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» Introduction to analysis of high-throughput biological data
» The focus is in metabolomics and multi-way analysis

» A new method is proposed and applied to biological data



Bioinformatics

» Bioinformatics analyses observations from biological organisms

» Analysis is performed using computational and statistical
methods

» Lines of bioinformatics study genome, gene activity, protein
concentration and metabolite concentration.

» Aim at gaining new knowledge on functioning of the biological
system

» Often motivated by an interest in finding an explanation to a
disease



Metabolomics
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A line of bioinformatics studying concentrations of small
molecules, metabolites

» Metabolite is a substrate or product of a biological process
that is catalysed by proteins

» Lipids are a sub-group of metabolites

» Lipids take part in many important biological processes, such
as cell signaling

» Changes in lipid concentrations are related to many metabolic
diseases, such as diabetes



Experiment setup in bioinformatics

» High-throughput measurements produce observations from
large numbers of features

» n < p problem: less samples than features in the data

» Number of samples is low due to high financial and ethical
costs

» In metabolomic data, one feature corresponds to
concentration of one metabolite

» One sample is a vector of features measured from one patient
on one occasion



A metabolomic data set (1)

100...300 features
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treated

Figure: An example data matrix, where patients have two treatments.
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A metabolomic data set (2)

100...300 features
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Figure: Simulated data. Can you identify treatment effects?



Traditional solutions

» ANOVA (analysis of variance): univariate method handling
one feature at a time

» MANOVA (multivariate analysis of variance): multivariate but
non-functioning for n < p data



Bayesian method: justification

» To deal with the n < p problem
» To estimate uncertainty of the model

» To bring prior knowledge into the model



Bayesian method: clustering and multi-way analysis

» Features are clustered according to similarity

» Common treatment effects for each cluster are estimated



Bayesian method vs. a traditional approach
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Figure: The usual process of high-throughput data analysis

» The proposed model includes all three steps

» Instead of performing the steps sequentially, they are done
simultaneously within the model



Bayesian method: the plate graph
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Figure: The plate graph



Type 1 diabetes study (1)

Finnish children were screened for type 1 diabetes
The children were monitored 1 to 4 times a year

Certain antibody levels in blood were measured
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These antibodies are useful in indicating the onset of the
disease

v

It is already too late to prevent the disease at the time the
antibodies emerge



Type 1 diabetes study (2)

» Could be detected earlier from the metabolic profile?

» Around 100 children took part in a more detailed study, where
lipid profiles were measured from blood serum

» 53 lipids were identified

» Only 54 patients were included in analysis due to missing time
points

» The Bayesian method was used to find possible predictors of
the disease



Results with a lipidomic data set (1)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
18 lipids 8 lipids 5 lipids 4 lipids 15 lipids 3 lipids
cor=0.76 cor=0.32 cor=0.68 cor=0.65 cor=0.47 cor=0.43
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Figure: Estimated treatment effects of a two-way data set



Results with a lipidomic data set (2)
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Results with simulated data

a4 — cluster 1 a4 — cluster 2 a4 — cluster 3 - a4 — cluster 4 a4 — cluster 5
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Figure: Estimated treatment effects as function of sample-size
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