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Abstract— We apply a blind source separation approach to the an example of activation of secondary auditory areas, which
identification of statistically independent spatial patterns of brain  have a temporal pattern only mildly related to the stimulus.
activation to auditory stimulation. Stimuli consisted of spoken : : :
text. The data was collected via functional magnetic resonance 'The advent of ”e"Y signal processing techniques, such as
imaging (fMRI). blind source separation (BSS), has enabled the analysis of

As expected from standard processing of fMRI, we observe more complex and less predictable brain activatidsjs [H],
that independent component analysis (ICA) reveals spatial pat- [5]. Among such data-driven methods, independent component
terns with similar temporal activation as the stimulus. In these, analysis (ICA, B]) plays an important role. This approach,
ICA furthe,r dlstlngwshgs kaetwee.n the primary audltolry areas o \mmarized in Sedl-A, has seen a growing number of suc-
and Broca’s and Wernicke’s, which are associated with speech ful licati hi ical h
production and understanding, respectively. Furthermore, we CESSful applications, both in medical and other areas. Mexye
observe the activation of the thalamus, with a time course ICA is an adaptive algorithm which optimizes a given coritras
unrelated to the stimulus, hence hard to detect in a classical function. Due to a limited computing accuracy, it may praeluc
manner. We observe as well a temporally evolving artifact, related  sjightly different estimates of the sought solutions, defieg
to inefficient filtering of the MRI scans. on the initialization of its parameters. In the present gtwe

The consistency of the estimated signals is tested by running _ . | loit thi iabili d
the algorithm with many different initial conditions. The solutions  aCtively exploit this variability, and suggest a way to &sse

found are combined according to their similarities. Estimates that the consistency of the independent components.

differ greatly from run to run are less likely to correspond to In an auditory paradigm, where the subject listens to spoken
true components, whereas those that present small variancesea text, we show that consistent components include the exgect
considered reliable ones. ones, with stimulus-related activation patterns origngafrom

the primary cortical areas, but also others, whose timesesur
are only mildly related to the stimulus. Additionally, our

~ Functional magnetic resonance imaging (fMRI) provides afpproach reveals new phenomena not directly related to the
indirect and non-invasive measure of neuronal activityelasstimulus.

on the blood oxygenation level dependent (BOLD) sigdal [

which is a measure of local changes in blood flow and oxygen

consumption. In addition to being related to neuronal égtiv

in a complex and time delayed way, this volumetric signal |n general, BSS attempts to estimate underlying sources

also includes contributions from other sources. Thesaidf®! from |inearly mixed observations. The term ‘blind’ refers t

artifacts related to poor scanning and head movements, Ias Wge fact that very little to na priori information exist on both

as from physiological phenomena unrelated to the study suge sources or the mixing process. Under certain assunsption

as the heart beat or breathing. _ the problem can be solved with temporal decorrelation meth-
Traditionally, experiments have tested brain responsesdgs, such as SOBI or TDSER][[8]. ICA is another family

carefully designed repetitions of stimulus and resting sgf methods for BSS, based on the assumption of statistical

quences. Usually, stimuli are in the form of auditory, sandependence of the source signals (for a good textbook on
matosensory or visual patterns. The experiment may inclugfy matterc.f. [6]).

as well a simple task, like naming a color or moving a finger.
The data is then analyzed using hypothesis-driven teckrijq
relating the brain activation with a predicted referenamal,
based on the temporal design of the stimulatios. (2]). Let the fMRI signal be represented by the data maXiy,

Hence, the study of brain regions other than the primawheret = 1,...,T (T denoting the total number of collected
cortical areas has been difficult, since the activity of nonime points) andj = 1,...,J (J denoting the total number
primary and sub-cortical areas is more complex and not ebvoxels). Here we assumed that each volume, at any given
easy to relate to the given stimulus pattern. In $&écwe give time, has been vectorized in an uniqgue manner.

I. INTRODUCTION

II. INDEPENDENTCOMPONENTANALYSIS

Ya. Spatial and Temporal ICA
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The linear mixing model can then be expressed in the form: cross-correlation oft1. If the correlation is not perfect,
but still high, and the number of runs is sufficiently big, one
may expect that the true solution exists in an average of all
these estimates. If, on the other hand, there is a big spifead o
correlations, then we are probably in the presence of not so
where each row ofS contains a statistically independenﬁOﬂSiStent components. Let us consider the extreme case of
volume, and the corresponding column of the mixing matrigompletely overfitted estimates. In ICA, these corresponal t

A holds its temporal activations. Here we make the statistid!mp or a spike, which can occur anywhere in the dafi [
constraint in the spatial domain. In some other applicatiort is then very likely that they will occur in a different lotan
independence applies to the temporal domain, which leads if? €ach run, hence the components will present a very poor
a transposed version of modél)( correlation set.

Note that, since botA andS are unknown, we are free to We can then say that the number of times a particular
include the signs and scaling of the independent compone@@nponent has been estimated, plus the spread of corredatio
in either one. Also, the order of the components is né&f similar components give important information, whicinca
determined. be used for ranking the reliability of a given component.

It is not the purpose of the this paper to focus on meth- Note that, using the averaging method, we are allowed
ods to solve the ICA problem. Yet, in order to understan@s Well to depart somewhat from the strict assumption of
the following, one can give an intuitive explanation to thépatially independent components. Furthermore, becafise o
fundamentals of ICA, based on the search for maximalif)e deflationary nature of FastiCA, the estimate of tik
non-gaussian source estimates. According to the centnil li independent component is subject to the accumulated efors
theorem, mixed signals are more gaussian than any of @gfimating alln — 1 earlier components. Thus, in the ultimate
original sources. Hence, maximizing the non-gaussianity 8ase of running FastiCA to find only a single component at
the estimates should lead into their independence. A typiéatime, this influence is minimized, as all components found
measure of non-gaussianity, which will be used in the presefe the very first ones.
study, is the kurtosis. A relation between this explanatiod L

C. Implementation issues

the more theoretically grounded mutual information can be’
found, e.g, in [6]. Running ICA many times for the same data is straightfor-

In FastiCA P], [10], as in many other ICA algorithms, ward. One only needs to ensure that the initial conditioes ar
the initial step consists of whitening the data. This resulfufficiently different on each run. Ideally, one could fine th
in uncorrelated and unit-variance data, which facilitales Poundaries of the error space, and uniformly distribute the
Separation of the under|ying independent source Signals_ Flnltla.l conditions for the variables in the algorithm. Tattver
thermore, it has been shown that a suitable reduction Rfocess the data, the resulting matrices should be coratatén
dimensionality at this stage may help prevent undesiradio a wide matrix, A" = A'[A?[-..|A™, in which []™

K
X = ZAtkSkjy (2)
k=1

overfitted solutions J1]. stands for thenth run of the algorithm. To remove the problem
- o of scaling uncertainty in BSS, the concatenated mixing imatr
B. Exploiting the variability in FastICA can simply be normalized to unit variance.

In model 1) we have made a few assumptions which are The calculation of the correlation matrRR should be made
not always guaranteed in practice. For example, the measiwoeer all estimates. Yet, most methods are not well suited for
ments are noise free and the source components statigtictliie huge data size in fMRI. Hence, we defined the correlation
independent. The latter assumption has been studietiZin [ coefficients based on the columns AfY. Furthermore, we
[13]. If it fails, it can be replaced by a somewhat less restricti are not interested in components that appear too seldomly fo
constraint of the active brain areas to be spatially sparse, multiple runs of ICA. To guarantee that we focus on consisten
suggested in14]. Yet, noise may render the identificationcomponents, a suitable threshold o is applied, and only
of the true underlying sources difficult. Furthermore, thealues over it are considered.
algorithm may approach the solution via different paths on Furthermore, if source! is related tos?, ands? is to s3,
the error surface, depending on its initial conditions. even if st is somewhat weakly related t, we may want

The magnitude and nature of component variability can e combine them all as estimates of a common source. As
analyzed by running the ICA algorithm multiple times andbove,[-]™ stands for themth run of ICA, and|[-],, for the
making sure that the starting conditions differ in each fithis nth component formed in that run. To do so, we raise the
is particularly suitable for an algorithm such as FastlICAgd correlationR to a power, the value of which relates to the
to its deflationary nature and convergence speed. Furtlermdength of such a path.
in relation to fMRI studies, it has been shown that choosing a
particular algorithm implementation of ICA is not cruciaH|, . M ETHODS
i.e their results do not vary greatly. The stimulus consisted of repetitions of spoken text fol-

In the ideal situation, where the same true solution Iswed by resting periods. There were a succession of four
reached in more than one run, these estimates should hsweh pairs and in each conditiai) full head fMRI scans were
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Fig. 1
OVERVIEW OF TIME COURSES OF INDEPENDENT COMPONENTS FOUND BYULTIPLE RUNS OFICA. THE NUMBER OF GROUPED COMPONENTS AND THE
LOWEST CORRELATION ARE SHOWN ON TOPGROUP VARIANCE IS SHOWN AS SHADES OF GRAY

collected using a 3 Tesla GE scanner, resulting in a total ofiginal 80 volumes to the stronge80 principal components.
80 volumes. The scanning repetition time was approximately 3FastICA was then applie200 times, in a deflation manner,
seconds. All volumes used T2ettings, and consisted 86 x and maximizing the kurtosis contrast function. In each run,
96 x 37 voxels. Data was collected at thelvanced Magnetic only the first15 components were kept. From tB800 com-
Imaging Centre(AMI-Centre) of the Helsinki University of ponents found in this way, the ones which reached a comelati
Technology value over(0.85 were considered similar. The thresholded
After scanning, the volumes went through the usual prgalues were then raised to the powérto account for longer
processing stages of fMRI data, which include realigningaths. These numbers were chosen heuristically.
normalizing and smoothing, as explained ). [These trans-
formations compensate for head movements, allow for a
comparison of volumes from different subjects and improve Fig. 1 shows an overview of the time courses corresponding
signal-to-noise ratio, respectively. to 15 source estimates, resulting from the average of inde-
Because there is a considerable amount of recorded voxaéhdent components grouped by correlation. Those essmate
external to the cortex, a suitable mask was applied to theg danclude many reliable ones, with their characteristic $mal
which resulted in a significant decrease of non-informatiwariances, such as the ones depicted in framel® and 14.
data points. Furthermore, as stated earlier, the whitestimge Other estimates show clearly high variances, such as the one
preceding ICA included a dimension reduction, from thia framesl, 2 or 3. The number of components belonging to

IV. RESULTS
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each group and the smallest correlation within the group areWe now analyze in greater detail some of the most consis-
shown on top of each frame. The black curve shows the maant components found in Fid. The most consistent compo-
time course of the group, and the gray shades corresponchémt has a time course shown in framelt strongly relates

the 25%, 50% and 75% quartiles of the group’s distribution.
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Fig. 2
SOURCE ESTIMATE REPRESENTING ACTIVATION OF PRIMARY AUDITOR
AREAS.

Histogram
37.02%

Activation

(a) Positive extremes highlighted.

with the stimulus activation pattern. This relation is het
visible in Fig. 2 where vertical lines show the transitions
between rest and stimulation conditions. From the threesie
of the estimated volume, it is clear that the activation is
located laterally, close to the superior temporal gyrusengh
the primary auditory cortex is located.

Furthermore, because the figures use the standard radiology
orientation, it is easy to see that the left hemisphere is
more active. This is all in good agreement with theory. An
additional frame in Fig.2 shows the histogram of the full
estimated volume. Two vertical lines show the thresholdiuse
for visualization of the positive and negative activatiois
the volume shown, no negative activation was observed.

Another consistent component, which seems to have a
milder relation to the stimulation, is shown in framé of
Fig. 1, and in more detail in FiglV. Three views of the
estimated volume are shown as well. In opposition to the
observations in the previous estimate, here we have very
significant maxima in both the positive and the negative
regions of the histogram. These neighboring extremes &f act
vation suggest contiguous areas of activation and suppress
Because of printing constraints limiting us to gray scale, w
have in Fig.3(a) only the positive activation highlighted, and
in Fig. 3(b) the negative one. From the localization of the
extremes, mainly around the primary auditory cortex, we can
expect these to correspond to higher auditory areas, such as
Broca’s and Wernicke’s. These are responsible for prodacti
and comprehension of speech, respectively, and fit the ti/pe o
stimulus used.

(b) Negative extremes highlighted.

Fig. 3 SOURCE ESTIMATE REPRESENTING ACTIVATION OF SECONDARY SPEECRELATED AREAS.
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Fig. 4 Fig. 5
SOURCE ESTIMATE WITH CLEAR ARTIFACT, PROBABLY DUE TO POOR SOURCE ESTIMATE POSSIBLY REPRESENTING THALAMIC ACTIVATION
FILTERING.

So far, one could find most of the mentioned results frof’€ independent component per run has been pulled together.
a direct inspection of stimulus related components. FigureHow can this be, if the goal is to search close to independence
gives an example of a source estimate which is hard to det€¥te possible explanation lies in the multiple paths that are
directly from the time course. In fact, the estimate evolvedlowed in the correlation matrix. Let us consider the sienpl
almost linearly in time. The estimated volume presents G@Se of a sine and a cosine. Naturally, they are uncorrelated
clear three-dimensional ripple-like pattern, hard to ptces Yet, if we take several copies of the first, with increasinggs
natural brain activation. Although the component showsgreShifts, it is possible to build a path of high enough relasion
consistency, it has appeared orlg times in the200 runs, O connect both signals. Such phase jittering explanauay m
which suggests that it is a component hard to find even f8PPly as well to frame and seems very clear in frameof
ICA. Fig. 1.
This clear artifact resembles the one studiedli],[ using
very controlled,i.e., predictive settings. In practice, this type
of artifacts, though commonly observed, would appear to beThe consistency of independent component decomposition
difficult to handle with traditional analysis methods dueato of fMRI data, in an auditory stimulation environment was
clear lack of reference. tested, by exploiting the variability of the ICA algorithm
An example of a component with high variance is shownsed, as a function of its initialization. Using this appioa
in Fig. 5. Although the component seems unreliable, thee managed to identify signal features hard to detect with
estimated volume shows a remarkably clear activation attenethods based only on a single run.
in what appears to be the thalamus. In fact, the activationIn addition to the predicted stimulus related components,
pattern is somewhat posterior to the expected locationhfer tICA has revealed activation volumes that are associateld wit
main body of the thalamus. A possible explanation is that $econdary auditory areas, as well as to time varying atsifac
may correspond to the actual location of the medial genieula We have done so in a purely spatial ICA framework. Yet,
nucleus (MGN) of the thalamus. The MGN is sometimesiost considerations could be extended to spatio-tempGral |
called the auditory thalamus, due to its active involvemeatgorithms, such as the ones ibg], [19].
in relaying auditory information to the primary and secaiyda Averaging the correlated components is just one way to
auditory cortices I7]. Yet, its location is often more lateral estimate the correct solutions. Other methods have beeh use
than the one observed in our study. An overlay of the activati to visualize these groups of componertd.(20]), or to study
pattern on high resolution structural MRI should improve ththe reliability of other BSS algorithms]]. Yet, results such
degree of confidence of this speculation. as the ones in the firgtframes of Fig.1l suggest that we may
The number of independent components gathered in the in the presence of subspaces of solutions, rather than one
estimate shown in Figb is 460, which implies that more than dimensional ones. The characterization of the inner strast

V. CONCLUSION



of the subspaces requires additional criteria other tham$ed [10] “The FastiCA MATLAB Package,” Available for downloadta
decorrelation and independence. Further research shauld b Nitp://www.cis.hut.fi/projects/ica/fastica/2

carried out, to find better canonical representations o$eh
spaces.
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ACKNOWLEDGMENT

The authors would like to thank Riitta Hari and Tukkas
Raij from the Advanced Magnetic Imaging Centr@AMI-
Centre) andBrain Research UnitLow Temperature Labora-
tory, Helsinki University of Technologyor the fMRI data and |14
for valuable discussions on the subject of this paper.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

REFERENCES

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. Kim, H. ey
and K. Ugurbil, “Intrinsic Signal Changes Accompanying SEgsStim-
ulation: Functional Brain Mapping with Magnetic Resonahoaging,”
Proc. Nat. Academy of Science®l. 89, pp. 51-55, 1992.1

K. J. Worsley and K. J. Friston, “Analysis of fMRI Time-Ses Revisited
— Again,” Neurolmagevol. 2, no. 3, pp. 173-235, September 1995.
3

M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kéndann,
A. J. Bell, and T. J. Sejnowski, “Analysis of fMRI Data by BirSep-
aration Into Independent Spatial Componenk#iman Brain Mapping
vol. 6, no. 3, pp. 160-188, 19981

M. J. McKeown, L. K. Hansen, and T. J. Sejnowski, “Indegent
Component Analysis of functional MRI: What Is Signal and What I§18]
Noise?” Current Opinion in Neurobiologyvol. 13, no. 5, pp. 620-629,

Oct 2003. 1

V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. k&, “ICA

of functional MRI: An Overview,” inProc. 4th International Sympo- [19]
sium on Independent Component Analysis and Blind Signair&gémn
(ICA2003) April 2003. 1

A. Hyvarinen, J. Karhunen, and E. Ojadependent Component Anal-
ysis John Wiley and Sons, 20011, 2

A. Belouchrani, K. A. Meraim, J.-F. Cardoso, and E. Moekn“Second-
Order Blind Separation of Correlated Sources,”Hroc. Int. Conf. on
Digital Sig. Proc, Cyprus, 1993, pp. 346-3511

A. Ziehe and K.-R. Miller, “TDSEP — An Effective Algrithm for Blind
Separation Using Time Structure,”Rroc. Int. Conf. on Atrtificial Neural
Networks (ICANN’98)Skbvde, Sweden, 1998, pp. 675-680Q.

A. Hyvarinen and E. Oja, “A Fast Fixed-Point Algorithm for Indepen
dent Component AnalysisNeural Computationvol. 9, pp. 1483-1492,
1997. 2

(18]

(16]

(17]

[21]

J. Srek and R. Vigrio, “Overlearning in Marginal Distribution-Based
ICA: Analysis and Solutions,Journal of Machine Learning Research
vol. 4, pp. 1447-1469, Dec 20032

M. J. McKeown and T. J. Sejnowski, “Independent Compadreralysis
of fMRI Data: Examining the AssumptionsPluman Brain Mapping
vol. 6, pp. 368-372, 19982

T. P. Jung, S. Makeig, M. J. McKeown, A. J. Bell, T. W. Lesad T. J.
Sejnowski, “Imaging Brain Dynamics Using Independent Compbne
Analysis,” in Proceedings of the IEEEvol. 89, no. 7, July 2001, pp.
1107-1122. 2

R. Vigario, J. Sweh, V. Jousraki, M. Hamalainen, and E. Oja, “In-
dependent Component Approach to the Analysis of EEG and MEG
Recordings,”IEEE Trans. Biomed. Engvol. 47, no. 5, pp. 589-593,
May 2000. 2

F. Esposito, E. Formisano, E. Seifritz, R. Goebel, R. idpe,
G. Tedeschi, and F. D. Salle, “Spatial Independent Compohealysis
of functional MRI Time-Series: To What Extent Do Results Depen
on the Algorithm Used?Human Brain Mappingvol. 16, no. 3, pp.
146-157, Jul 2002.2

A. M. Smith, B. K. Lewis, U. E. Ruttimann, F. Q. Ye, T. M. Siwell,
Y. Yang, J. H. Duyn, and J. A. Frank, “Investigation of Low goency
Drift in fMRI Signal,” Neurolmage vol. 9, no. 5, pp. 526-533, May
1999. 5

J. Rademacher, U. iBgel, and K. Zilles, “Stereotaxic Localization,
Intersubject Variability, and Interhemispheric Differescof the Human
Auditory Thalamocortical SystemsiNeurolmagevol. 17, pp. 142-160,
2002. 5

K. Suzuki, T. Kiryu, and T. Nakada, “Fast and Preciseejpendent
Component Analysis for High Field fMRI Time Series Tailoredirigs
Prior Information on Spatiotemporal Structureliman Brain Mapping
vol. 15, no. 1, pp. 54-66, Jan 2005

J. V. Stone, J. Porrill, N. R. Porter, and |. D. WilkinsdSpatiotemporal
Independent Component Analysis of Event-Related fMRI Dasingy
Skewed Probability Density Functionsyleurolmagevol. 15, no. 2, pp.
407-421, Feb 20025

] J. Himberg and A. Hyarinen, “Icasso: Software for Investigating the

Reliability of ICA Estimates by Clustering and Visualizatjd in In
Proc. 2003 IEEE Workshop on Neural Networks for Signal Psstey
(NNSP2003) Toulouse, France, 2003, pp. 259-268.

F. Meinecke, A. Ziehe, M. Kawanabe, and K.-Rulér, “A Resampling
Approach to Estimate the Stability of One-Dimensional or hditben-
sional Independent Component$£EE Trans. Biomed. Engvol. 49,
no. 12, pp. 1514-1525, 20025


http://www.ami.hut.fi
http://neuro.hut.fi
http://boojum.hut.fi
http://www.hut.fi
http://www.cis.hut.fi/projects/ica/fastica/

	Introduction
	Independent Component Analysis
	Spatial and Temporal ICA
	Exploiting the variability in FastICA
	Implementation issues

	Methods
	Results
	Conclusion
	Acknowledgment
	References

