient method

0Dk, (WWTV||V)

= > (WWIV)[T Wi vy, (6.22)
Oowj o
— Z Vi (WWTV)I2 W, vy, (6.23)
+ Z WWIV)I W, vy, (6.24)
- Z Vi(WWTV)I 2w, vy (6.25)
k,l
+ awpw (W) (6.26)

where the function 1w (W) is the derivative of fw(W). By setting the step size
ni; to be

Nij = (6.27)
Wij
Dok ((WWTV)fz_lwijiz + (WWTV)Z_lwijkl)

, (6.28)

We have the update rule (6.29):

Wij — Wij X (629)
Zk 1 (Vkl (WWTV) ij Vil —+ Vil (WWTV)272W]€]‘VM) — Oéw’(/)w(W)

St (WWTV)IT WG Vi + (WWTV)T Wi Vi)
(6.30)

The basis images for NMF and for the family of P-NMF with dimension 49
are shown in Figure 6.1, see Publication VI. These are the 49 columns of the
corresponding matrices W, again shown as 19 x 19 images. All the basis images
for NMF and P-NMF are non-negative. The basis components of P-NMF type
algorithms are spatially more localized and non-overlapped compared to NMF
algorithm.

Figure 6.2 shows the reconstructions for one of the face images in the NMF, and
P-NMF subspaces of dimension 7 = 49. For comparison, also the original face
image is shown. Visually, the P-NMF method is comparable to NMF.
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6.5 Propertities of P-NMF

6.5.1 Physical model of P-NMF

In Publication V, a physical model of the objective function 6.1 has been set
up as follows. Suppose that each observation v is composed of r non-overlapped
parts, i.e. v = Z;Zl vp. We model each part v, by the scaling of a base vector
w,, plus a noise vector €,

Vp = QpWp + €. (6.31)

If the base vectors are normalized so that wgwq =1 for p = ¢ and 0 otherwise,
then the reconstructed vector of this part is

Z WWa V) = Z Wowo (pWp + €p) (6.32)
qg=1 qg=1
T
= Z wo(apwew, +we,) (6.33)
g=1
= apWp + Z WWo €. (6.34)
g=1

The norm of the reconstructed vector is therefore bounded by

T T
[|vp — ququva = H (I — ququ> €p
g=1 g=1

That is, w,w, v, reconstructs v, well if the noise level €, is small enough. Ac-
cording to this model, P-NMF can potentially be applied to signal processing
problems where the global signals can be divided into several parts and for each
part the observations mainly distribute along a straight line modeled by oy, w,,.
This is closely related to Oja’s PCA subspace rule [106], which finds the direction
of the largest variation, except that the straight line found by P-NMF has to pass
through the origin.

< (m—=7)llepl]. (6.35)

6.5.2 Orthogonality and sparseness

The digital images can be represented using sparse representation, in which any
given image window is spanned by just a small subset of the available features
[9, 73, 110, 153]. As shown in Figure 6.1, the base images of P-NMF algorithm
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reveal more localized and sparse features than that of NMF algorithm. This
means that P-NMF gives better orthogonality of each column in the base matrix
compared to the NMF method. For the quantitative analysis of the orthogonality
and sparseness, we define two concepts. The first one is the entropy for each of
the normalized columns of the basis matrix W (the basis images) as

m m
En; = — ZWM 1ogWij, ZWM = 1, (636)
i=1 i=1
where m is the number of the rows of the basis matrix W. Then we calculate
the average of entropies over columns of basis matrix W (that is, over the basis

images),

1 n
en =~ Z en;. (6.37)
7j=1
where n is the number of the columns of the basis matrix W.

Generally, a smaller entropy value en shows more localization and sparseness.
The experiments show that the P-NMF algorithms clearly have smaller entropy
than NMF, hence sparseness for the basis images.

Another way to measure the sparseness is the orthogonality of the basis vectors.
Two nonnegative vectors are orthogonal if and only if they do not share any non-
zero elements. Therefore the orthogonality between the learned bases reveals the
sparsity of the resulting representations, and the amount of localization for facial
images. We measure the orthogonality of the learned bases by the following

p=[W'W —1]|, (6.38)

where || - || refers to the Euclidean matrix norm. The columns of W are first
normalized to unit length, so that p measures the deviation of the off-diagonal
elements of W from zero. A smaller value of p indicates higher orthogonality and
p equals to 0 when the columns of W are completely orthogonal.

Figure (6.3, top) compares the orthogonal behavior among PNMF, NNSC and
NMEF as the learning proceeds using MIT-CBCL image database. PNMF con-
verges to a local minimum with much lower p value, that is, higher orthogonality.
Figure (6.3, bottom) shows that PNMF is not sensitive to the initial values.

6.5.3 Clustering

P-NMF also has close relation to the k-means clustering, see Publication VII.
P-NMF can be used for clustering the columns of a data matrix V in the following
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way: apply P-NMF for the transposed matrix V7 under the usual non-negativity
constraint and obtain the weight matrix W. The rank r of W should be set equal
to k, the desired number of clusters. If necessary, the columns of W may be
normalized to unit length. W is then an approximation of the cluster indicator
matrix, whose m rows correspond to the m data vectors to be clustered, and
k columns correspond to the k£ clusters: the elements W;;, j7 = 1,...,k along
the i-th row show a “soft” clustering of the i-th data vector into the clusters
Cj, j =1,...,k. Correspondingly, the same elements along the j-th column show
the degrees by which each of the data vectors belongs to the j-th cluster Cj.
Because of the constraint, all these degrees are non-negative. If a unique “hard”
clustering is desired, the maximum element on each row can be chosen to indicate
the cluster.
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Figure 6.1: The bases of face images by Lee and Seung’s NMF (top,
left), P-NMF using KL divergence (top, right), Pearson divergence
(middle, left), dual Pearson divergence (middle, right), and Hellinger
divergence (bottom), with the dimension 49. Each basis component

consists of 19 x 19 pixels.
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Figure 6.2: From top left to bottom right: The original face image
and its reconstructions by Lee and Seung’s NMF, P-NMF using KL

divergence, Hellinger divergence, Pearson divergence, and dual Pearson
divergence.
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Conclusions

This thesis addressed the problem of independent component analysis (ICA) and
nonnegative matrix factorization (NMF). These methods allow solving many dif-
ficult signal processing problems in different application domains. The ICA-based
methods have shown to be very successful, and perhaps the most widely used,
for performing blind source separation in the general case. If it is known a priori
that a nonnegativity condition is valid, then NMF is a widely used technique.

In this thesis, the theoretical conditions for the linear ICA model to qualify as
blind separation model were reviewed. It is both sufficient and necessary that
the mixing matrix is of full column rank and that there is at most one Gaussian
source signal. This gives conditions for the linear ICA techniques to be used as
blind system identification methods. The FastICA algorithm is a computation-
ally highly efficient and very popular method for performing the estimation of
ICA. The iterative algorithm finds the direction for the weight vector maximizing
the nongaussianity of the projection for the data. The local and global conver-
gence of FastICA algorithm have been studied in the thesis. Symmetric FastICA
has shown to have at least quadratic convergent speed under a wide range of
nonlinearities and source densities. Adding nonnegative constraint for the source
data, a nonnegative FastICA algorithm is developed.

Nonnegative Matrix Factorization (NMF) is another type of technique, that was
also reviewed in this thesis. Projective NMF is a variant of Nonnegative Ma-
trix Factorization (NMF) in which only one parameter matrix is used instead of
two matrices. This makes the method somewhat simpler to compute. An open
question is what would be the most appropriate distance measure to be used in
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minimizing the approximation error, since each different distance measure gives a
different solution. Generally, the choice of the distance measures depends on the
distribution of data. If the distribution of data fits a true distribution quite well,
it might be the same for all those distance measures. Here, several distance mea-
sures were introduced for the problem, using variants of Csiszdr’s (p-divergence
as the starting point. Multiplicative gradient algorithms were derived for each,
which guarantee the positivity of the approximation, when the algorithms are
started from positive initial values.

The sparsity of the ensuing solutions was studied and compared experimentally
with each other and NMF. As relevant measures of sparsity, the entropy of the
non-negative basis vectors as well as their orthogonality were used. It turned out
that on both terms, the P-NMF variants produce significantly sparser represen-
tations that NMF. Such sparse representations might act as a bridge between
statistical and structural pattern recognition.
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