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Abstract. Biomedical signal processing is arguably the most success-
ful application of independent component analysis (ICA) to real world
data. For almost a decade, its use in connection with functional magnetic
resonance imaging (fMRI) has allowed for data-driven analysis, partly re-
moving the constraints for stringent experimental setups, which are often
required by traditional methods based on the use of temporal references.
Recent studies on the consistency of independent components have re-
sulted in a series of tools enabling a more reliable use of ICA. In partic-
ular, it is now rather easy to detect algorithmic overfitting and isolate
subspaces of related activation. Yet, often the nature of the components
may not be determined unambiguously. Focal fMRI signals, seemingly
originating from within a subject’s brain and showing physiologically
plausible temporal behavior, are typically considered relevant. This pa-
per presents a study, which makes use of a standard homogeneous spher-
ical phantom and shows evidence for artifacts caused by the measuring
device or environment, with characteristics that could easily be misin-
terpreted as physiological. Our results suggest that reliable analysis of
fMRI data using ICA may be far more difficult than previously thought.
At least, artificial behavior revealed by phantom analysis should be con-
sidered when conclusions are drawn from real subject measurements.

1 Introduction

Searching for a set of generative source signals from their linear mixing, with
little to no knowledge on the sources or the mixing process, is referred to as blind
source separation (BSS). Independent component analysis (ICA) is possibly the
most widely used data-driven method to solve such problems (a good introduc-
tion to ICA, including its historical debuts and theoretical frameworks can be
found in the textbook [1]; further reading and applications can also be found in
[2, 3]). Biomedical signal processing is arguably the most successful application
of ICA to real world data (representative examples can be found in, e.g., the
following review papers [4, 5, 6, 7]).
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On the other hand, functional magnetic resonance imaging (fMRI) has secured
a strong position in non-invasive studies of the living human brain. It provides
indirect information on neural activity, by measuring the blood oxygenation
level dependent (BOLD) signal (cf., [8]). When analyzing fMRI data under the
statistical parametric mapping (SPM) framework [9], researchers validate an
active brain region through the match of its temporal activation pattern with
a carefully predetermined experimental setup. Therefore, they can only validate
predictions. When performing a data-driven analysis, such as ICA, the researcher
is given greater freedom and is thus capable of detecting unforeseen activity. This
allows the study of a whole new set of more complex research questions. Yet,
the problem of interpreting the nature of the detected components remains,
since not all components have a physiological origin. The key rationales often
used in identifying components of interest include the focal nature and potential
symmetry of the spatial patterns; whether the activation is located inside the
brain and if it falls on expected regions for given stimuli; and how plausible the
corresponding time-courses are.

Recent studies on the consistency of independent components resulted in a
series of tools enabling a more reliable use of ICA (cf., [10, 11, 12]). In particular,
it is now rather easy to detect algorithmic overfitting and isolate subspaces of re-
lated activation. However, some results (cf., [13, 11, 14]) suggest that identifying
the relevant components may, in fact, not be as straightforward as previously
thought, e.g., in the presence of artifacts with characteristics matching the afore-
mentioned rationales on activation volumes and temporal patterns.

In this paper we confront the analyses of brain responses to auditory stimuli
(presented earlier in [14]) and of recently collected data from a standard MRI
phantom. Our results suggest that the analysis of fMRI data using ICA may be
more difficult than previously thought.

2 Data and Methods

2.1 Functional Magnetic Resonance Imaging

Varying concentrations of oxygen in the blood result in changes of its magnetic
properties. Because active brain areas produce a local increase in the blood flow,
measuring the MR-signal during rest periods and during task conditions, e.g.
when attending to stimulus presentation, results in detectable differences in the
measured images. This is the general basis of fMRI.

When using controlled stimuli, it is common to look for voxels in the brain
with a temporal activation pattern that matches the time-courses of the stimuli
(cf., [9]). However, the use of general data-driven methods, such as ICA, have
been suggested when attempting to observe epiphenomena that are hard to tie
to the stimuli or tasks, or when searching for brain reaction to unlabeled stimuli.

2.2 Phantom fMRI Measurements

Artifacts caused by the measuring device or environment can corrupt the fMRI
signal. Hence, their characteristics have to be assessed in order to reliably sepa-
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rate them from genuine BOLD signals. One example of a known artifact in fMRI
signal is the low frequency drift [15], but also more complex artifacts do exist.

Test objects, i.e., phantoms, are often used for assessing the quality of data
collected by MRI equipments (cf., [16, 17]), in terms of image properties, such
as, signal-to-noise ratio and image uniformity. They can also be used for testing
and guiding further analysis applied to the data (cf., [13]).

Here, we use a homogeneous spherical phantom, provided by GE Healthcare.
It has a diameter of about 15 cm, and is filled with silicone gel, in order to
produce images with intrinsically uniform brightness over the whole phantom.
Half an hour before starting the measurements, the phantom was placed within
the head coil and the patient bed moved into measurement position to avoid any
movement induced artifacts. We used the Gradient Echo (GRE) Echo Planar
Imaging (EPI) technique, commonly used for fMRI. All the data were acquired
using a 3.0 Tesla MRI scanner (Signa EXCITE 3.0T; GE Healthcare, Chalfont
St. Giles, UK), with a quadrature birdcage head coil at the Advanced Magnetic
Imaging Centre of Helsinki University of Technology.

The data consisted of 300 fMRI time points with TR = 3000 ms (i.e., a 3 sec-
ond time resolution). The first four scans were excluded from further processing.
For each time point, we acquired 37 axial 3.0 mm slices (spacing = 0 mm) with
a 96 × 96 acquisition matrix and a field of view of 200 mm. We used a flip angle
of 90 deg and TE = 32 ms, all typical values in fMRI studies. Since we were
interested in seeing possible artifacts arising from the measurement equipment
or the environment, the data was not preprocessed before the analysis.

2.3 Real Auditory Measurements

To compare the components found from the phantom data to the ones found
from real measurements, we also used fMRI data of 14 human subjects attending
auditory word stimuli. The stimuli consisted of repetitions of resting and listening
periods. The data consisted of 80 fMRI time points and were acquired with the
same imaging parameters, head coil, and MRI scanner as the phantom data
(further information about the experimental paradigm, and data analysis with
a reliable ICA procedure can be found in [14]). However, in contrast to the
phantom data, these measurements were acquired prior to the EXCITE upgrade
for the imaging equipment.

2.4 Reliable ICA

In BSS, the measured data is an instantaneous linear mixture of generative
source signals, i.e., X = AS, for X, A and S, respectively, the observed data,
the mixing matrix and the underlying sources. The goal is to identify both the
sources and the mixing process with as few assumptions as possible. ICA solves
the BSS problem by assuming only that the generative sources are statistically
independent from each other. Hence, when applied to fMRI data, we often look
for spatially independent neuronal activity, with the columns of the mixing ma-
trix giving the temporal activation of such components.



506 J. Ylipaavalniemi et al.

Theoretically, statistical independence means that the joint probability den-
sity of the sources is factorisable on its marginal densities. In practice, several
estimation algorithms have been proposed to perform ICA, mainly based on con-
cepts such as negentropy, mutual information or maximum likelihood (for further
information, cf., [1, 2, 3]). The experiments in this study use the FastICA algo-
rithm [18], an iterative method with fixed-point optimization. The considerations
based on the FastICA algorithm should also be valid for other implementations.

When analyzing a finite data set, the estimated components may change
slightly each time the analysis is performed. This behavior can be caused by
many factors. For example, the theoretical assumption of statistical indepen-
dence may not hold for the analyzed data [19, 4]. In this case, the somewhat
less restrictive sparse constraint for the underlying sources may still hold, as
suggested in [5]. Also, the algorithmic implementation of ICA may be inher-
ently stochastic. Furthermore, additive noise or other data features can cause
variations in the solutions. When the degrees of freedom is high, there is also
a tendency for overfitting the data [20]. For ICA, this corresponds to bumps or
spikes, which occur quite randomly each time the algorithm is run.

In this paper, the consistency of the estimated signals is tested by running the
algorithm with many different initial conditions, and bootstrapping of the data.
FastICA was used in symmetric mode with tanh nonlinearity, other parameters
where left at default values. The solutions found are combined according to
their similarities. Estimates that differ greatly from run to run are less likely
to correspond to true components, whereas the ones with small variances are
considered reliable (further details, including the combination strategy, can be
found in [14]). Similar approaches for consistency analysis and visualization can
be found in, e.g., [10, 11, 12].

3 Results

A set of independent components showing the simplest or the most structured
time-courses found by analyzing the phantom measurement is shown in Fig. 1.
The disks on the left hand side show the spread of the estimates from the different
runs. The upper disk depicts the intra-group and the lower disk the inter-group
distances. The circles represent mean distances. In ideal estimate discrimination,
the upper disk should fit within the hole in the lower disk. The slices represent,
clockwise from top-left, the sum of the whole volume; the slice containing the
highest power; the slice with the maximum voxel value; and the slice with the
minimum voxel value. The mean time-course is shown as a line, superimposed on
the spread from all the runs, shown as quantile bands with different intensities.
More details on the reliability measures can be found in [14].

All the shown components were found to be very reliable, although some
exhibit a small amount of variability. It appears that none of the components
results from the signal processing related to the analysis itself, or random noise
in the data. Furthermore, the time-courses of the components show clear and
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Fig. 1. A set of independent components with simple or structured time-courses, found
from the phantom measurement. A time period of 240 seconds is shown.

Fig. 2. A set of independent components, found from the measurement of a real subject,
which resemble the ones found from the phantom data. A time period of 240 seconds
is shown.

systematic structures on time scales of several seconds. In other words, com-
ponents like these could be considered as relevant activity, in real brain data.
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Another set of components found from the real brain measurements with
time-courses resembling the ones found from the phantom data are shown in
Fig. 2. The results are from a single subject, but similar components were found
in the data of all the 14 subjects studied. Here the slices are superimposed on a
structural MRI of the subject. The first component has a well structured time-
course, which could easily be misinterpreted as being related to the on-off type
stimuli. In addition, the volume contains a very focal and symmetric activation
pattern in the mid-brain area. However, the time-course, i.e., mixing vector,
shares so much of the characteristics of the first component of the phantom data,
that a more probable explanation is that both components are manifestations
of the same scanner or environment induced artifact. This, however, would be
impossible to notice without having performed the phantom analysis.

Similarly, the other components shown in Fig. 2 exhibit focal activation pat-
terns within the brain and/or structured time-courses, e.g., periodic or slowly
varying. Therefore fitting the aforementioned rationales for identifying interest-
ing components. A close match for many of the time-courses can be found from
the phantom data, with correlations reaching as high as 90%. However, simple
mathematical measures, such as cross-correlation do not show the complete pic-
ture. For example, temporal delays may need to be taken into account. Also, at
times, the phantom components show temporal behavior close to the one used in
the block design of the experiment, causing very strong correlations with several
components. The crucial question is whether in human evaluation the charac-
teristics of the phantom and brain components are confusingly similar, e.g. the
time-course associated with the primary auditory cortex is remarkably close to
the first two phantom components in Fig. 1 (mean correlations 43% and 38%,
respectively). However, in this study, the auditory component can unquestion-
ably be labeled as physiological. Yet, it may still contain contribution from an
artificial signal. Furthermore, artificial signals can be much harder to rule out in
less controlled experimental setups.

The spatial differences between the phantom and brain components may be
attributed to the homogeneity of the phantom, in contrast to the highly non-
uniform MR signal of the human brain. The structural differences may also affect
the magnitude of the measured components. Some of the components could
be related to, e.g., heating of the gradient coils during the imaging or time-
dependent changes in the magnetic fields. Other hardware instabilities and the
imaging environment can also produce artifacts (cf., [15] and references therein).
However, a detailed discussion on the origin of the components is beyond the
scope of this paper.

With a real subject, artifacts can also be caused by, e.g., cardiac pulsation or
head movements. For instance, some of the components in Fig. 2 show charac-
teristics typical for head movements that have not been completely compensated
in the preprocessing of the data. Interestingly, similar behavior in the phantom
data suggests that they may in fact be caused by other phenomena.
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4 Discussion

Phantom measurements are routinely used for verifying and calibrating the qual-
ity of MRI machinery. However, data-driven analysis of phantom fMRI data has
been largely overlooked, possibly due to the lack of a method for assessing the
reliability of the solutions. Although some earlier work (cf., [13]) has shown that
consistent independent components can indeed be found from phantom mea-
surements, to our knowledge, such components have never before been shown
publicly and compared with components found from fMRI studies with real sub-
jects. However, the results presented here strongly suggest that such comparisons
may be very valuable for the whole research field.

The presented results from analyzing phantom data using ICA reveal evidence
for possible misinterpretations in ICA studies with real subjects. The evidence
suggests that analyzing fMRI data using ICA may actually be far more difficult
than previously thought. It is possible that other methods than ICA are also
affected. For example, the reference time-course of the stimuli could have points
of coincidence with artificial signals. The analysis would thus mix real brain
activations with artifacts.

Although not shown, the results also suggest that the imaging parameters
affect the scanner induced components. Therefore, it is important that the phan-
tom measurements are made with the same parameters as those used with the
real subjects. It is also expectable that the artifacts can differ with, e.g., time,
scanner and measurement coils used. This suggests that data-driven analysis,
such as ICA, of phantom data may be useful for quality control of fMRI machin-
ery. The possible effects of different preprocessing steps, typical in fMRI analysis,
could also be tested with a similar approach.

The purpose of this paper is to be a word of warning for the ICA community
involved in analyzing fMRI data. Clearly, we need a better understanding of the
artificial, scanner or environment induced, signals, and of the way they are mani-
fested in phantom and real brain measurements. Possible methods for automatic
exclusion of such artifacts should also be considered. If artifacts with systematic
characteristics are observed, they could be used for designing real brain measure-
ments such that the stimulus timing does not coincide with the known artifacts.
However, the present results strongly suggest that if a researcher wants to base
conclusions on components with a purely physiological origin, the ICA results
should be compared with phantom measurements.
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