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Abstract. The non-negative ICA problem is here defined by the con-
straint that the sources are non-negative with probability one. This case
occurs in many practical applications like spectral or image analysis. It
has then been shown by [10] that there is a straightforward way to find
the sources: if one whitens the non-zero-mean observations and makes a
rotation to positive factors, then these must be the original sources. A
fast algorithm, resembling the FastICA method, is suggested here, rig-
orously analyzed, and experimented with in a simple image separation
example.

1 The Non-negative ICA Problem

The basic linear instantaneous ICA mixing model x = As can be considered to
be solved, with a multitude of practical algorithms and software; for reviews, see
[1, 3]. However, if one makes some further assumptions which restrict or extend
the model, then there is still ground for new analysis and solution methods. One
such assumption is positivity or non-negativity of the sources and perhaps the
mixing coefficients; for applications, see [9, 5, 13, 2]. Such a constraint is usually
called positive matrix factorization [8] or non-negative matrix factorization [4].
We refer to the combination of non-negativity and independence assumptions
on the sources as non-negative independent component analysis.

Recently, Plumbley [10, 11] considered the non-negativity assumption on the
sources and introduced an alternative way of approaching the ICA problem, as
follows. He calls a source si non-negative if Pr(si < 0) = 0, and well-grounded if
Pr(si < δ) > 0 for any δ > 0; i.e. si has non-zero pdf all the way down to zero.
The following key result was proven [10]:
Theorem 1. Suppose that s is a vector of non-negative well-grounded indepen-
dent unit-variance sources si, i = 1, ..., n, and y = Qs where Q is a square
orthonormal rotation, i.e. QTQ = I. Then Q is a permutation matrix, i.e. the
elements yj of y are a permutation of the sources si, if and only if all yj are
non-negative.
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The result of Theorem 1 can be used for a simple solution of the non-negative
ICA problem. The sources of course are unknown, and Q cannot be found di-
rectly. However, it is a simple fact that an arbitrary rotation of s can also be ex-
pressed as a rotation of a pre-whitened observation vector. Denote it by z = Vx
with V the whitening matrix. Assume that the dimensionality of z has been
reduced to that of s in the whitening, which is always possible in the overdeter-
mined case (number of sensors is not smaller than number of sources).

It holds now z = VAs. Because both z and s have unit covariance matrices
(for s, this is assumed in Theorem 1), the matrix VA must be square orthogonal.
This holds even in the case when s and z have non-zero means. We can write

y = Qs = Q(VA)T z = Wz

where the matrix W is a new parametrization of the problem. The key fact
is that W is orthogonal, because it is the product of two orthogonal matrices
Q and (VA)T . By Theorem 1, to find the sources, it now suffices to find an
orthogonal matrix W for which y = Wz is non-negative. The elements of y are
then the sources.

It was further suggested by [10] that a suitable cost function for actually
finding the rotation could be constructed as follows: suppose we have an output
truncated at zero, y+ = (y+

1 , ..., y+
n ) with y+

i = max(0, yi), and we construct
a reestimate of z = WTy given by ẑ = WTy+. Then a suitable cost function
would be given by

J(W) = E{‖z− ẑ‖2} = E{‖z−WT y+‖2}. (1)

Due to the orthogonality of matrix W, this is in fact equal to

J(W) = E{‖y − y+‖2} =
n∑

i=1

E{min(0, yi)2}. (2)

Obviously, the value will be zero if W is such that all the yi are positive.
The minimization of this cost function by various numerical algorithms was

suggested in [11, 12, 7]. In [11], explicit axis rotations as well as geodesic search
over the Stiefel manifold of orthogonal matrices were used. In [12], the cost func-
tion (1) was taken as a special case of “nonlinear PCA” for which an algorithm
was earlier suggested by one of the authors [6]. Finally, in [7], it was shown that
the cost function (2) is a Liapunov funtion for a certain matrix flow in the Stiefel
manifold, providing global convergence.

However, the problem with the gradient type of learning rules is slow speed
of convergence. It would be tempting therefore to develop a “fast” numerical
algorithm for this problem, perhaps along the lines of the well-known FastICA
method [3]. In this paper, such an algorithm is suggested and its convergence is
theoretically analyzed.

2 The Classical FastICA Algorithm

Under the whitened zero-mean demixing model y = Wz, the classical FastICA
algorithm finds the extrema of a generic cost function E{G(wT z)}, where wT



A FastICA Algorithm for Non-negative Independent Component Analysis 3

is one of the rows of the demixing matrix W. The cost function can be e.g.
a normalized cumulant or an approximation of the marginal entropy which is
minimized in ICA in order to find maximally nongaussian projections wT z.
Under fairly weak assumptions, the true independent sources are among the
extrema of E{G(wT z)} [3]. FastICA updates w according to the following rule:

w← E{zg(wT z)} − E{g′(wT z)}w. (3)

Here g is the derivative of G, and g′ is the derivative of g. After (3), the vectors
w are orthogonalized either in a deflation mode or symmetrically. The algorithm
typically converges in a small number of steps to a demixing matrix W, and y
becomes a permutation of the source vector s with arbitrary signs.

3 The Non-negative FastICA Algorithm

For the non-negative independent components, our task becomes to find an or-
thogonal matrix W such that y = Wz is nonnegative with the pre-whitened
vector z.

The classical FastICA is now facing two problems. First, the non-negative
sources cannot have zero means. The mean values must be explicitly included in
the analysis. Second, in FastICA, the function g in equation (3) is assumed to be
an odd fuction, the derivative of the even function G. If this condition fails to be
satisfied, the FastICA as such may not work. Applying FastICA to minimizing
the cost function (2), we see that G(y) = min(0, y)2 whose negative derivative
(dropping the 2) is

g−(y) = −min(0, y) =
{−y, y < 0

0, y ≥ 0. (4)

We see that it does not satisfy the condition for FastICA.
In order to correct these problems, first, we use non-centered but whitened

data z, which satisfies E{(z−E{z})(z−E{z})T } = I. Second, we add a control
parameter µ on the FastICA update rule (3), giving the following update rule:

w← E{(z− E{z})g−(wT z)} − µE{g′−(wT z)}w, (5)

where g′− is the derivative of g−. This formulation shows the similarity to the
classical FastICA algorithm. Substituting function g− from (4) simplifies the
terms; for example, E{g′−(wT z)} = −E{1|wT z < 0}P{wTz < 0}. The scalar
P{wT z < 0}, appearing in both terms in (5), can be dropped because the vector
w will be normalized anyway. In practice, expectations are replaced by sample
averages.

In (5), µ is a parameter determined by:

µ = min
{z:z∈∆)}

E{(z− E{z})wT z|wT z < 0}Tz
E{1|wT z < 0}wTz

. (6)
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There the set ∆ = {z : zT z(0) = 0}, with z(0) the vector satisfying ||z(0)|| = 1
and wT z(0) = max(wT z). Computing this parameter is computationally some-
what heavy, but on the other hand, now the algorithm converges in a fixed
number of steps.

The nonnegative FastICA algorithm is shown in Table 1.

Table 1. The Non-negative FastICA algorithm for estimating several ICs.

1. Whiten the data to get vector z.
2. Set counter p← 1.
3. Choose an initial vector wp of unit norm, and orthogonalize it as

wp ← wp −
p−1∑
j=1

(wT
p wj)wj

and then normalize by wp ← wp/||wp||.
4. If maxz �=0(w

T
p z) ≤ 0, update wp by −wT

p .
5. If minz �=0(w

T
p z) ≥ 0, update wp by the vector orthogonal to wp and the source

vectors that are orthogonal to wp. (See equation (11)).
6. Update wp by the equation (5), replacing expectations by sample averages.
7. Let wp ← wp/||wp||.
8. If wp has not converged, go back to step (4).
9. Set p← p+1. If p < n where n is the number of independent components, go back

to step (3).

4 Analysis of the Algorithm

To make use of the properties of the non-negative independent sources, we per-
form the following orthogonal variable change:

q = AT VT w (7)

where A is the mixture matrix and V is the whitening matrix. Then

wT z = qT (VA)T (VAs) = qT s. (8)

Remember that matrix VA is orthogonal.
Our goal is to find the orthogonal matrix W such that Wz is non-negative.

This is equivalent to finding a permutation matrix Q, whose rows will be denoted
by vectors qT , such that Qs is non-negative. In the space of the q vectors, the
convergence result of the non-negative FastICA algorithm must be a unit vector
q with exactly one entry nonzero and equal to one.

4.1 The Proof of the Convergence

Using the above transformation of eq. (7), the definition of the function g−, and
the parameter µ, the update rule (5) for the variable q becomes

q← µE{1|qT s < 0}q− E{(s− E{s})(qT s)|qT s < 0}. (9)
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Before each iteration, there are three cases for qT s. If qT s ≤ 0 for all the
sources s, that is, q ≤ 0, we simply update it by q ← −q as shown in step 4
in the algorithm. So we only need to consider the other two cases, q ≥ 0, and
min(qT s) < 0 with max(qT s) > 0.
A. Consider the case that min(qT s) < 0 and max(qT s) > 0. Since the sources are
positive, then at least one element of q is negative, and one element is positive.
Let q(k) be the vector after kth iteration. It is easy to see that the update
equation (9) keeps zero elements unvariable, that is, q(k + 1)i = 0 if q(k)i = 0.
This can be shown from equation (9)

q(k + 1)i = µE{q(k)i|q(k)T s < 0} − E{(si − E{si})(q(k)T s)|q(k)T s < 0}
= 0− E{si − E{si}}E{(q(k)T s)|q(k)T s < 0} = 0

by noticing that si is independent to q(k)T s =
∑

j �=i q(k)jsj .
Let I and J be the index sets such that q(k)i < 0 for all i ∈ I and q(k)j > 0

for all j ∈ J . Let s(0) be the source vector such that q(k)T s(0) = max(q(k)T s)
and ||s(0)|| = 1. The vector s(0) exists and s(0)i = 0 for i ∈ I. Further, let the
source set ∆′ := {s : sT s(0) = 0}, which is not empty; we have for all s ∈ ∆′,
sj = 0 for j ∈ J .

By the equation (6) and the transformation equation (7), we have the pa-
rameter estimation with variable q

µ = min
{s:s∈∆′}

E{(s− E{s})q(k)T s|q(k)T s < 0}T s
E{1|q(k)T s < 0}q(k)T s

. (10)

Then for s ∈ ∆′, qT s < 0 and

µ ≤ E{(s− E{s})q(k)T s|q(k)T s < 0}T s
E{1|q(k)T s < 0}q(k)T s

.

Therefore, q(k + 1)T s ≥ 0.
Since eisi belongs to the set ∆′ if i ∈ I, where ei is the unit vector with the

ith entry one and the others zero, it holds q(k + 1)Teisi ≥ 0. This implies that
q(k + 1)i ≥ 0 for i ∈ I. According to the choice of parameter µ, there exists at
least one source s ∈ ∆′ such that q(k +1)T s = 0, that is

∑
{i∈I} q(k +1)isi = 0.

Since the sources are nonnegative, and also for i ∈ I, q(k + 1)i is nonnegative,
there is at least one index i0 ∈ I, such that q(k + 1)io = 0. Therefore, after this
iteration, the number of zero elements of vector q increases.
B. Consider the case that q ≥ 0. Then, the algorithm updates q by the or-
thogonal vector of q which keeps the zero elements of q zero. Since q ≥ 0, its
orthogonal vector will not be nonnegative or negative, and the iteration goes
back to the case A we just discussed.

To find this update vector, consider the sources Ŝ := {s �= 0 : q(k)T s = 0}.
The updated vector q(k + 1) can be chosen as the vector, which is orthogonal
to q(k) and Ŝ. To do this, let all the vectors in the sources space Ŝ be column
vectors forming matrix B. Then the null space null(B) is orthogonal to the
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sources space Ŝ. If null(B) contains only one column, then this column vector is
what we want, and the iteration goes to next step. Otherwise, take any column
q(r) from null(B) which is different from q(k), and the update rule is

q(k + 1) = q(r) − (q(r)T q(k))q(k). (11)

Therefore, after each iteration, the updated vector q keeps the old zero entries
zero and gains one more zero entry. So within n − 1 iteration steps, the vector
q is updated to be a unit vector ei for certain i. With total iterative steps∑n−1

i=1 i = n(n− 1)/2, the permutation matrix Q is formed.

4.2 Complexity of the Computation

As the analysis in the above section shows, the total iteration steps of our al-
gorithm are less than or equal to n(n − 1)/2. During each iteration, the com-
putational differences compared to classic FastICA come from step 4, 5 and 6
as shown in Table 1. The step 4 does not increase the computation much, so
we can almost omit it. In step 5, we need to calculate the value of wT

p z once,
and solve a m× n line equation (m is the number of vectors in the source space
{s �= 0 : q(k)T s = 0}). This can be solved by Matlab command null() immedi-
ately. Step 6 is the main update rule, just as in FastICA, and we need to calculate
the expectation E{z − E{z}}. Furthermore, in our algorithm, to calculate the
parameter µ, we need to go through the data z once more.

5 Experiments

In this section we present some numerical simulations, run in Matlab, to demon-
strate the behaviour of the algorithm. The demixing matrix W is initialized to
the identity matrix, ensuring initial orthogonality of W and hence of H = WVA.

The algorithm was applied to an image unmixing task. 4 image patches of size
252×252 were selected from a set of images of natural scenes, and downsampled
by a factor of 4 in both directions to yield 63× 63 images (see [7]). Each of the
n = 4 images was treated as one source, with its pixel values representing the
63×63 = 3969 samples. The source image values were shifted to have a minimum
of zero, to ensure they were well-grounded as required by the algorithm, and the
images were scaled to ensure they were all unit variance.

After scaling, the source covariance matrix ssT − s̄s̄T was computed and
the largest off-diagonal element turned out to be 0.16. This is an acceptably
small covariance between the images: as with any ICA method based on pre-
whitening, any covariance between sources would prevent accurate identification
of the sources. A mixing matrix A was generated randomly and used to construct
the four mixture images.

After iteration, the source-to-output matrix H = WVA was

H =


0.058 1.010 -0.106 0.062
-0.106 0.042 -0.078 1.002
-0.003 -0.017 1.014 0.076
0.997 -0.105 -0.102 -0.086

 (12)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Images and histograms for the image separation using the non-negative FastICA
algorithm, showing (a) source images and (b) their histograms, (c), (d) the mixed
images and their histograms, and (e), (f) the separated images and their histograms.
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Figure 1 shows the original, mixed and separated images and their his-
tograms. The algorithm converges in 6 steps and is able to separate the images
reasonably well.


