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Abstract. The FastICA algorithm is a popular procedure for indepen-
dent component analysis and blind source separation. In this paper, we
analyze the average convergence behavior of the single-unit FastICA al-
gorithm with kurtosis contrast for general m-source noiseless mixtures.
We prove that this algorithm causes the average inter-channel interfer-
ence (ICI) to converge exponentially with a rate of (1/3) or -4.77dB at
each iteration, independent of the source mixture kurtoses. Explicit ex-
pressions for the average ICI for the three- and four-source mixture cases
are also derived, along with an exact expression for the average ICI in a
particular situation. Simulations verify the accuracy of the analysis.

1 Introduction

The FastICA algorithm is a popular procedure for independent component anal-
ysis and blind source separation. The technique is simple to implement and con-
verges quickly when applied to mixtures of independent non-Gaussian sources.
The algorithm’s convergence speed is locally-quadratic, and it is cubic when a
kurtosis-based cost is employed [1, 2]. This cubic convergence behavior can be
described using the analytical expressions for the evolution of the combined sys-
tem coefficient vector ct = [c1,t · · · cm,t]T for infinite data measurements, as
given by

ci,t+1 =
κic

3
i,t√∑m

j=1 κ2
jc

6
j,t

, (1)

where κi is the ith source kurtosis. The vector ct corresponds to the weight vector
wt of the single-unit FastICA algorithm in a transformed coordinate system
where the independent components are explicitly included.

The FastICA algorithm’s convergence behavior depends on the initial point
of the algorithm, represented by w0 or c0. As this point is usually chosen fully
at random in lack of any prior knowledge of the mixtures, an interesting ques-
tion arises: What is the average convergence behavior of the algorithm across
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a distribution of initial points? Consider the performance metric known as the
inter-channel interference (ICI) defined for the m-source case as

ICI
(m)
t =

∑m
i=1 c2

i,t − max1≤i≤m c2
i,t

max1≤i≤m c2
i,t

. (2)

Recently, an interesting observation about the FastICA algorithm with kurtosis
contrast was made [3]: For a random initial w0 or c0, convergence of the average
ICI appears to follow the “(1/3)rd Rule” given by

E{ICI
(m)
t } =

(
1
3

)
E{ICI

(m)
t−1}, (3)

over almost the entire convergence period. Additional work has shown that this
convergence behavior can be proven for the single-unit FastICA algorithm ap-
plied to simple two-source mixtures [4, 5], but it is not clear if such behavior
extends to the general m-source mixture case.

In this paper, we prove that the FastICA algorithm with kurtosis contrast in-
deed obeys the “(1/3)rd Rule” for general m-source mixtures over a large portion
of the convergence period. Our analysis employs a norm-constrained Gaussian
prior for the initial separation system vector. Moreover, explicit expressions for
the average ICI in the three- and four-source mixture cases are provided, and
simulations are used to verify the analytical performance predictions.

2 Average Behavior of the FastICA Algorithm for a
Three-Source Mixture

Before presenting the general m-source performance analysis, we introduce the
analytical tools used in our derivations for a three-source separation task. The
unconstrained (e.g. non-normalized) combined system vector at iteration t is

ct = [κ
q
2
1 x

p
2 κ

q
2
2 y

p
2 κ

q
2
3 z

p
2 ]T , (4)

where p = 2(3t) and q = 3t − 1. Employing this choice within (2) results in the
general ICI expression derived in [1]. At time t = 0, we have c0 = [x y z]T ,
where x, y, and z are random variables with some assumed probability density
function (p.d.f.). A reasonable joint p.d.f. choice for {x, y, z} would give a uniform
prior for the direction of c0. We can induce such a p.d.f by letting x, y, and z

be zero mean, uncorrelated, and jointly Gaussian. We can then express ICI
(3)
t

using ratios of powers of x, y, and z without normalization, and the resulting
expectations can be evaluated without trigonometric functions.

The portion of the average ICI at iteration t in which the first kurtosis com-
ponent is being extracted, such that the first element of (4) is the largest, is

E{ICI
(3)
1,t }=

8
(2π)3/2

∫ ∞
0

e−
x2
2

xp
dx

[∫ ax

0

((y

a

)p

+
(z

b

)p)
e−

y2

2 dy

]∫ bx

0

e−
z2
2 dz.(5)
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where a =
(

κ1

κ2

) q
p

and b =
(

κ1

κ3

) q
p

. (6)

The integral in brackets on the right-hand side of (5) can be approximated as∫ ax

0

((y

a

)p

+
(z

b

)p)
e−

y2

2 dy≈
[
e−

a2x2
2

∫ ax

0

(y

a

)p

dy

]
+

(z

b

)p
∫ ax

0

e−
y2

2 dy(7)

=
[
ae−

a2x2
2

xp+1

p + 1

]
+

(z

b

)p
∫ ax

0

e−
y2

2 dy. (8)

Substituting (8) into (5), we obtain

E{ICI
(3)
1,t }

=
8

(2π)3/2(p + 1)

[∫ ∞
0

axe−
x2(1+a2)

2

∫ bx

0

e−
z2
2 dzdx +

∫ ∞
0

bxe−
x2(1+b2)

2

∫ ax

0

e−
y2
2 dydx

]
.(9)

We can evaluate the integrals within brackets on the right-hand-side of (9) as∫ ∞
0

xe−
x2(1+a2)

2

[∫ bx

0

e−
z2
2 dz

]
dx =

b

1 + a2

√
π

2(1 + a2 + b2)
(10)

Therefore, E{ICI
(3)
1,t } =

2
π(p + 1)

1√
1 + a2 + b2

[
b

a−1 + a
+

a

b−1 + b

]
.(11)

Now, as t increases, we have

lim
t→∞

q

p
=

1
2
, lim

t→∞ a =
√

κ1

κ2
, lim

t→∞ b =
√

κ1

κ3
, and 2(3t) � 1. (12)

Substituting these results into (11), we obtain

E{ICI
(3)
1,t } =

1
π

(
1
3

)t 1√
κ1κ2 + κ1κ3 + κ2κ3

[
κ1κ2

κ1 + κ2
+

κ1κ3

κ1 + κ3

]
. (13)

Invoking symmetry for the terms E{ICI
(3)
2,t } and E{ICI

(3)
3,t }, we find an approx-

imate expression for the average ICI to be

E{ICI
(3)
t } =

3∑
n=1

E{ICI
(3)
n,t} = g3(κ1, κ2, κ3)

(
1
3

)t

, (14)

g3(κ1, κ2, κ3) =
2
π

1√
κ1κ2 + κ1κ3 + κ2κ3

[
κ1κ2

κ1 + κ2
+

κ1κ3

κ1 + κ3
+

κ2κ3

κ2 + κ3

]
.(15)

Eqn. (14) states that the average ICI for arbitrary three-source mixtures
asymptotically obeys the “(1/3)rd Rule” in (3). Numerical evaluations of this ex-
pression show that it is extremely accurate in predicting the average ICI during
the algorithm’s convergence period. Moreover, across all source kurtosis com-
binations, the maximum value of E{ICI

(3)
t } occurs when κ1 = κ2 = κ3, for

which

E{ICI
(3)
t } =

√
3

π

(
1
3

)t

. (16)
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3 Average Behavior of the FastICA Algorithm for
General m-Source Mixtures

Eqn. (14) provides evidence that the kurtosis-based FastICA algorithm has ex-
ponential convergence with a rate that is independent of the source distributions.
Can this result be extended to m-source mixtures? And how accurate is the ap-
proximation used in (8)? The following theorem addresses these issues, the proof
of which is outlined in the Appendix.

Theorem 1. Assume that a single-unit FastICA algorithm with kurtosis con-
trast is applied to an m-source noiseless mixture with infinite data, and that
the initial combined system coefficient vector c0 is uniformly-distributed on the
m-dimensional unit hypersphere. Then, the average ICI at iteration t is

E{ICI
(m)
t } = gm(κ1, · · · , κm)

(
1
3

)t

+ R(t, κ1, · · · , κm), (17)

where the m-dimensional function gm(·) does not depend on t and R(t, ·) de-
creases to zero faster than (1/3)t as t → ∞.

The above theorem indicates that the “(1/3)rd Rule” holds in general for the
single-unit FastICA procedure with kurtosis contrast. The convergence rate of
the algorithm does not depend on the source kurtoses, which only affect the
overall magnitude of the average ICI during the convergence period. This result
explains why the FastICA algorithm can be called “fast” – the average conver-
gence speed for the ICI is linear with a constant rate in all source scenarios.

The methodology used to derive the above theorem can in theory be used
to find an asymptotic expression for the average ICI in (17) by determining an
explicit expression for gm(κ1, · · · , κm) for any m. For m = 2, see [4], or set κ3 = 0
in (14). For m = 4, one can show that

g4(κ1, κ2, κ3, κ4) =
4
π2

(h1234 + h1243 + h1324 + h1342 + h1423 + h1432

+h2314 + h2341 + h2413 + h2431 + h3412 + h3421) (18)

hijkl =
√

κiκj√
κi+

√
κj

⎡⎣
√

κ−1
k√

κ−1
i + κ−1

j + κ−1
k

arctan

⎛⎝
√

κ−1
l√

κ−1
i + κ−1

j + κ−1
k

⎞⎠⎤⎦ ,(19)

which reduces to (14) when κ4 = 0. When κ1 = κ2 = κ3 = κ4, we have

E{ICI
(4)
t } =

4
π
√

3

(
1
3

)t

, (20)

which is 4/3 times larger than the maximum ICI in the three-source case with
κ1 = κ2 = κ3 and 4/

√
3 = 2.31 times larger than the maximum ICI in the two

source case with κ1 = κ2. For m > 4, the integrals become difficult to evaluate.
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4 An Exact Expression for the Average ICI for m-Source
Mixtures in a Particular Situation

Given our reliance on a uniform distribution for the direction of c0, one might
wonder whether the “(1/3)rd Rule” for FastICA requires this assumption. The
following analysis suggests that this behavior likely holds in other contexts.

Suppose the elements of c0 = [c1,0 · · · cm,0]T are uniformly-distributed on
the interval [0, 1]. Of course, c0 is normally of unit length, but as scaling doesn’t
matter, we choose a scaled version of c0 instead. Assuming ci,t ≥ 0 does not
change the value of ICI

(m)
t , either. When projected onto the unit hypersphere,

this distribution tends to concentrate probability in the [±1 ±1 · · · ±1]T direc-
tions of m-dimensional space, making convergence somewhat more challenging
for the algorithm. Moreover, we shall assume that κi = κj for all i and j. Under
this situation, the value of E{ICI

(m)
t } is easy to compute.

Theorem 2. For the situation above, the average ICI at iteration t is exactly

E{ICI
(m)
t } =

m − 1
2(3t) + 1

. (21)

Proof: The proof relies on the facts that (a) ordering of the coefficients within the
update relations does not matter in the convergence analysis, and (b) the order
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Fig. 1. Evolutions of the average ICI as determined by various methods, m = 3
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statistics of i.i.d. Unif-[0, 1]-distributed random variables are jointly uniform over
the integration volume [6]. Hence, the average ICI is given by

E{ICI
(m)
t } = m!

∫ 1

0

∫ c1

0

∫ c2

0

· · ·
∫ cm−1

0

m∑
j=2

c
2(3t)
j

c
2(3t)
1

dcm dcm−1 . . . dc1 (22)

which easily integrates to (21). Simulations corroborate this exact result.
Theorem 2 is not meant as a replacement for the more-general result in The-

orem 1. Rather, it shows that the average exponential convergence behavior of
the kurtosis-based FastICA algorithm holds for at least one other distribution
of c0 than a uniform angular distribution. It has been our experience that (3)
predicts the average behavior of the original single-unit FastICA algorithm with
kurtosis contrast quite well, and to date, all theoretical results concerning the
convergence performance of this algorithm reflect (3) in one form or another.

5 Simulations

To verify our theoretical results, simulations in MATLAB were carried out. Three
and four-source mixtures have been generated, in which the sources are zero-
mean unit-variance binary (|κ| = 2), uniform (|κ| = 6/5), and/or Laplacian
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FastICA simulation averaged over 20000 random initial conditions, N=5000
Eqn. (20) [ i.e., the "(1/3)rd Rule" for m=4 and identical κ

i
]

Fig. 2. Evolutions of the average ICI as determined by various methods, m = 4
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(|κ| = 3) distributed. MATLAB’s randn function was used to generate M =
20000 different initial coefficient vectors c0 for the numerical simulations. N =
5000 snapshots were used to evaluate the FastICA algorithm on sampled data.

Figure 1 shows plots of the averaged value of ICI
(3)
t as predicted by simu-

lations of the analytical convergence expressions of the FastICA algorithm, as
determined by the FastICA algorithm on sampled data, and calculated from (14)
for a three-source separation task with binary, uniform, and Laplacian sources.
All of the curves agree quite well up to iteration k = 5. For k > 5, our simulation
method for estimating E{ICI

(3)
t } using non-uniform sampling of the unit sphere

via the randn function is not accurate enough to verify (14). The scaling factor
g3(2, 6/5, 3) = 131

√
3/(140π) is correct for the “(1/3)rd Rule” in this case.

Figure 2 shows plots of the averaged value of ICI
(4)
t as predicted by ana-

lytical simulations, actual performance, and the prediction in (20) of FastICA
convergence behavior for m = 4 binary sources. The scaling factor of 4/(

√
3π)

is correct for the “(1/3)rd Rule” in the four-equal-kurtosis-source case.

6 Conclusions

In this paper, we analyze the average convergence behavior of the single-unit
FastICA algorithm with kurtosis contrast on m-source mixtures, showing that
its behavior is exponential with rate (1/3). Accurate expressions for m = 3 and
m = 4-source mixtures are provided, and simulations verify the analyses.
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Appendix: Proof of Theorem 1

Consider a single-unit m-source FastICA algorithm with cubic nonlinearity. The
combined system coefficient vector at iteration t is ct = [κ

q
2
1 x

p
2
1 · · · κ

q
2
mx

p
2
m]T ,
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where p = 2(3t) and q = 3t − 1. Consider the portion of the ICI at iteration t in
which the first kurtosis component is being extracted, as given by

E{ICI
(m)
1,t } =

2m

(2π)m/2

m∑
i=2

∫ ∞
0

dx1

∫ a2x1

0

dx2 · · ·
∫ amx1

0

dxm

(xi

ai
)p

xp
1

exp(−
∑m

i=1 x2
i

2
).(23)

where

ai =
(

κ1

κi

) q
p

, i ∈ {2, 3, . . . , m}. (24)

Using the transformation x̃i = xi/x1 for i ∈ {2, . . . , m}, (23) becomes

E{ICI
(m)
1,t } =

2m

(2π)m/2

m∑
i=2

∫ a2

0

dx̃2 · · ·
∫ am

0

dx̃m

∫ ∞
0

(
x̃i

ai

)p

xm−1
1 exp

(
−x2

1

2
(1 +

m∑
i=2

x̃2
i )

)
dx1.(25)

The most inside integral in (25) can be calculated as

∫ ∞
0

xm−1
1 exp

(
−x2

1

2
(1 +

m∑
i=2

x2
i )

)
dx1 =

⎧⎨⎩
(m−2)!!

√
π√

2(1+
�

m
i=2 x2

i )m/2 m is odd
[ 12 (m−2)]!2(m−2)/2

(1+
�

m
i=2 x2

i )m/2 m is even

where (m−2)!! = 1 ·3 ·5 ·7 · · · (m−2). When k → ∞, (xi

ai
)p → 0 over the interval

0 ≤ xi < ai, and ai →
√

κ1
κi

≡ b1i. We can then approximate the integral

∫ ai

0

(
xi

ai

)p 1
(1 +

∑m
j=2 x2

j)m/2
dxi ≈ 1

(1+b21i+
�

m
j=2,j �=i x2

j)m/2
b1i

p . (26)

Noting that p = 2(3t), we have

E{ICI
(m)
1,t }

≈
⎧⎨⎩

1
2(3)t

2m

(2π)m/2

∑m
i=2

∫ b12
0

dx2 · · · ∫ b1m

0
dxm

(m−2)!!
√

π√
2(1+b21i+

�
m
j=2,j �=i x2

j)m/2 m is odd

1
2(3)t

2m

(2π)m/2

∑m
i=2

∫ b12
0

dx2 · · · ∫ b1m

0
dxm

[ 12 (m−2)]!2(m−2)/2

(1+b21i+
�

m
j=2,j �=i x2

j)m/2 m is even

Similarly, by invoking symmetry, we get

E{ICI
(m)
n,t }

≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2(3)t
2m

(2π)m/2

∑m
i=1,i�=n

∫ bn1

0 dx1 · · · ∫ bnm

0 dxm
(m−2)!!

√
π√

2(1+(bni)2+
�

m
j=1,j �=n,j �=i x2

j)m/2

m is odd
1

2(3)t
2m

(2π)m/2

∑m
i=1,i�=n

∫ bn1

0
dx1 · · · ∫ bnm

0
dxm

[ 12 (m−2)]!2(m−2)/2

(1+(bni)2+
�m

j=1,j �=n,j �=i x2
j)m/2

m is even
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for n ∈ {2, . . . , m} and

bni =
√

κn

κi
. (27)

Finally, the average ICI is E{ICI
(m)
t } =

∑m
n=1 E{ICI

(m)
n,t }, which results in (17)

with

g(κ1, · · · , κm)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2m−1

(2π)m/2

∑m
n=1

∑m
i=1,i�=n

∫ bn1

0
dx1 · · · ∫ bnm

0
dxm

(m−2)!!
√

π√
2(1+(bni)2+

�
m
j=1,j �=n,j �=i x2

j)m/2

m is odd
2m−1

(2π)m/2

∑m
n=1

∑m
i=1,i�=n

∫ bn1

0 dx1 · · · ∫ bnm

0 dxm
[ 12 (m−2)]!2(m−2)/2

(1+(bni)2+
�

m
j=1,j �=n,j �=i x2

j)m/2

m is even

Additional calculations show that the error introduced in (17) by (26) is

|R(t, κ1, · · · , κm)| ≤ c(m)
(

1
3

)t m∑
n=1

[
(m − 1)

m∏
i=2

bni

(
1 −

m∏
i=2

b
− 2

p

ni

)

+
m∑

i=2

(
(1 − 1√

p
)p+1b

1− 2
p

ni +
bni

p
|1 − p

p + 1
b
− 4

p

ni |
) m∏

i=2

b
1− 2

p

ni

]
(28)

Since 1 − ∏m
i=2 b

− 2
p

ni → 0 and (1 − 1√
p )p+1 → 0 as t → ∞, it is easy to see that

lim
t→∞

R(t, κ1, · · · , κm)(
1
3

)t = 0. (29)


