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ABSTRACT

In this paper, a new state-space method for language mod-
eling is presented. The complexity of the model is con-
trolled by choosing the dimension of the state instead of the
smoothing and back-off methods common in n-gram mod-
eling. The model complexity also controls the generaliza-
tion ability of the model, allowing the model to handle sim-
ilar words in similar manner. We compare the state-space
model to a traditional n-gram model in a task of letter pre-
diction. In this proof-of-concept experiment, the state-space
model gives similar results as the n-gram model with sparse
training data, but performs clearly worse with dense training
data. While the initial results are encouraging, the training
algorithm should be made more effective, so that it can fully
exploit the model structure and scale up to larger token sets,
such as words.

1. INTRODUCTION

A language model is an important component of a mod-
ern speech recognition system. The language model ranks
the hypotheses generated by the acoustic models. Usually,
a hypothesis is expanded one word at a time, so the lan-
guage model gives the probability of the new word given
the known history. The overwhelmingly most common ap-
proach is n-gram modeling. The n-gram model assigns the
probabilities based on the relative frequencies of the words
with same truncated histories in the training set. With heuris-
tics like smoothing and back-off, the n-gram model pro-
vides a robust model [1]. Corresponding models based on
Bayesian probability theory give similar results [2].

The main drawback of n-gram models is that the model
cannot generalize from semantically similar words. If the
training data has a sentence “Monday morning was clear”,
the n-gram model cannot use any of that information to
model the sentence “Tuesday evening is cloudy”. If simi-
lar words are clustered and the n-gram estimates are based
on these clusters, this kind of generalization can be achieved
[3, 4]. Combining cluster n-grams and traditional n-grams
improves the model.

In Neural Probabilistic Language Model (NPLM) [5],
this generalization is achieved differently. A word is mapped
to a low dimensional feature vector by a neural net. The
feature vectors for fixed number of previous words are fed
into the second layer of the network, which maps these vec-
tors to probabilities through the softmax function. Since the
network has too few parameters to learn the probability dis-
tribution separately for all feature vectors, the first layer of
the network ends up mapping similar words close to each
other. As the mapping of the second layer is smooth, this
leads to good generalization ability. The method is com-
putationally demanding and the authors reduced the size of
the vocabulary to less than 20 000. The method achieved
approximately 15% lower perplexity than a corresponding
n-gram model.

The model presented here is based on state-space meth-
ods. A traditional state-space model is a model for continu-
ous valued time series data. It consists of a linear dynamical
system describing the evolution of the state. The state is not
observed directly but through a separate linear observation
mapping. State-space models are very popular in many ap-
plications due to their general nature and also because of
simple processing algorithms such as Kalman filtering [6].

In this paper, we present a novel state-space method for
modeling a discrete token source, such as words of a lan-
guage. The probability distribution of a token is governed
by the softmax function of a linear transformation of the
corresponding state. The new state depends on a fixed num-
ber of previous tokens in addition to the previous state. Each
of the previous tokens is projected to a low dimensional fea-
ture vector and the features form a part of the state vector.
Because of this dimension reduction, increasing the num-
ber of tokens affecting the current state increases the model
complexity only moderately. Since the model does not have
enough parameters to learn the probability distribution sep-
arately for each possible feature vector, similar tokens are
mapped close to each other, just like in NPLM. The lower
the dimensionality of the state, the more the model gener-
alizes. Too low state dimension will, however, make the
model inflexible and unable to model the source well. Even
though our model is mostly linear, the softmax nonlinearity
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Fig. 1. The dependencies for state s(t).

makes its training computationally demanding.

2. THE STATE-SPACE MODEL

In this paper, boldface capital letters denote matrices and
boldface lower case letters vectors. si denotes the i:th ele-
ment of the vector s, Aj,k the corresponding element of the
matrix A and (As)l the l:th element of the vector resulting
from the multiplication of A and s.

2.1. Traditional state-space models

A basic state-space model for a time series x(t) is defined
by two equations

s(t + 1) = As(t) + m(t) (1)

x(t) = Bs(t) + n(t), (2)

where s(t) are the states of the system, A is the state trans-
formation matrix and B is the observation matrix. Vector
n(t) is Gaussian observation noise and m(t) is Gaussian
process noise forming the innovation process.

The continuous state model is also related to discrete
state hidden Markov model (HMM) that can be obtained
by adding a simple discretizing nonlinearity to Eq. (1) as
shown in [7]. In our case we perform the transformation to
discrete domain in a different manner by adding a softmax
nonlinearity to Eq. (2). Additionally our model contains
explicit mappings from a few previous tokens to the new
state as illustrated in Figure 1.

2.2. Structure of our model

Let us assume that we have a source which produces a stream
of tokens y(t), for example words or letters. The source is
a random process, in which the distribution of the next to-
ken depends on the previously generated tokens. The goal
is to model this source. For simplicity, let us assume that we
can enumerate the set of tokens that the source can produce
and the size of the set is W . A token wi can be mapped to
continuous space by using indicator vector x, where the i:th
element is set to 1 and others to zero. When the observation

is missing, the elements of the estimate x̂ give the proba-
bility of each token. Later it will be shown how tokens that
were not present in the training set can be cleanly handled.

Our model has a state vector s(t), which represents the
state of the source. From this state, the probability distribu-
tion for the current token can be generated by linear map-
ping B and a softmax function. Thus, the estimated proba-
bility of drawing the i:th token is

P
(
y(t) = wi | s(t)

)
= P

(
xi(t) = 1 | s(t))

= x̂i(t) =
e(Bs(t))i∑W

i′=1 e(Bs(t))i′

(3)

The state vector is actually a concatenation of smaller
vectors. The previous state is mapped to the internal state
vector q(t) by matrix A. The dimension of the internal state
is Nq. The probability vectors of the tokens in the history
can be mapped by matrix C to lower dimensional feature
vectors l(t) that are concatenated to the original internal
state vector. The dimensionality of vector l(t) is denoted
by Nl.

To estimate the new state vector ŝ(t), the prediction from
the previous state s(t−1) is concatenated with the mappings
from previous tokens, thus forming Ns = Nq + n · Nl di-
mensional vector, where n is the number of tokens that are
connected to current state. Curly braces show the dimen-
sions of the components:

ŝ(t) =




q(t)
l(t − 1)
l(t − 2)

...
l(t − n)







Ns × 1 (4)

=




Nq×Ns︷︸︸︷
A

Ns×1︷ ︸︸ ︷
s(t − 1)

Nl×W︷︸︸︷
C

W×1︷ ︸︸ ︷
x(t − 1)

Cx(t − 2)
...

Cx(t − n)




(5)

Assuming a Gaussian innovation process with covari-
ance Λ, the probability of a new state s(t) given the previ-
ous state s(t−1), the past historyXt = {x(t−1), . . . ,x(t−
n)} and the model parameters M = {A,B,C} is

P (s(t) | s(t − 1),Xt,M)

= ce−
1
2 (s(t)−ŝ(t))T Λ−1(s(t)−ŝ(t)), (6)

where c is a normalization constant. Figure 1 illustrates the
dependencies of the model.



2.3. Training the model

The model is trained by maximizing the posterior probabil-
ity density of the state and the model parameters M for the
training data:

P (s(t),M | s(t − 1),x(t),Xt)

=
P (x(t) | s(t),M) · P (s(t),M | s(t − 1),Xt)

P (x(t) | s(t − 1),Xt)
(7)

Assuming that the parametersM have non-informative uni-
form priors and they are independent of the state s(t − 1)
we get joint posterior probability density

P (x(t) | s(t),M) · P (s(t) | s(t − 1),M,Xt)
P (x(t) | s(t − 1),Xt)

. (8)

For simplicity, we will also assume diagonal covariance Λ.
Maximization of this function is performed with an EM-

like algorithm one parameter at a time. As the denominator
is constant with respect to parameters to be maximized, it
can be ignored. First, the best state s(t) is found by max-
imizing the logarithm of the Eq. (8) with respect to s(t)
while keeping parameters M constant:

argmax
s(t)

(
log P (x(t) | s(t),M)

+ log P (s(t) | s(t − 1),M,Xt)
) (9)

The function can not easily be analytically maximized, but
a numerical solution is feasible. A good starting point for
searching the exact solution is the predicted new state ŝ(t).
In this work, Fletcher-Reeves conjugate gradient algorithm
[8] as implemented in GNU scientific library1 is used.

After fixing s(t), we update the parameters M. Gradi-
ent of logarithm of Eq. (8) is calculated with respect to each
of parameters in M and the parameters are updated toward
the maximum. This yields the following update rules.

Anew
i,j =Ai,j + αΛ−1

i,i sj(t−1)
(
si(t)−(As(t−1))i

)
(10)

Bnew
i,j =Bi,j+ β sj(t) (xi(t) − x̂i(t)) (11)

Cnew
i,j =Ci,j+ γ

n−1∑
k=0

Λ−1
q,q

(
sq(t)−Ci,j

)
xj(t−n),

where q = Nq + k · Nl + i (12)

Here α, β and γ are the corresponding learning rate param-
eters. Note that x(t) has only one nonzero element. Above,
the procedure for updating the model for one learning sam-
ple was outlined. This procedure is iterated until conver-
gence.

These update rules are valid for on-line learning. A cor-
responding batch algorithm can trivially be computed from

1http://www.gnu.org/software/gsl/

Eqs. (10), (11) and (12) by summing the steps along the
gradient over the batch window before updating the actual
parameters. Note, that this is not the exact solution: Dur-
ing batch learning, we know also the future tokens. Based
on these future tokens, we can approximate the future state,
which should directly affect our current state.

2.4. Computational considerations

Since the scale of M is not fixed, we can choose arbitrary
Λ and the scale of M should adapt accordingly. For numer-
ical reasons, M should be kept small enough, so that expo-
nential functions involved can be calculated without fear of
overflow. Here, we choose that Λ is diagonal with values
0.1 on the diagonal.

If the model would be able to learn the data almost per-
fectly, it would still try to make the absolute values of pa-
rameters M bigger, since the softmax function would still
give slightly higher likelihoods for bigger values. To pre-
vent M from tending to infinity, we have restricted the sum
of squared elements of each matrix to maximum of 10.

Training the model is computationally intensive. Find-
ing the most probable s(t) requires iterations. During each
of the iterations, we need to calculate the softmax function,
which takes up most of the computation time of the whole
learning (up to 70% in these experiments). Some clever
approximations could make the algorithm computationally
less demanding but such optimizations are beyond the scope
of this paper.

2.5. Using the model for prediction

When predicting new tokens, the probability estimates are
drawn from the estimated state ŝ(t + 1). When the current
token is fixed, the state estimate is corrected to the most
likely state (Eq. (9)). As in training, this maximization can
only be solved numerically.

In this model, no probability mass has been left to to-
kens that were not present in the training data. If such out-
of-vocabulary (OOV) token is encountered in the history,
the indicator vector x(t) is set to zero. This turns off the
contribution of the OOV token for the next prediction.

3. EXPERIMENTS

In this work, we examine a task of letter prediction. We
use letters as tokens for our language model and the goal of
our language model is to predict the next letter. To measure
the quality of our model, we calculate for the training mate-
rial the reciprocal of the geometric mean of the probabilities



given to each token, also known as perplexity:

Perp
(
y(1), . . . , y(N)

)
=(

N∏
t=1

P (y(t) | y(t − 1), . . . , y(1))

)− 1
N

, (13)

where N is the size of the test set. The handling of the
out-of-vocabulary tokens is done in the same way as is tra-
ditional for the n-gram models: If the current token y(t) is
not in the vocabulary, the prediction is discarded from the
mean and N is decreased accordingly. If a token in history
(y(t′), t′ < t) is an OOV token, the prediction is taken into
account normally. For our state-space model this means that
for the OOV token, a zero vector is used instead of a token
indicator vector.

For comparison, perplexity results obtained by a n-gram
model with Good–Turing smoothing and back-off as imple-
mented in the CMU–Cambridge toolkit [9] are also given.

3.1. Data

As data, we use excerpts from a book in Finnish. We test
our model in two different situations:

• A sparse training data set (1 016 letters)

• A dense training data set (100 080 letters)

We use a different excerpt of the book (development set,
5 006 letters) to test, how different choices for parameters
affect our model. Based on these tests, we choose the best
state-space model and the best n-gram model and compare
these in yet another data set (test set, 5 037 letters).

The sparse training data included 24 different tokens.
The development set included 8 instances of OOV tokens
and the test set 2. The dense training data included 25 dif-
ferent tokens. The development set included 6 instances of
OOV tokens and the test set 2. These OOV tokens were let-
ters that don’t normally appear in Finnish text, but can be
found in foreign names.

3.2. Results

When referring to state-space models, we try to conform
with the traditional n-gram model naming: order 1 (uni-
gram) refers to model with no direct connections to previous
tokens, order 2 (bigram) refers to a model with one previous
token directly connected to the current state etc.

In training, the initial state s(0) was set to zero and
model parameters M were randomly initialized. The learn-
ing parameters (α, β, γ) were set at first to fast learning and
then decreased toward the end. The learning was done in
batches, with small batch sizes at the beginning of the train-
ing and increasingly bigger batches toward the end. The

order N best
q N best

l perplexity n-gram perp.
1 5 - 22.9 17.3
2 10 15 12.5 13.7
3 20 15 12.5 13.4
5 10 15 14.4 12.7

Table 1. Development set results, sparse training data. Or-
der 1 state-space model does not seem to learn the data very
well and order 5 state-space model also has some problems.
Both order 2 and 3 state-space models get slightly better
results than the best n-gram model (of order 5).

order N best
q N best

l perplexity n-gram perp.
2 3 15 11.1 10.8
3 5 25 10.0 8.0
5 0 15 9.7 5.7

Table 2. Development set results, dense training data. N-
gram models are clearly better than the state-space models.

type training set best order perplexity
state-space sparse 2 12.3

n-gram sparse 5 11.8
state-space dense 5 9.5

n-gram dense 5 5.7

Table 3. Test set results. The n-gram model gets slightly
better perplexity with the sparse training data and clearly
better perplexity with dense training data.

tests were run for orders {1, 2, 3, 5} with internal dimen-
sions {0, 1, 3, 5, 10, 20, 40} and tokens were projected to
dimensions {1, 3, 5, 10, 15, 25}. When the development set
perplexity started to rise, the teaching was stopped to pre-
vent overfitting.

To be fair, n-gram model’s discount ranges and cutoffs
were tuned by hand. This improved the n-gram performance
significantly with the sparse training data.

The perplexity results for development set are shown
in Tables 1 and 2. The models are grouped according to
the number of previous directly connected tokens. For our
state-space model, the tables show the best obtained per-
plexity for each order and the corresponding parameters. To
show that the model is not overly sensitive to choice of pa-
rameters, the perplexity as function of model dimensions is
plotted in Figure 2.

For the test set, the state-space model and the n-gram
model which gave the lowest perplexities for the develop-
ment set were chosen. The results are shown in Table 3.
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Fig. 2. Perplexity as a function of internal state dimen-
sion Nq and feature space dimension Nl for order 2 model
trained from sparse data. Other state-space models behave
similarly. The models are not very sensitive to the choice of
parameters.

4. DISCUSSION

In the tests, the proposed state-space models seem to be
about as good as the n-gram model with sparse training data.
In the dense case, the n-gram models were clearly the better.
Having examined training set perplexity, we conclude that
the bad performance of state-space model is not because of
model overfitting. This case illustrates clearly, that although
our model should be able to give accurate representation of
the dense case (there are enough free parameters), the train-
ing algorithm does not find the correct parameter values.

It is also clear that the training algorithm is unable to
make full use of the internal state. Take for example

1) order 5 model with Nq = 0 and Nl = 5 (training set
perplexity for dense data 10.0)

2) order 2 model with Nq = 20 and Nl = 5 (training set
perplexity for dense data 11.1)

We can transform the first model into equivalent model of
order 2 with Nq = 20 and Nl = 5: Instead of explicitly
connecting the previous tokens to the state, we can have
the internal state to remember these previous tokens. This
equivalent model should get the same training set perplexity.
The best solution that our training algorithm finds is clearly
worse.

Looking at the training set perplexity, we noticed that
toward the end of the training, the perplexity occasionally
got worse. There are two possible explanations for this: We
have limited the sum of each matrix’s squared elements to
10 and this causes problems or the learning speed parame-
ters were poorly chosen. This phenomenon should be stud-
ied more closely.

It is possible that single letters cannot be mapped all
that well to a low dimensional feature space, since they
do not have an independent semantic meaning. For words,
the mapping should be more effective, because words have
clear semantic meanings, which allows semantically similar
words to be handled similarly.

4.1. Future work

In the future, the training algorithm should be studied and
improved. The efficiency should be increased so that the
model can be used for predicting words. Ultimately, the
model should be fast enough to be used in real speech recog-
nition tasks. Finding better ways to initialize the model
could be a part of the solution.

Instead of random model initialization, the initialization
could be based on a priori knowledge. For our letter predic-
tion task, we could make use of the knowledge, that Finnish
has a strict rule of vowel harmony. Encoding this kind of
information into initialization is not trivial, however.

Different model structures should be studied. This pa-
per shows one possibility of connecting states and tokens,
different variations are possible. Maybe some of these vari-
ations are easier to train effectively. Ultimately, one connec-
tion from previous token should be sufficient and the train-
ing algorithm should store all other information it needs to
the internal state.

The linear mapping from previous state to next state
could be too restrictive. Nonlinear mappings for state dy-
namics, for example MLP networks, could be explored. In-
terpolating n-gram and state-space model estimates could
lead to improved performance.

5. CONCLUSIONS

In this paper it was shown that a token source (here let-
ters) can be modeled with a simple state-space model. With
sparse training data, the model yields similar results as the
baseline n-gram model. With dense training data, the n-
gram model is clearly better than our state-space model.
Here, the training algorithm seems to have difficulties in
finding the optimal parameter values.

This kind of model does not need a separate smoothing
and back-off steps to prevent overlearning, since the model
complexity is directly controlled by the state dimension. It
was shown that with sparse data, the state dimension can be
set to a fairly small value and good results are still obtained.
The internal state should be able to store also longer term
dependencies, but it seems that the training algorithm is not
capable of fully exploiting the internal state.

The results obtained in the experiments are encourag-
ing. Despite some problems with the training algorithm, the
state-space model performs on par with the baseline n-gram



model on sparse training data. This is important, since when
modeling word sequences, the data is usually also sparse.
For words, there are probably stronger semantical relation-
ships than with letters. This means that the mapping of the
history to lower dimension in the state is probably more ef-
fective with words as tokens.
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