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The FastICA Algorithm Revisited:
Convergence Analysis

Erkki Oja, Fellow, IEEE, and Zhijian Yuan

Abstract—The fast independent component analysis (FastICA)
algorithm is one of the most popular methods to solve problems in
ICA and blind source separation. It has been shown experimentally
that it outperforms most of the commonly used ICA algorithms in
convergence speed. A rigorous local convergence analysis has been
presented only for the so-called one-unit case, in which just one
of the rows of the separating matrix is considered. However, in the
FastICA algorithm, there is also an explicit normalization step, and
it may be questioned whether the extra rotation caused by the nor-
malization will affect the convergence speed. The purpose of this
paper is to show that this is not the case and the good convergence
properties of the one-unit case are also shared by the full algorithm
with symmetrical normalization. A local convergence analysis is
given for the general case, and the global behavior is illustrated nu-
merically for two sources and two mixtures in several typical cases.

Index Terms—Convergence analysis, cubic convergence,
FastICA, independent component analysis (ICA).

I. INTRODUCTION: ICA AND FASTICA

THE fast independent component analysis (FastICA) algo-
rithm [11]–[13] is one of the most popular methods to solve

problems in ICA and blind source separation. FastICA was orig-
inally introduced for the instantaneous noise-free ICA model.
The problem is to estimate the unknown mixing matrix and

unknown independent sources making up a random vector
, from the model

(1)

Vector contains the mixtures and a sample of is available. It
can be assumed that the sources are zero mean by first centering

to zero mean. It can also be assumed that the variances of the
sources are equal to one, because both and are unknown
and any scalar magnitudes can be exchanged between them. For
identification of the model, at most one of the sources can have
Gaussian density.

In the basic FastICA method, the vector is first whitened
to obtain vector for which . This can
be accomplished with principal component analysis, in practice
using the available sample on vector . At the same time, the
dimension of is made equal to . In the ideal case
of (1), is found simply as the number of nonzero eigenvalues
of the covariance matrix of . Then, in the model

(2)
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both and are white; because of the explicit whitening, and
by the assumptions of zero mean, unit variance, and indepen-

dence of the sources . It is easy to show that in this case the
square matrix is orthogonal, or ,

which simplifies the estimation problem. If were known, the
sources could be directly solved from .

In the FastICA algorithm, the solution is sought as

(3)

with matrix square and orthogonal. Vector is thus a rota-
tion of the solution and has a unit (identity) covariance matrix.
If is equal to , then and the independent com-
ponents have been found. If is any permutation matrix and
is equal to , also an orthogonal matrix, then .
Also, this permuted version of the sources is a feasible solu-
tion, because we have no way of knowing the order of the inde-
pendent components.

The separation matrix is found by numerical algorithms.
Let us denote the rows of by . The FastICA
algorithm [12] is an iterative method to find the local maxima
of a cost function

(4)

with a nonlinear function which is usually assumed even and
symmetrical. The symbol stands for expectation, which in
practice would be estimated by sample mean over the whitened
vectors . The cost function to be maximized can be negative
mutual information, likelihood, some approximation of non-
Gaussianity such as higher order cumulants, or some extension
of these. For a very wide range of nonlinearities , it can be
shown that the true independent components, or rows of the true
solution matrix , are among the local maxima; see [12]. For
self-adapting nonlinearity, see [25]. A widely used cost function
is the fourth-order cumulant or kurtosis, defined for any random
variable as

(5)

In (4), the argument is restricted to have unit vari-
ance, and thus its kurtosis is . In maximization, the
second term can be dropped, and the criterion becomes

(6)

Kurtosis maximization was the starting point for the FastICA
algorithm [13], [14]. This is a very well-known and established
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cost function in ICA, blind source separation, and blind decon-
volution, dating back to the classical works of Donoho [6], La-
coume [17], and Comon [4]. Different maximization techniques
have been used such as gradient methods [23], Givens rotations
[5], or tensor algebraic techniques [2]. In [13] and [14], we intro-
duced a faster method based on batch processing and fixed-point
analysis. For one of the rows , the FastICA algorithm for kur-
tosis maximization makes the basic updating step

(7)

followed by normalization of vector to unit norm. This form
was introduced in [13], where it was also shown that the algo-
rithm will converge globally to one of the original sources. Note
that the first term in (7) is just the gradient of (6), and the second
term has been designed to give the algorithm superior conver-
gence over a gradient method. Any constant multipliers can be
omitted because of the subsequent normalization.

For the general cost function (4), the corresponding updating
step is

(8)

with function the derivative of and the derivative of .
This form of the algorithm was introduced by Hyvärinen [11]
as an approximative Newton method for maximizing the cost
function in (4). The first term again is just the gradient
of with respect to , and the second term is due to the
Newton approximation. Note that for as in (6),
we have , giving the rule (7) when
the multiplier four is dropped. In addition to the cubic poly-
nomial , some popular nonlinearities used in FastICA are

and . Note that these
all are odd functions: .

To compute the full matrix , the vectors must be re-
orthonormalized after the update because they lose their or-
thonormality in the updating (8). The orthonormalization can
be accomplished basically in two ways: either deflationary or
symmetrical orthonormalization [13]. The latter is given by

(9)

with the matrix with rows . The square root of a sym-
metrical positive definite matrix is here defined as the principal
square root with positive eigenvalues, which can be computed
through the eigenvector–eigenvalue decomposition.

Clearly, after the normalization, it holds or
. In FastICA, the updating step (8) for each

in parallel followed by normalization is repeated until the
matrix converges. The initial matrix can be chosen as an
arbitrary orthogonal matrix.

A good reference to the FastICA method is the textbook [12]
which also contains many pointers to practical applications and
public-domain software for the method.

The key question is the rate and order of convergence for this
algorithm. This is defined in the standard way as follows: As-
sume is a fixed point, meaning that if it is chosen as the

initial matrix, then it will not be changed in the algorithm. As-
sume that at a certain step in the algorithm, and
at the next step, . Then the convergence to
is linear with convergence rate if is asymptoti-
cally (after a large number of iteration steps) equal to . There

is any matrix norm. Convergence is quadratic, or the order
of convergence is two, if is asymptotically proportional
to , and cubic (order of convergence is three) if
is asymptotically proportional to . As soon as be-
comes small, quadratic, or cubic, convergence makes the error
very small in a few steps.

In an empirical comparison study given by [8], FastICA
turned out to live up to its name, as it outperformed some
popular gradient-descent type ICA methods in convergence
speed by a clear margin, with small residual error. Many other
comparisons indicate the same. This is understandable because
FastICA is not gradient descent but an approximative Newton
method. However, despite the importance of the speed of con-
vergence, it has been only partially answered in the literature
so far.

Theoretical analysis of convergence can be approached from
two directions.

1) The numerical convergence of the ideal deterministic al-
gorithms. These are obtained when the expectations in (7)
and (8) are assumed to be the theoretically correct ones,
essentially meaning that there is an infinite sample of the
mixture vectors , hence, the whitened vectors , in the
algorithms. Questions such as asymptotic stability of the
extrema of the theoretical contrast functions, and the con-
vergence rate of the algorithms, can be discussed.

2) Behavior of the algorithms for finite samples. This is the
practical situation. Then, the theoretical expectations are
replaced by sample averages. Numerical convergence
speed is still quite as important as for the ideal case,
but now the limit of convergence is not exactly the cor-
rect solution obtained by the ideal algorithm. There is a
residual error due to the finite sample size. A classical
measure of error is the variance of the matrix elements.
The question then is how this residual error due to a finite
sample converges to zero with growing sample size, or the
consistency of the estimation.

In this paper, we only address the first of these questions. The
second question has been discussed elsewhere [10], [12], [15],
[16], [24]. In the three latter references, the Cramer–Rao bound
for linear ICA was derived, the residual error of FastICA was
compared to it with favorable results, and a new efficient version
of FastICA was proposed.

The first question has been partially addressed earlier, but up
to now, a full analysis has been lacking. The convergence was
proven in [11] and [13] for the so-called one-unit case, in which
only one of the rows is considered and orthogonalization is re-
duced to just normalization of the vector to unit length after
each iteration step. The one-unit algorithm has local quadratic
or cubic convergence to one of the rows of the true separating
matrix, under a mild condition on the nonlinear function . It
has also been shown that in the specific case of the kurtosis cost
function, when , there are no other asymptotically
stable points, so the convergence of the one-unit algorithm is
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global, and the order of convergence is cubic. An analysis of
the convergence for this case was also made by Douglas [7].
For a gradient algorithm and a generic cost function, monotonic
convergence was analyzed by Regalia and Kofidis [22]. For sto-
chastic gradient descent ICA algorithms in general, stability was
considered by Amari et al. [1].

However, rigorous analysis of convergence for the full
algorithm with either deflationary or symmetrical orthonormal-
ization is missing. For the deflationary case, the convergence
follows in a straightforward fashion from the convergence
of the one-unit case because the vectors can be analyzed
one by one. However, in the symmetrical case, all the vectors

are rotated strongly in step (9) and there is a doubt
that this rotation might destroy the convergence speed. We
cannot infer the convergence speed directly from the one-unit
behavior.

It is the purpose of this paper to show that this is not the
case: The algorithm with symmetrical orthonormalization still
has the good local convergence properties of the one-unit case.
Throughout, the approach here is purely theoretical, giving rig-
orous mathematical results. No source separation experiments
are given, because a multitude of such results have been pre-
sented in ICA literature for artificial and real data, both for the
FastICA algorithm and other comparable methods; see e.g., the
books [3], [9], [12], and references therein.

The contents of this paper are as follows. Section II considers
the general cost function (4) and shows local convergence to
the true separating matrix for the symmetrical FastICA algo-
rithm. The convergence speed is at least quadratic as usually in
the Newton method. Section III addresses the special case of
the kurtosis cost function (6) and shows cubic convergence, fol-
lowing a preliminary result of this case earlier presented in [21].
In Section IV, a more detailed convergence analysis is made
in the simple 2 2 case for various nonlinearities in (4), il-
lustrating why the algorithm is so fast. Section V gives some
conclusions.

II. CONVERGENCE ANALYSIS FOR THE

GENERAL NONLINEARITY

A. Useful Transformation

Let us make a simplifying linear transformation by consid-
ering the matrices

(10)

Then, from (2), we have . Denoting the
rows of matrix by , we have . Multiplying
both sides of the general one-unit FastICA algorithm (8) from
the left by and remembering that yields
now

(11)

This form of the equation is much easier to analyze than (8)
because now the independent source vector appears explicitly
and we can make use of the independence of its elements.

Let us show next that the normalization (9) is uneffected by
this transformation. Multiplying both sides of (9) from the right
by we get

where we have used the fact that . We have

(12)

giving the equivalent orthonormalization for matrix . The gen-
eral symmetrical FastICA algorithm in the transformed coordi-
nate system consists of (11), for , together with the
normalization (12).

B. Fixed Points

The problem is now the convergence of this algorithm: Where
does it converge and what is the convergence speed?

For the one-unit convergence result, the following assump-
tions on function are made which also hold here [12].

Assumption 1: Function is an odd, twice differentiable
function, which satisfies

(13)

for all sources .
is odd because it is the derivative of the even function

in the general cost function (4). Differentiability is a tech-
nical assumption that will be needed in the stability analysis.
The condition (13) is quite general. However, it is violated in
two special cases, as is easily shown: Either if is a linear
function, or if has a Gaussian density. It is well known that
in these cases, the ICA model cannot be identified. Linearity
of would mean that the function in the cost func-
tion (4) is quadratic. The ICA problem cannot be solved with
second-order statistics. As for Gaussianity, in the practical Fas-
tICA algorithm finite samples are always used and all the em-
pirical distributions are non-Gaussian.

To analyze the iteration, let us first look at its fixed points. We
have the following.

Lemma 1: Under Assumption 1, matrix
is a fixed point of (11) and (12).
Proof: Now is the th row of

the matrix , thus . Hence, is a
function of variable only, which is independent of other com-
ponents ; so for . Therefore,
from (11)

Because is odd and hence is even, we have
and .

Consider first the plus sign in (the one nonzero element is
equal to ). Then, we have

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 05:49 from IEEE Xplore.  Restrictions apply.



OJA AND YUAN: THE FASTICA ALGORITHM REVISITED: CONVERGENCE ANALYSIS 1373

where . Consider then the minus
sign in . Then, we have

Thus, in both plus and minus cases, we have , in
matrix form

(14)

where . By Assumption 1, all the are
nonzero. We have

(15)

(16)

and hence

(17)

This completes the proof.
Remark: The result also follows from the convergence result

for the one-unit algorithm in a straightforward manner. How-
ever, for other fixed points, not necessarily shared by the one-
unit algorithm, the analysis must be done separately for the sym-
metric algorithm, as was done here (see also Lemma 4 in Sec-
tion III).

The significance of Lemma 1 comes from noting that, by (3),
, meaning that the original sources

have been found at the fixed point. They have a sign ambiguity
which cannot be resolved with ICA techniques.

Because the ordering of the sources should have no effect, it
would be desirable that also a permuted version would be a fixed
point. This is shown in the following.

Lemma 2: Let be the fixed point given in Lemma 1. Let
be an orthogonal permutation matrix for which .

Then, and are fixed points as well.
Proof: Both permuted matrices and , with given

in Lemma 1, contain exactly one nonzero element on each row.
Equation (14) can be shown to hold for them as well, when
and are replaced by the permuted versions and the diagonal
elements of are permuted correspondingly.

Consider then the symmetrical normalization in (12). Let us
first show that the same relation holds between and .
We have

which concludes the proof for .
For matrices and , we must show

We have now

hence, . Thus, finally

(18)

This concludes the proof.

C. Stability Analysis for the Fixed Points

Now we will show that the following holds.
Lemma 3: Under Assumption 1, the fixed point of Lemma 1

is asymptotically stable and the order of convergence is at least
two.

Proof: For clarity, let us denote the fixed point
of Lemma 1 by . Make the perturbation

(19)

where are the elements of matrix , and are small for all
, say, with a small positive number. Denote the

rows of matrix by and those of the matrix by ,
respectively, thus . Equation (11) gives

(20)

(21)

(22)

Using Taylor series expansions of the functions and
at the points , and remembering that is an odd
function, we get

(23)

(24)

The terms collect all the remaining terms that are
quadratic or of higher order in the elements of , thus bounded
by a constant times . Also, in the rest of the proof, this
standard practice is used. Substituting the aforementioned into
(22) yields

Since

we have

(25)

In matrix form, this becomes

(26)
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where the matrix is the diagonal matrix of (14), and ma-
trix is another diagonal matrix whose diagonal elements are

. This gives

where we have used the diagonality of all the matrices and the
fact that is the unit (identity) matrix. Matrix is
first order in , thus

(27)

Thus

This proves the stability of the fixed point with second-order
convergence.

The proof could be extended to the permuted fixed points in
a straightforward way. As for other fixed points, which are pos-
sible depending on the nonlinearity , general results of conver-
gence or nonconvergence are difficult, as it also depends on the
densities of the independent sources . An exception is the case
of the kurtosis cost function, as well as other polynomial non-
linearities, for which all fixed points may be characterized and
their stability behavior confirmed. In the following, this is done
for the kurtosis cost function.

III. CONVERGENCE ANALYSIS FOR THE

KURTOSIS COST FUNCTION

This case was already considered in [13] for one of the rows of
matrix . It was shown that for the th element of , denoted
here , (11) yields the very simple update rule

(28)

where is the kurtosis of the th independent component. We
may assume that all the kurtoses are nonzero. This follows from
Assumption 1 by substituting : Then,

which is exactly the kurtosis of the unit
variance .

The element-wise algorithm (28) for all elements of matrix
, followed by the symmetrical orthogonalization (12), is the

FastICA algorithm for kurtosis in the transformed space. This
case was analyzed by one of the authors in [21]. In the following,
the main results will be briefly repeated.

Let us again solve the fixed points as follows.
Lemma 4: Let be an orthogonal matrix such

that in each column , each is either 0 or a positive constant
. Then, it is a fixed point of the algorithm (28) and (12).

Proof: Now and from (28) it follows:

Thus

where . The rest of the proof is
similar to Lemma 1.

As in Lemma 2, we can easily show that also permutations of
these fixed points are fixed points. The main result to be shown
for the kurtosis case is that, among the fixed points mentioned
in Lemma 4, only the diagonal matrix

(29)

or its permutations are stable. The speed of convergence to the
stable fixed points is cubic. On the contrary, all those matrices
that have more than one nonzero element on each row and
column are unstable.

To show the stability of (29), let us make the perturbation

(30)

where are the elements of matrix and for all ,
with small. Then, (28) gives

(31)

(32)

We see that the off-diagonal elements of are proportional
to , denoted , because for them . Denote the
diagonal matrix of the perturbations by and remember that

is the diagonal matrix of the kurtoses , as before. Then, we
can write (32) in the form of a diagonal matrix plus error as

where we have used the fact that . This gives

Thus

and finally

(33)

The error is proportional to the third power of the previous error,
showing that the convergence is indeed cubic.

Remark: According to Lemma 4, a typical column of a fixed
point matrix has from 0 to zeros and the rest of the ele-
ments equal to . Orthogonality of constrains this further:
If is the number of nonzero elements, then because
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each column must have unit norm. The mutual orthogonality of
the columns sets further constraints on the locations and signs
of the nonzero elements in each column. For the stable fixed
points, there is only one nonzero element in each column,
each one on a different row.

The stability of the fixed points and , with an or-
thogonal permutation matrix, can be treated in the same way
[21]. On the contrary, those fixed points that have more than one
nonzero element in the rows are not stable. This can be shown
by a counterexample which is the topic of Section IV.

IV. GLOBAL ANALYSIS FOR TWO MIXTURES, TWO SOURCES

The smallest nontrivial mixing model is one in which two
independent sources are mixed to two mixtures. After the
whitening and the transformation to the -space, the mixing
matrix is orthogonal. For the 2 2 case, the orthogonal
matrix can be parameterized with a single parameter in the
following form:

where . The expression can have plus or minus
sign as long as the sign is the same in both off-diagonal ele-
ments, to guarantee orthogonality of the rows.

It turns out that global iteration formulas can be derived for
the four matrix elements from the FastICA algorithm. They
show very clearly how the algorithm behaves in this simple
case, and may also give an idea of the general behavior. Un-
fortunately, extending such a simplified analysis to dimensions
higher than two is not easy.

We could also use the polar parametrization
, as was done in a related approach to the global properties

of the kurtosis cost function for ICA [19].

A. Kurtosis Cost Function

It may be instructive to look at the kurtosis case first as it
is relatively simple and illustrative. This was earlier analyzed
in [21]; see also [19]. Lemma 4 gives the fixed points: Either

, or . Assume that both kurtoses
are nonzero. It follows that

implying

(34)

It is notable that the kurtoses have disappeared altogether from
the iteration. In the 2 2 case, the convergence of the algo-
rithm is totally independent of the signs and values of the kur-
toses, as long as they are nonzero. Note also that the “one-
bit-matching” assumption [18], by which the nonlinearity
should be adapted to the signs of the kurtoses of the sources, is

not necessary for fixed-point iterations like FastICA. This itera-
tion will find both the maxima and minima of the cost function,
while a gradient–ascent type of learning rule only finds the local
maxima.

Let us look at how the elements change in one step of the
iteration. The relative change is the same for all the elements,
following the algorithm:

(35)

where

(36)

Algorithm (35) is a fixed-point iteration whose convergence de-
pends on the iteration function . Fig. 1 shows the graph of
the iteration function.

As seen from Fig. 1 and also easily proven (see [21]), the fixed
points of this iteration are , and . The points

are unstable. The points are stable and the order
of convergence to these points is three.

Typically, starting from any other initial point but the points
, the elements rapidly approach the closest stable fixed

point and then converge very fast, because close to the fixed
point the error at any step is the error at the previous step to the
third power. For example, taking 0.5 as the initial point would
lead to the iteration

Actually, the last value is of the order . After this, con-
verging to zero is very rapid. This iteration sequence could be
traced from the graph of in Fig. 1.

The elements on the same row or column of are always on
the opposite sides of the unstable point, because the sum of their
squares is equal to one. Thus, one of them converges to 0 if the
other converges to and vice versa, and matrix becomes
the diagonal matrix (29) or one with permuted columns.

B. General Cost Function

For the general odd function , the algorithm is as follows:

(37)

and

(38)

Opening the (37) for all the elements , we have

(39)

(40)
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Fig. 1. Comparison of the iteration functions f(x) in the cubic and fifth-degree case.

(41)

(42)

Thus

Assume that the determinant of the matrix is negative, that
is, . We have

where

(43)

(44)

(45)

Therefore

Looking at the changes of all the elements in one step of itera-
tion, they follow the same algorithm

(46)

where

(47)

with given in (39)–(42).
In the case that the determinant of the matrix is positive,

by a similar calculation, the function becomes

(48)

To illustrate this general result, let us look at two different
nonlinearities: First, the fifth power to see the difference to the
earlier analyzed third power, and second, the hyperbolic tangent
function, widely used in ICA algorithms.

C. Function

To simplify the calculation, let us assume here that both
and have symmetric density functions. Thus, all central
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moments of odd degree are zero. For , the rule (37)
becomes

(49)

Equations (39)–(42) become

Now we can calculate the function as shown in (47) and
(48). If

where

(50)

(51)

Using the relations between cumulants and central moments
[20], we note that these can also be written as

(52)

(53)

where denotes the sixth-degree cumulant. Now

(54)

Thus, we get (55) as shown at the bottom of the page. If
, the function is as in (56), shown at the

bottom of the page, where

(57)

(58)

This gives the fixed points again as , and
, or the same as in the kurtosis case. It can be

shown that the points are unstable by looking at
the derivative of the function .

The shape of the function depends on the two parameters
which in turn depend on the sixth and fourth central moments
of the sources. A simple special case is , which by (53)
means that the kurtoses of the two sources have different signs
and they cancel out. Note that one of the sources is then sub-
Gaussian, the other super-Gaussian. Then, in analogy with (36),
we have

For this function, the convergence is very fast, of the order five,
because very close to the fixed point it holds .
However, this is the only such case; if , then close to
it holds , and the convergence is again cubic.

(55)

(56)
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Fig. 1 gives a more realistic example in which the source is
uniformly distributed (sub-Gaussian) in the interval ,
thus, it has zero mean and unit variance. Source has Laplace
distribution (super-Gaussian) with zero mean and unit variance,
with the probability density function

(59)

Now the function (56) becomes

(60)

As seen from Fig. 1, the function is close to the cubic function
near the stable fixed points.

D. Function

For the function , the behavior of the al-
gorithm depends on the probability densities of the sources in
more complex ways than for the polynomial functions. The in-
fluence cannot be expressed through a finite number of moments
or cumulants as in the polynomial case. Therefore, let us assume
some densities. First, take a case in which both and are
uniformly distributed on the interval with the prob-
ability density function

otherwise

Thus, the variances of and are 1. The rule (37) becomes

(61)

Then, (39)–(42) become (using shorthand notation for )

To calculate the function as shown in (47), we first
compute

(62)

(63)

(64)

and

(65)

(66)

(67)

Since

(68)

(69)

(70)
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Fig. 2. Plot of the function f(x) in (71).

Since the previous two integrations could not be integrated ex-
actly, we have to resort to numerical integration. This gives the
following function , plotted in Fig. 2:

(71)

Note how the function again qualitatively looks very similar
to the case of third- and fifth-degree polynomials: The fixed
points are the same, including the unstable point , and
the convergence to the stable fixed points is very fast. For this
simple 2 2 case, there are no false stable fixed points.

Second, for the nonlinearity, assume both and
are binary distributed: They take only values with
equal probabilities. This density is sub-Gaussian. Then, the
elements become (dropping out constant multipliers due to
the probabilities)

and

Now the function is

(72)

and it is depicted in Fig. 3.

Note how the function again has the same general shape as the
previous ones, with the same stable and unstable fixed points.
Due to the flatness of the curve around the stable points, con-
vergence is very fast.

Both aforementioned cases were sub-Gaussian. One may
wonder how the function changes if the kurtoses of the two
sources have different signs. Therefore, in the third case, as-
sume the source is binary distributed as previously, thus sub-
Gaussian, but the source takes the values with equal
probabilities , and zero with probability . It is easy to
check that is then super-Gaussian, and both sources have unit
variance. Calculating the values of elements , and neglecting
again constant multipliers due to the probabilities, we have
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Fig. 3. Plot of the function f(x) in (72).

Fig. 4. Plot of the function f(x) in (73).

and
Since , the function is

(73)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 05:49 from IEEE Xplore.  Restrictions apply.



OJA AND YUAN: THE FASTICA ALGORITHM REVISITED: CONVERGENCE ANALYSIS 1381

Again, as seen from Fig. 4, the function is qualitatively very
similar to the previous ones, with the same stable and unstable
fixed points.

V. CONCLUSION

The FastICA algorithm with symmetrical orthogonalization
is widely used in practice for blind source separation, based on
its good accuracy and convergence speed. It would, therefore,
be essential to have theoretical confirmation of the good proper-
ties. Up to now, only partial results have been available, mostly
concerning the one-unit behavior. These generalize in a straight-
forward way to deflation approaches, in which the rows of the
demixing matrix are computed sequentially. However, in sym-
metrical orthogonalization, all the row vectors are rotated in par-
allel and it is not obvious how the convergence is affected. This
algorithm was analyzed here, showing local quadratic conver-
gence to the correct solution with a generic cost function. For
the kurtosis cost function, the convergence is cubic. Thus, the
one-unit behavior generalizes to the parallel case as well.

It is notable that in these results the chosen nonlinearity in the
cost function has very little effect on the behavior: The algorithm
will find the sources as either local minima or maxima of the
cost function. The score function of the sources, which is optimal
for maximum likelihood and minimum entropy criteria for ICA,
seems not to offer any advantages for the speed of convergence.
However, as shown elsewhere [10], [15], the true score function
does minimize the residual error in the finite sample case.
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