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This article presents a comparative study on a sub-field of morphology learning referred to as
minimally-supervised morphological segmentation. In morphological segmentation, word forms
are segmented into morphs, the surface forms of morphemes. In the minimally-supervised data-
driven learning setting, segmentation models are learned from a small amount of manually
annotated word forms and a large set of unannotated word forms. In addition to providing a
literature survey on published methods, we present an in-depth empirical comparison on three
diverse model families, including a detailed error analysis. Based on the literature survey, we
conclude that the existing methodology contains substantial work on generative morph lexicon-
based approaches and methods based on discriminative boundary detection. As for which ap-
proach has been more successful, both the previous work and the empirical evaluation presented
here strongly imply that the current state of the art is yielded by the discriminative boundary
detection methodology.

1. Introduction

This article discusses a sub-field of morphology learning referred to as morphological segmen-
tation, in which word forms are segmented into morphs, the surface forms of morphemes. For
example, consider the English word houses with a corresponding segmentation house+s, where
the segment house corresponds to the word stem and the suffix -s marks the plural number. While
a major simplification of the diverse morphological phenomena present in languages, this type
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of analysis has nevertheless been of substantial interest to computational linguistics, beginning
with the pioneering work on morphological learning by Harris (1955). As for automatic language
processing, such segmentations have been found useful in a wide range of applications, includ-
ing speech recognition (Hirsimäki et al. 2006; Narasimhan et al. 2014), information retrieval
(Turunen and Kurimo 2011), machine translation (de Gispert et al. 2009; Green and DeNero
2012), and word representation learning (Luong, Socher, and Manning 2013; Qiu et al. 2014).

Since the early work of Harris (1955), most research on morphological segmentation has fo-
cused on unsupervised learning which aims to learn the segmentation from a list of unannotated
(unlabeled) word forms. The unsupervised methods are appealing as they can be applied to any
language, for which there exists a sufficiently large set of unannotated words in electronic form.
Consequently, such methods provide an inexpensive means of acquiring a type of morphological
analysis for low-resource languages as motivated, for example, by Creutz and Lagus (2002).
The unsupervised approach and learning setting has received further popularity due to its close
relationship with the unsupervised word segmentation problem which has been viewed as a
realistic setting for theoretical study of language acquisition (Brent 1999; Goldwater 2006).

While development of novel unsupervised model formulations has remained a topic of
active research (Poon, Cherry, and Toutanova 2009; Monson, Hollingshead, and Roark 2010;
Spiegler and Flach 2010; Lee, Haghighi, and Barzilay 2011; Sirts and Goldwater 2013), recent
work has also shown a growing interest towards semi-supervised learning (Poon, Cherry, and
Toutanova 2009; Kohonen, Virpioja, and Lagus 2010; Sirts and Goldwater 2013; Ruokolainen
et al. 2014; Grönroos et al. 2014). In general, the aim of semi-supervised learning is to acquire
high-performing models utilizing both unannotated as well as annotated data (Zhu and Goldberg
2009). In morphological segmentation, the annotated data sets are commonly small, on the order
of a few hundreds of word forms. We refer to this learning setting with such a small amount
of supervision as minimally-supervised learning. In consequence, similar to the unsupervised
methods, the minimally-supervised techniques can be seen as a means of acquiring a type of
morphological analysis for under-resourced languages.

Individual articles describing novel methods typically contain a comparative discussion and
empirical evaluation between one or two preceding approaches. Therefore, what is currently
lacking from the literature is a summarizing comparative study on the published methodology
as a whole. Moreover, the literature currently lacks discussion on error analysis. A study on
the error patterns produced by varying approaches could inform us about their potential utility
in different tasks. For example, if an application requires high-accuracy compound splitting,
one could choose to apply a model with a good compound-splitting capability even if its affix
accuracy does not reach state of the art. The purpose of this work is to address these issues.

Our main contributions are as follows. First, we present a literature survey on morphological
segmentation methods applicable in the minimally-supervised learning setting. The considered
methods include unsupervised techniques which learn solely from unannotated data, supervised
methods which utilize solely annotated data, and semi-supervised approaches which utilize
both unannotated and annotated data. Second, we perform an extensive empirical evaluation
of three diverse method families, including a detailed error analysis. The approaches considered
in this comparison are variants of the Morfessor algorithm (Creutz and Lagus 2002, 2005, 2007;
Kohonen, Virpioja, and Lagus 2010; Grönroos et al. 2014), the adaptor grammar framework
(Sirts and Goldwater 2013), and the conditional random field method (Ruokolainen et al. 2013,
2014). We hope the presented discussion and empirical evaluation will be of help for future
research on the considered task.

The rest of the article is organized as follows. In Section 2, we provide an overview of
related studies published earlier. Subsequently, we provide a literature survey of published
morphological segmentation methdology in Section 3. Experimental work is presented in Section
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4. Finally, we provide discussion on potential directions for future work and conclusions on the
current work in Sections 5 and 6, respectively.

2. Related Work

Earlier, Hammarström and Borin (2011) presented a literature survey on unsupervised learning of
morphology, including methods for learning morphological segmentation. While the discussion
provided by Hammarström and Borin (2011) focuses mainly on linguistic aspects of morphology
learning, our work is strongly rooted in machine learning methodology and empirical evaluation.
In addition, while Hammarström and Borin (2011) focus entirely on unsupervised learning, our
work considers a broader range of learning paradigms. Therefore, while related, Hammarström
and Borin (2011) and our current presentation are complementary in that they have different
focus areas.

In addition to the work of Hammarström and Borin (2011), we note that there exists some
established forums on morphology learning. Firstly, we mention the ACL Special Interest Group
on Computational Morphology and Phonology (SIGMORPHON) who has regularly organized
workshops on the subject since 2002. As for specifically morphology learning, we refer to the
Morpho Challenge competitions organized since 2005 at Aalto University (formerly known as
Helsinki University of Technology). While these events have been successful in providing a
publication and discussion venue for researchers interested in the topic, they have not given
birth to comparative studies or survey literature. For example, while the publications on Morpho
Challenge (Kurimo et al. 2009; Kurimo, Virpioja, and Turunen 2010) discuss the competition
results, they nevertheless do not attempt to provide any insight on the fundamental differences
and similarities of the participating methods.

3. Methods

This section provides a detailed review of methodology. We begin by describing varying morpho-
logical representations, including segmentation, and the minimally-supervised learning setting in
Sections 3.1 and 3.2, respectively. We then provide a literature survey and comparative discussion
on a range of methods in Section 3.3.

3.1 On Learning Morphological Representations

In what follows, we briefly characterize morphological segmentation with respect to alternative
morphological representations, particularly the full morphological analysis. To this end, con-
sider the exemplar segmentations and full analyses for Finnish word forms in Table 1, where
the full analyses are provided by the rule-based OMorFi analyzer developed by Pirinen (2008).
Note that it is typical for word forms to have alternative analyses and/or meanings which cannot
be disambiguated without sentential context. Evidently, the level of detail in the full analysis
is substantially higher compared to the segmentation, as it contains lemmatization as well as
morphological tagging, whereas the segmentation consists of only segment boundary positions.
Consequently, due to this simplicity, morphological segmentation has been amenable to unsuper-
vised machine learning methodology, beginning with the work of Harris (1955). Meanwhile, the
majority of work on learning of full morphological analysis has employed supervised method-
ology (Chrupala, Dinu, and van Genabith 2008). Lastly, there have been numerous studies on
statistical learning of intermediate forms of segmentation and full analysis (Virpioja, Kohonen,
and Lagus 2010; Lignos 2010) as well as alternative morphological representations (Yarowsky
and Wicentowski 2000; Schone and Jurafsky 2001; Neuvel and Fulop 2002; Johnson and Martin
2003).
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As for language processing, learning segmentation can be advantageous compared to learn-
ing full analyses. In particular, learning full analysis in a supervised manner typically requires
up to tens of thousands of manually annotated sentences. A low cost alternative, therefore,
could be to learn morphological segmentation from unannotated word lists and a handful of
annotated examples. Importantly, the segmentation analysis have been found useful in a range
of applications, such as speech recognition (Hirsimäki et al. 2006; Narasimhan et al. 2014),
information retrieval (Turunen and Kurimo 2011), machine translation (de Gispert et al. 2009;
Green and DeNero 2012), and word representation learning (Luong, Socher, and Manning 2013;
Qiu et al. 2014).

Despite its intuitiveness, it should be noted that the segmentation representation is not
equally applicable to all languages. To this end, consider the terms isolative and synthetic
languages. In languages with a high amount of isolating morphological properties, word forms
tend to comprise their own morphemes. Meanwhile, in heavily synthetic languages, words tend
to contain multiple morphemes. Synthetic languages can be described further according to their
agglutinative (concatenative) and fusional properties. In the former, the morphs tend to have
clear boundaries between them while in the latter, the morphs tend to be indistinguishable. For
examples of agglutinative and fusional word formation, consider the English verbs played (past
tense of play) and sang (past tense of sing). While the previous can be effortlessly divided into
two segments as play+ed (STEM + PAST TENSE), there are no such distinct boundaries in the
latter. Generally, languages with synthetic properties mix concatenative and fusional schemes
and contain agglutinative properties to varying degrees. Morphological segmentation can be most
naturally applied to highly agglutinative languages.

Morphologically ambiguous word forms are common especially in highly synthetic lan-
guages. Even without disambiguation based on sentential context, providing all correct alterna-
tives could be useful for some downstream applications, such as information retrieval. Statistical
methods can usually provide n-best segmentations; for example, Morfessor (Creutz and Lagus
2007) and CRFs (Ruokolainen et al. 2013) by using n-best Viterbi algorithm and adaptor
grammar (Sirts and Goldwater 2013) by collecting the variations in the posterior distribution
samples. While there is no evident way to decide the correct number of alternatives for a
particular word form, n-best lists might be useful whenever recall (including the correct answers)
is more important than precision (excluding any incorrect answers). The Morpho Challenge
competitions have allowed providing alternative segmentations for the submitted methods, but
no clear developments have been reported. In fact, even in the reference results based on the gold
standard segmentations, selecting all alternative segmentations has performed slightly worse in
the information retrieval tasks than taking only the first segmentation (Kurimo, Virpioja, and
Turunen 2010).

3.2 Minimally-Supervised Learning Setting

In data-driven morphological segmentation, our aim is to learn segmentation models from train-
ing data. Subsequent to training, the models provide segmentations for given word forms. In the
minimally-supervised learning setting, as defined here, the models are estimated from annotated
and unannotated word forms. We denote the annotated data set comprising word forms with their
corresponding segmentation asD and the unannotated data set comprising raw word forms as U .
Typically, the raw word forms can be obtained easily and, consequently, U can contain millions
of word forms. Meanwhile, acquiring the annotated data D requires manual labor and, therefore,
typically contains merely hundreds or thousands of word forms. For an illustration of D and U ,
see Table 2.

We consider three machine learning approaches applicable in the minimally-supervised
learning setting, namely, unsupervised, supervised, and semi-supervised learning. In unsuper-
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Table 1
Morphological segmentation versus full morphological analysis for exemplar Finnish word forms. The full
analysis consists of word lemma (basic form), part-of-speech, and fine-grained labels.

word form full analysis segmentation
auto (car) auto+N+Sg+Nom auto
autossa (in car) auto+N+Sg+Ine auto+ssa
autoilta (from cars) auto+N+Pl+Abl auto+i+lta
autoilta (car evening) auto+N+Sg+Nom+# ilta+N+Sg+Nom auto+ilta
maantie (highway) maantie+N+Sg+Nom maantie

maa+N+Sg+Gen+# tie+N+Sg+Nom maa+n+tie
sähköauto (electric car) sähköauto+N+Sg+Nom sähköauto

sähkö+N+Sg+Nom+# auto+N+Sg+Nom sähkö+auto

Table 2
Examples of annotated and unannotated data, D and U , respectively. Typically, U can contain hundreds of
thousands or millions of word forms, while D contains merely hundreds or thousands of word forms.

D U
anarch + ist + s actions

bound + ed bilinguals
conting + ency community

de + fame disorders
entitle + ment equipped
fresh + man faster

. . . . . .

vised learning, the segmentation models are trained on solely unannotated data U . Meanwhile,
supervised models are trained from solely the annotated data D. Finally, the aim of semi-
supervised learning is to utilize both the available unannotated and annotated data. Since the
semi-supervised approach utilizes the largest amount of data, it is expected to be most suitable
for acquiring high segmentation accuracy in the minimally-supervised learning setting.

Lastly, we note that the unsupervised learning framework can be understood in a strict
or non-strict sense, depending on whether the applied methods are allowed to use annotated
data D for hyper-parameter tuning. While the term unsupervised learning itself suggests that
such adjusting is infeasible, this type of tuning is nevertheless common (Creutz et al. 2007;
Çöltekin 2010; Spiegler and Flach 2010; Sirts and Goldwater 2013). In addition, the minimally-
supervised learning setting explicitly assumes a small amount of available annotated word forms.
Consequently, in the remainder of this article, all discussion on unsupervised methods refers to
unsupervised learning in the non-strict sense.

3.3 Algorithms

Here we provide a literature survey on proposed morphological segmentation methods applicable
in the minimally-supervised learning setting. We place particular emphasis on three method
families, namely, the Morfessor algorithm (Creutz and Lagus 2002, 2005, 2007; Kohonen,
Virpioja, and Lagus 2010; Grönroos et al. 2014), the adaptor grammar framework (Sirts and
Goldwater 2013), and conditional random fields (Ruokolainen et al. 2013, 2014). These ap-
proaches are the subject of the empirical evaluation presented in Section 4. In what follows,
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we present individual method descriptions in Section 3.3.1. Subsequently, Section 3.3.2 provides
a summarizing discussion, the purpose of which is to gain insight on the fundamental differences
and similarities between the varying approaches.

3.3.1 Descriptions.

Morfessor. We begin by describing the original, unsupervised Morfessor method family (Creutz
and Lagus 2002, 2005, 2007). We then discuss the later, semi-supervised extensions (Kohonen,
Virpioja, and Lagus 2010; Grönroos et al. 2014). In particular, we review the extension of
Morfessor Baseline to semi-supervised learning by using a weighted generative model (Kohonen,
Virpioja, and Lagus 2010), and then discuss the most recent Morfessor variant, FlatCat (Grönroos
et al. 2014). Finally, we discuss some general results from the literature on semi-supervised
learning with generative models.

The unsupervised Morfessor methods are based on a generative probabilistic model which
generates the observed word forms xi ∈ U by concatenating morphs xi = mi1 ◦mi2 ◦ · · · ◦
min. The morphs are stored in a morph lexicon which defines the probability of each morph
P (m |θ) given some parameters θ. The Morfessor learning problem is to find a morph lexicon
which strikes an optimal balance between encoding the observed word forms concisely and, at
the same time, having a concise morph lexicon. To this end, Morfessor utilizes a prior distribution
P (θ) over morph lexicons, derived from the Minimum Description Length principle (Rissanen
1989), that favors lexicons that contain fewer, shorter morphs. This leads to the following
minimization problem that seeks to balance the conciseness of the lexicon with the conciseness
of the observed corpus encoded with the lexicon:

θ∗ = argmin
θ

L(θ,U) = argmin
θ
{− lnP (θ)− lnP (U |θ)} , (1)

The optimization problem in Equation (1) is complicated by the fact that each word in
the corpus U can be generated by different combinations of morphs, defined by the set of
segmentations of that word. This introduces a nuisance parameter z for the segmentation of
each word form, where P (U |θ) =

∑
Z P (U | z,θ)P (z). Due to this summation, the expression

cannot be solved analytically, and iterative optimization must be employed instead.
The unsupervised Morfessor variants differ in the following ways: Firstly, whether all

morphs belong to a single category or the categories PREFIX, STEM, and SUFFIX are employed.
Secondly, if the model utilizes a lexicon that is flat or hierarchical. In a flat lexicon, morphs can
only be encoded by combining letters, whereas in a hierarchical lexicon, pre-existing morphs
can be used for storing longer morphs. Thirdly, the parameter estimation and inference methods
differ. Parameters are estimated using greedy local search or iterative batch procedures while
inference is performed with either Viterbi decoding or heuristic procedures.

The earliest Morfessor method, referred to as Morfessor Baseline, has been extended to
semi-supervised learning by Kohonen, Virpioja, and Lagus (2010). In contrast, the later methods,
namely Categories-ML and Categories-MAP, have not been extended, as they employ either
hierarchical lexicons or training procedures that make them less amenable to semi-supervised
learning. However, recently Grönroos et al. (2014) proposed a new Morfessor variant that
employs morph categories in combination with a flat lexicon, and can therefore apply the semi-
supervised learning technique of Kohonen, Virpioja, and Lagus (2010).

We begin the description of the semi-supervised extension to Morfessor Baseline (Creutz
and Lagus 2002, 2007) by reviewing its generative model. Morfessor Baseline utilizes a model
in which word forms are generated by concatenating morphs, all of which belong to the same
category. It employs a flat morph lexicon P (m |θ) that is simply a multinomial distribution
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over morphs m, according to the probabilities given by the parameter vector θ. The employed
prior penalizes storing long morphs in the lexicon by assigning each stored morph a cost that
depends most strongly on the morph length in letters. A morph is considered to be stored if the
lexicon assigns it a nonzero probability. The parameter estimation for θ finds a local optimum
utilizing greedy local search. The search procedure approximates the optimization problem in
Equation (1) by assuming that for each word form xi, its corresponding segmentation distribution
P (zi) has all its mass concentrated to a single segmentation zi. The parameter estimation is then
performed by locally searching each word for the segmentation that yields the best value of
the cost function in Equation (1). The process is repeated for all words in random order until
convergence. Subsequent to learning, the method predicts the segmentation of a word form by
selecting the segmentation with the most probable sequence of morphs using an extension of the
Viterbi algorithm.

Semi-supervised learning is in principle trivial for a generative model: for the labelled word
forms D, the segmentation is fixed to its correct value, and for the unlabelled forms U the
standard parameter estimation procedure is applied. However, Kohonen, Virpioja, and Lagus
(2010) failed to achieve notable improvements in this fashion, and consequently replaced the
minimized function L in Equation (1) with

L(θ, z,U ,D) = − lnP (θ)− α× lnP (U |θ)− β × lnP (D |θ). (2)

Such weighted objectives have been employed earlier in combination with generative models
by, for example, Nigam et al. (2000). The semi-supervised training procedure then adjusts the
weight values α and β. The absolute values of the weights control the cost of encoding a morph
in the training data with respect to the cost of adding a new morph to the lexicon, while their ratio
controls how much weight is placed on the annotated data with respect to the unannotated data.
When the hyperparameters α and β are fixed, the lexicon parameters θ can be optimized with
the same greedy local search procedure as in the unsupervised Morfessor Baseline. The weights
can then be optimized with a grid search and choosing the model with the best evaluation score
on a held-out development set. While this modification is difficult to justify from the perspective
of generative modeling, Kohonen, Virpioja, and Lagus (2010) show that in practice it can yield
performance improvements. From a theoretical point of view, it can be seen as incorporating
discriminative training techniques when working with a generative model by optimizing for
segmentation performance rather than maximum a posteriori probability. However, only the
hyperparameters are optimized in this fashion, whereas the lexicon parameters are still learned
within the generative model framework.

The semi-supervised learning strategy described above is simple to apply if the objective
function in Equation (1) can be factored to parts that encode the morphs using letters and
encode the training corpus using the morphs. For some models of the Morfessor family this
is not possible due to the use of a hierarchical lexicon, where morphs can be generated from
other morphs as well as from individual letters. In particular, this includes the well-performing
Categories-MAP variant (Creutz et al. 2007). In contrast to Morfessor Baseline, the Categories-
MAP and the preceding Categories-ML method employ a hidden Markov model to produce the
observed words, where the states are given by STEM, PREFIX, SUFFIX categories as well as an
internal non-morpheme category. A recent development is Morfessor FlatCat by Grönroos et al.
(2014) which employs the hidden Markov model structure and morph categories in combination
with a flat lexicon, thus allowing semi-supervised learning in the same fashion as for Morfessor
Baseline.

In general, the key idea behind using the weighted objective function in Equation (2) for
semi-supervised learning is that the hyper-parameters α and β can be used to explicitly control
the influence of the unannotated data on the learning. Similar semi-supervised learning strategies
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have been employed also in other problems. For classification with generative models, it is
known that adding unlabeled data to a model trained with labeled data can degrade performance
(Cozman et al. 2003; Cozman and Cohen 2006). In particular, this can be the case if the generative
model does not match the generating process, something that is difficult to ensure in practice.
Recently, this phenomenon was analyzed in more detail by Fox-Roberts and Rosten (2014) who
show that, while the unlabeled data can introduce a bias, the bias can be removed by optimizing
a weighted likelihood function where the unlabeled data is raised to the power NL

N , where NL
is the number of labeled samples and N is the number of all samples. This corresponds to the
weighting scheme used in Morfessor when setting the ratio α

β = NL

N .

Adaptor Grammars. Recently, Sirts and Goldwater (2013) presented work on minimally-
supervised morphological segmentation using the adaptor grammar (AG) approach (Johnson,
Griffiths, and Goldwater 2007a). The AGs are a non-parametric Bayesian modeling framework
applicable for learning latent tree structures over an input corpus of strings. They can be used
to define morphological grammars of different complexity, starting from the simplest grammar
where each word is just a sequence of morphs and extending to more complex grammars, where
each word consists, for example, of zero or more prefixes, a stem, and zero or more suffixes.

The actual forms of the morphs are learned from the data and, subsequent to learning,
employed to generate segmentations for new word forms. In this general approach AGs are
similar to the Morfessor family (Creutz and Lagus 2007). A major difference, however, is that
the morphological grammar is not hard-coded but instead specified as an input to the algorithm.
This allows different grammars to be explored in a flexible manner. Prior to the work by Sirts and
Goldwater (2013), the AGs were successfully applied in a related task of segmenting utterances
into words (Johnson 2008; Johnson and Goldwater 2009; Johnson and Demuth 2010).

The second major difference between the Morfessor family and the AG framework is
the contrast between the MAP and fully Bayesian estimation approaches. Whereas the search
procedure of the Morfessor method discussed above returns a single model corresponding to
the MAP point-estimate, AGs instead operate with full posterior distributions over all possible
models. Since acquiring the posteriors analytically is intractable, inference is performed utilizing
Markov Chain Monte Carlo algorithms to obtain samples from the posterior distributions of
interest (Johnson 2008; Johnson and Goldwater 2009; Johnson and Demuth 2010; Sirts and
Goldwater 2013). However, as sampling-based models are costly to train on large amounts of
data, we adopt the parsing-based method proposed in (Sirts and Goldwater 2013) to use the
trained AG model inductively on test data. One of the by-products of training the AG model
is the posterior grammar that in addition to all the initial grammar rules also contains the
cached subtrees learned by the system. This grammar can be used in any standard parser to
obtain segmentations for new data.

While the AG framework was originally designed for the unsupervised learning setting,
Sirts and Goldwater (2013) introduced two approaches for semi-supervised learning coined the
semi-supervised AG and AG Select methods. The semi-supervised AG approach is an extension
to unsupervised AG, in which the annotated data D is exploited in a straightforward manner
by keeping the annotated parts of parse trees fixed while inferring latent structures for the
unannotated parts. For unannotated word forms inference is performed on full trees. For example,
the grammar may specify that words are sequences of morphs and each morph is a sequence of
submorphs. Typically, the annotated data only contains morpheme boundaries and submorphs
are latent in this context. In this situation the inference for annotated data is performed over
submorph structures only.

Similarly to unsupervised learning, semi-supervised AG requires the morphological gram-
mar to be defined manually. Meanwhile, the AG Select approach aims to automate the grammar
development process by systematically evaluating a range of grammars and finding the best one.
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AG Select is trained using unsupervised AG with an uninformative metagrammar so that the
resulting parse-trees contain many possible segmentation templates. To find out which template
works the best for any given language or data set, each of these templates are evaluated using the
annotated data set D. In this sense, AG Select can be characterized as more of a model selection
method than semi-supervised learning.

Conditional Random Fields. The Morfessor and AG algorithms discussed above, although
different in several respects, operate in a similar manner in that they both learn lexicons. For
Morfessor, the lexicon consists of morphs, while for AG, the lexical units are partial parse-
trees. Subsequent to learning, new word forms are segmented either by generating the most
likely morph sequences (Morfessor) or by sampling parse-trees from the posterior distribution
(AG). In what follows, we consider a different approach to segmentation using sequence labeling
methodology. The key idea in this approach is to focus the modeling effort to morph boundaries
instead of the whole segments. Following the presentation of Ruokolainen et al. (2013, 2014), the
morphological segmentation task can be represented as a sequence labeling problem by assigning
each character in a word form to one of three classes, namely

B beginning of a multi-character morph
M middle of a multi-character morph
S single-character morph

Using this label set, one can represent the segmentation of the Finnish word autoilta (from cars)
(auto+i+lta) as

a u t o i l t a
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
B M M M S B M M

Naturally, one can also employ other label sets. Essentially, by defining more fine-grained labels,
one captures increasingly eloquent structure but begins to overfit model to the training data due to
increasingly sparser statistics. Subsequent to defining the label set, one can learn a segmentation
model using general sequence labeling methods, such as the well-known conditional random
field (CRF) framework (Lafferty, McCallum, and Pereira 2001).

Denoting the word form and the corresponding label sequence as x and y, respectively, the
CRFs directly model the conditional probability of the segmentation given the word form, that
is, p(y |x;w). The model parameters w are estimated discriminatively from the annotated data
set D using iterative learning algorithms (Lafferty, McCallum, and Pereira 2001; Collins 2002).
Subsequent to estimation, the CRF model segments word forms x by using maximum a posteriori
(MAP) graph inference, that is, solving an optimization problem

z = argmax
u

p (u |x;w) (3)

using the standard Viterbi search (Lafferty, McCallum, and Pereira 2001).
As it turns out, the CRF model can learn to segment words with a surprisingly high accuracy

from a relatively small D, that is, without utilizing any of the available unannotated word forms
U . Particularly, Ruokolainen et al. (2013) showed that it is sufficient to employ simple left
and right substring context features which are naturally accommodated by the discriminative
parameter estimation procedure. Moreover, Ruokolainen et al. (2014) showed that the CRF-
based approach can be successfully extended to semi-supervised learning setting in a straight-
forward manner via feature set expansion by utilizing predictions of unsupervised segmentation
algorithms. By employing this approach, the CRF model learns to associate the output of the
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unsupervised algorithms, such as the Morfessor and adaptor grammar methods, in relation to the
surrounding substring context.

Other Work. In addition to the algorithms discussed above, there exist numerous other seg-
mentation approaches applicable in the minimally-supervised learning setting. As the earliest
example of work in this line, consider obtaining segmentations using the classic letter successor
variety (LSV) method of Harris (1955). The LSV method utilizes the insight that the predictabil-
ity of successive letters should be high within morph segments, and low at the boundaries.
Consequently, a high variety of letters following a prefix indicates a high probability of a
boundary. While LSV score tracks predictability given prefixes, the same idea can be utilized for
suffixes, providing the letter predecessor variety (LPV) method. As for the minimally-supervised
learning setting, the LSV/LPV method can be employed most straightforwardly by counting the
LSV/LPV scores from unannotated data and, subsequently, tuning the necessary threshold values
on the annotated data (Çöltekin 2010). On the other hand, one could also use the LSV/LPV
values as features for a classification model, in which case the threshold values can be learned
discriminatively based on the available annotated data. The latter approach is essentially realized
in case the LSV/PSV scores are provided for the CRF model discussed above (Ruokolainen et
al. 2014).

As for more recent work, we first refer to the generative log-linear model of Poon, Cherry,
and Toutanova (2009). Similarly to the Morfessor model family, this approach is based on
defining a joint probability distribution over the unannotated word forms U and the corre-
sponding segmentations S. The distribution is log-linear in form and is denoted as p(U ,S;θ),
where θ is the model parameter vector. Again, similarly to the Morfessor framework, Poon,
Cherry, and Toutanova (2009) learn a morph lexicon which is subsequently used to generate
segmentations for new word forms. The learning is controlled using prior distributions on both
corpus and lexicon, which penalize exceedingly complex morph lexicon (similarly to Morfessor)
and exceedingly segmented corpus, respectively. The log-linear form of p(U ,S;θ) enables the
approach to use a wide range of overlapping features. Particularly, Poon, Cherry, and Toutanova
(2009) utilize a morph-context feature set with individual features defined for each morph and
morph substring contexts. In addition to unsupervised learning, they presented experiments in
the semi-supervised setting. Specifically, they accomplish this by fixing the segmentations of
annotated words in D according to their gold standard segmentation. Note, however, that this
approach of extending a generative model does not necessarily utilize the supervision efficiently
as discussed above regarding the Morfessor method family.

Finally, we briefly mention a range of recently published methods (Monson, Hollingshead,
and Roark 2010; Spiegler and Flach 2010; Kılıç and Bozşahin 2012; Eger 2013). The Paramor
approach presented by Monson, Hollingshead, and Roark (2010) defines a rule-based system for
unsupervised learning of morphological paradigms. The Promodes system of Spiegler and Flach
(2010) defines a family of generative probabilistic models for recovering segment boundaries in
an unsupervised fashion. The algorithm of Kılıç and Bozşahin (2012) is based on a generative
hidden Markov model (HMM), in which the HMM learns to generate morph sequences for given
word forms in a semi-supervised fashion. Finally, Eger (2013) presented work on fully supervised
segmentation by exhaustive enumeration and a generative Markov model on morphs. As for the
minimally-supervised learning setting, the Paramor system learns mainly from unannotated data
U and utilizes annotated data D to adjust the required threshold value. The Promodes models
can be trained either in an unsupervised manner on U or in a supervised manner on D. The
algorithm of Kılıç and Bozşahin (2012) learns mainly from unannotated data U and incorporates
supervision from the annotated corpus in the form of manually selected statistics: the inclusion of
the statistics yields a large improvement in performance. Lastly, in their work with the supervised
enumeration approach, Eger (2013) assumed a large, on the order of tens of thousands, amount
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of annotated word forms available for learning. Thus, it is left for future work to determine if the
approach could be applied successfully in the minimally-supervised learning setting.

3.3.2 Summary. Here we aim to summarize the fundamental differences and similarities between
the varying learning approaches discussed in the previous section.

Learning Lexicons versus Detecting Boundaries. We begin by dividing the methods described
above into two, lexicon-based (Creutz et al. 2007; Poon, Cherry, and Toutanova 2009; Monson,
Hollingshead, and Roark 2010; Kılıç and Bozşahin 2012; Eger 2013; Sirts and Goldwater 2013)
and boundary detection (Harris 1955; Spiegler and Flach 2010; Ruokolainen et al. 2013),
categories. In the former, the model learns lexical units, whereas in the latter the model learns
properties of morph boundaries. For example, in the case of Morfessor (Creutz et al. 2007) the
lexical units correspond to morphs while in AGs (Sirts and Goldwater 2013) the units are parse-
trees. Meanwhile, consider the CRF approach of Ruokolainen et al. (2013) and the classical
approach of Harris (1955) which identify morph boundary positions utilizing substring contexts
and letter successor varieties, respectively. In general, whether it is easier to discover morphs or
morph boundaries is largely an empirical question. So far, only the method of Poon, Cherry, and
Toutanova (2009) has explicitly modeled both a morph lexicon and features describing character
n-grams at morpheme boundaries.

Generative versus Discriminative Learning. The second main distinction divides the models into
generative and discriminative approaches. The generative approaches (Creutz et al. 2007; Poon,
Cherry, and Toutanova 2009; Spiegler and Flach 2010; Monson, Hollingshead, and Roark 2010;
Kılıç and Bozşahin 2012; Eger 2013; Sirts and Goldwater 2013) model the joint distribution
of word forms and their corresponding segmentations, whereas discriminative (Harris 1955;
Ruokolainen et al. 2013) approaches directly estimate a conditional distribution of segmentation
given a word form. In other words, whereas generative methods generate both word forms and
segmentations, the discriminative methods generate only segmentations given word forms. The
generative models are naturally applicable for unsupervised learning. Meanwhile, discriminative
modeling always requires some annotated data, thus excluding the possibility of unsupervised
learning. Lastly, it appears that most lexicon-based methods are generative and most boundary
detection methods are discriminative. However, it should be pointed out that this is a trend
rather than a rule, as exemplified by generative boundary detection method of Spiegler and Flach
(2010).

Semi-Supervised Learning Approaches. Both generative and discriminative models can be ex-
tended to utilize annotated as well as unannotated data in a semi-supervised manner. However,
the applicable techniques differ. For generative models, semi-supervised learning is in principle
trivial: for the labeled word formsD, the segmentation is fixed to its correct value, as exemplified
by the approaches of Poon, Cherry, and Toutanova (2009), Spiegler and Flach (2010), Sirts
and Goldwater (2013). On the other hand, the semi-supervised setting also makes it possible
to apply discriminative techniques to generative models. In particular, model hyper-parameters
can be selected to optimize segmentation performance, rather than some generative objective,
such as likelihood. Special cases of hyper-parameter selection include the weighted objective
function (Kohonen, Virpioja, and Lagus 2010), data selection (Virpioja, Kohonen, and Lagus
2011; Sirts and Goldwater 2013), and grammar template selection (Sirts and Goldwater 2013). As
for the weighted objective function and grammar template selection, the weights and templates
are optimized to maximize segmentation accuracy. Meanwhile, data selection is based on the
observation that omitting some of the training data can improve segmentation accuracy (Virpioja,
Kohonen, and Lagus 2011; Sirts and Goldwater 2013).
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For discriminative models, the possibly most straightforward semi-supervised learning tech-
nique is adding features derived from the unlabeled data, as exemplified by the CRF approach
of Ruokolainen et al. (2014). However, discriminative semi-supervised learning is in general
a much researched field with numerous diverse techniques (Zhu and Goldberg 2009). For
example, merely for the CRF model alone, there exists several proposed semi-supervised learning
approaches (Jiao et al. 2006; Mann and McCallum 2008; Wang et al. 2009).

On Local Search. In what follows, we will discuss a potential pitfall of some algorithms
which utilize local search procedures in the parameter estimation process, as exemplified by
the Morfessor model family (Creutz et al. 2007). As discussed in Section 3.3.1, the Morfessor
algorithm finds a local optimum of the objective function using a local search procedure. This
complicates model development because if two model variants perform differently empirically,
it is uncertain whether it is because of a truly better model or merely better fit with the employed
parameter estimation method, as discussed also by Goldwater (2006, Section 4.2.2.3). Therefore,
in contrast, within the adaptor grammar framework (Johnson, Griffiths, and Goldwater 2007a;
Sirts and Goldwater 2013), the focus has not been on finding a single best model, but rather
to find the posterior distribution over segmentations of the words. Another approach to the
problem of bad local optima is to start a local search near some known good solution. This
approach is taken in Morfessor FlatCat, for which it was found that initializing the model with
the segmentations produced by the supervised CRF model (with a convex objective function)
yields improved results (Grönroos et al. 2014).

4. Experiments

In this section, we perform an empirical comparison of segmentation algorithms in semi-
supervised learning setting. The purpose of the presented experiments is to extend the current
literature by considering a wider range of languages compared to previous work, and by provid-
ing an in-depth error analysis.

4.1 Data

We perform the experiments on four languages, namely, English, Estonian, Finnish, and Turkish.
The English, Finnish, and Turkish data are from the Morpho Challenge 2009/2010 data set
(Kurimo et al. 2009; Kurimo, Virpioja, and Turunen 2010). The annotated Estonian data set
is acquired from a manually annotated, morphologically disambiguated corpus.1 Meanwhile, the
unannotated word forms are gathered from the Estonian Reference Corpus (Kaalep et al. 2010).
Table 3 shows the total number of instances available for model estimation and testing.

4.2 Compared Algorithms

We present a comparison of the Morfessor family (Creutz and Lagus 2002, 2005, 2007; Kohonen,
Virpioja, and Lagus 2010; Grönroos et al. 2014), the adaptor grammar framework (Sirts and
Goldwater 2013), and the conditional random fields (Ruokolainen et al. 2013, 2014). These
methods have freely available implementations for research purposes.

The log-linear model presented by Poon, Cherry, and Toutanova (2009) is omitted since
it does not have a freely available implementation. However, the model has been compared in
the semi-supervised learning setting on Arabic and Hebrew with conditional random fields and

1 Available at http://www.cl.ut.ee/korpused/morfkorpus/index.php?lang=en
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Table 3
Number of word types in the data sets.

English Estonian Finnish Turkish
train (unann.) 384,903 3,908,820 2,206,719 617,298
train (ann.) 1,000 1,000 1,000 1,000
devel. 694 800 835 763
test 10×1,000 10×1,000 10×1,000 10×1,000

Morfessor earlier by Ruokolainen et al. (2013). In these experiments, the model was substantially
outperformed on both languages by the conditional random field method and on Hebrew by
Morfessor.

In order to provide a strong baseline for unsupervised learning results, we performed
preliminary experiments using the model presented by Lee, Haghighi, and Barzilay (2011).2

Their model learns segmentation in an unsupervised manner by exploiting syntactic context
of word forms observed in running text and has shown promising results for segmentation of
Arabic. In practice, we found that when employing method’s default hyper-parameters, it did
not yield nearly as good results as the other unsupervised methods on our studied data sets.
Adjusting the hyper-parameters turned out to be complicated by the computational demands of
the method. When employing the same computer setup as for the other models, training the
method required limiting the maximum word length of analyzed words to 12 in order for the
model to fit in memory, as well as weeks of runtime for a single run. We decided to abandon
further experimentation with the method of Lee, Haghighi, and Barzilay (2011), as optimizing
its hyper-parameters was computationally infeasible.

4.3 Evaluation

This section describes the employed evaluation measures and the performed error analysis.

4.3.1 Boundary precision, recall, and F1-score. The word segmentations are evaluated by
comparison with reference segmentations using boundary precision, boundary recall, and
boundary F1-score. The boundary F1-score, or F1-score for short, equals the harmonic mean
of precision (the percentage of correctly assigned boundaries with respect to all assigned bound-
aries) and recall (the percentage of correctly assigned boundaries with respect to the reference
boundaries):

Precision =
C(correct)

C(proposed)
(4)

Recall =
C(correct)

C(reference)
(5)

We follow Virpioja et al. (2011) and use type-based macro-averages. However, we handle word
forms with alternative analyses in a different fashion. Instead of penalizing algorithms that
propose an incorrect number of alternative analyses, we take the best match over the alterna-

2 Implementation is available at http://people.csail.mit.edu/yklee/code.html.
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tive reference analyses (separately for precision and recall). This is because all the methods
considered in the experiments provide a single segmentation per word form.

Throughout the experiments, we establish statistical significance with confidence level 0.95
according to the standard 1-sided Wilcoxon signed-rank test performed on 10 random subsets
of 1000 word forms drawn from the complete test sets (subsets may contain overlapping word
forms).

Because we apply a different treatment of alternative analyses, the results reported in this
paper are not directly comparable to the boundary F1-scores reported for the Morpho Challenge
competitions (Kurimo et al. 2009; Kurimo, Virpioja, and Turunen 2010). However, the best
boundary F1-scores for all languages reported in Morpho Challenge have been achieved with
the semi-supervised Morfessor Baseline algorithm (Kohonen, Virpioja, and Lagus 2010) which
is included in the current experiments.

4.3.2 Error Analysis. We next discuss the performed error analysis. The purpose of the error
analysis is to gain a more detailed understanding into what kind of errors the methods make,
and how the error types affect the overall F1-scores. To this end, we employ a categorization of
morphs into the categories PREFIX, STEM, and SUFFIX, in addition defining a separate category
for DASH. For the English and Finnish sections of the Morpho Challenge data set, the segmen-
tation gold standard annotation contain additional information for each morph, such as part-of-
speech for stems and morphological categories for affixes, that allows us to assign each morph
into one of the morph type categories. In some rare cases the tagging is not specific enough,
and we choose to assign the tag UNKNOWN. However, as we are evaluating segmentations,
we lack the morph category information for the proposed analyses. Consequently, we cannot
apply a straightforward category evaluation metric, such as category F1-score. In what follows,
we instead show how to use the categorization on the gold standard side to characterize the
segmentation errors.

We first observe that errors come in two kinds, over-segmentation and under-
segmentation. In over-segmentation, boundaries are incorrectly assigned within morph seg-
ments, while in under-segmentation, the segmentation fails to uncover correct morph boundaries.
For example, consider the English compound word form girlfriend with a correct analysis
girl+friend. Then, an under-segmentation error occurs in case the model fails to assign a
boundary between the segments girl and friend. Meanwhile, over-segmentation errors take place
if any boundaries are assigned within the two compound segments girl and friend, such as g+irl
or fri+end.

As for the relationship between these two error types and the precision and recall measures
in Equations (4) and (5), we note that over-segmentation solely affects precision, whereas under-
segmentation only affects recall. This is evident as the measures can be written equivalently as:

Precision =
C(proposed)− C(over-segm.)

C(proposed)
= 1− C(over-segm.)

C(proposed)
(6)

Recall =
C(reference)− C(under-segm.)

C(reference)
= 1− C(under-segm.)

C(reference)
(7)

In the error analysis, we employ these equivalent expressions as they allow us to examine the
effect of reduction in precision and recall caused by over-segmentation and under-segmentation,
respectively.

The over-segmentation errors occur when a segment that should remain intact is split. Thus,
these errors can be assigned into categories c according to the morph tags PREFIX, STEM, SUFFIX,
and UNKNOWN. The segments in the category DASH cannot be segmented and do, therefore, not

14



Ruokolainen et al. Minimally-Supervised Morphological Segmentation

Table 4
Absolute and relative frequencies of the boundary categories in the error analysis. The numbers are
averaged over the alternative analyses in the reference annotation.

Category English Finnish
STEM 38608.8 (82.2%) 72666.0 (81.3%)
SUFFIX 7172.9 (15.3%) 15384.9 (17.2%)
PREFIX 1152.8 (2.5%) 946.5 (1.1%)
UNKNOWN 54.5 (0.1%) 414.0 (0.5%)
STEM-SUFFIX 5349.2 (62.6%) 9889.9 (45.8%)
SUFFIX-SUFFIX 1481.0 (17.3%) 5917.5 (27.4%)
STEM-STEM 613.4 (7.2%) 3538.0 (16.4%)
SUFFIX-STEM n/a n/a 1501.0 (6.9%)
CONTAINS DASH 458.0 (6.5%) 426.0 (2.0%)
PREFIX-STEM 554.3 (5.4%) 235.2 (1.1%)
OTHER 91.0 (1.1%) 105.4 (0.5%)

contribute to over-segmentation errors. We then decompose the precision and recall reductions
in Equations (6) and (7) into those caused by errors in each category indexed by c and d:

Precision = 1−
∑
c

C(over-segm.(c))
C(proposed)

(8)

Recall = 1−
∑
d

C(under-segm.(d))
C(reference)

(9)

Equation (8) holds since

C(over-segm.)
C(reference)

=

∑
c C(over-segm.(c))
C(reference)

=
∑
c

C(over-segm.(c))
C(reference)

, (10)

where c indexes the over-segmentation error categories. The expression for recall in Equation (9)
can be derived analogously, but it must be noted that the categorization d by error type differs
from that of precision as each under-segmentation error occurs at a segment boundary, such as
STEM-SUFFIX, STEM-STEM, PREFIX-STEM, rather than in the middle of a segment. To simplify
analysis, we have grouped all segment boundaries, in which either the left or right segment
category is DASH into the CONTAINS DASH category. Boundary types that occur less than 100
times in the test data are merged into the OTHER category.

Table 4 shows the occurrence frequency of each boundary category, averaged over alter-
native analyses. Evidently, we expect the total precision scores to be most influenced by over-
segmentation of STEM and SUFFIX segment types due to their high frequencies. Similarly, the
overall recall scores are expected to be most impacted by under-segmentation of STEM-SUFFIX
and SUFFIX-SUFFIX boundaries. Finnish is also substantially influenced by the STEM-STEM
boundary indicating that Finnish employs compounding frequently.

For simplicity, when calculating the error analysis, we forgo the sampling procedure of
taking 10× 1000 word forms from the test set, employed for the overall F1-score, for statistical
significance testing, by Virpioja et al. (2011). Rather, we calculate the error analysis on the union
of these sampled sets. As the sampling procedure may introduce the same word form in several
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samples, the error analysis precisions and recalls are not necessarily identical to the ones reported
for the overall results.

In summary, while we cannot apply category F1-scores, we can instead categorize each error
by type. These categories then map directly to either reduced precision or recall. Interpreting
precision and recall requires some care as it is always possible to reduce over-segmentation
errors by segmenting less and, conversely, to reduce under-segmentation errors by segmenting
more. However, if this is taken into account, the error categorization can be quite informative.

4.4 Model Learning and Implementation Specifics

Morfessor. We employ a recently released Python implementation of the Morfessor method
(Virpioja et al. 2013; Smit et al. 2014).3 The package implements both the unsupervised and
semi-supervised Morfessor Baseline (Creutz and Lagus 2002, 2007; Kohonen, Virpioja, and
Lagus 2010). For Morfessor FlatCat we apply the Python implementation by Grönroos et al.
(2014).4

In its original formulation, the unsupervised Morfessor Baseline employs no hyperparame-
ters. However, it was found by Virpioja, Kohonen, and Lagus (2011) that performance does not
improve consitently with growing data because the method segments less on average for each
added training word form. Therefore, we optimize the training data size by including only the
most frequent words in the following sizes: 10k, 20k, 30k, 40k, 50k, 100k, 200k, 400k, . . . , as
well as the full set. We then choose the model yielding highest F1-score on the development set.

As for semi-supervised training of Morfessor Baseline, we perform a grid search on the
development set for the hyperparameter β (see Section 3.3.1). For each value of β we employ
the automatic adaptation of the hyperparameter α provided by the implementation. The auto-
matic adaptation procedure is applied during model training and is, therefore, computationally
less demanding compared to grid search. Intuitively, the adaptation functions as follows. The
hyperparameter α affects how much the method segments on average. While optimizing it for
segmentation performance during training is non-trivial, one can instead apply the heuristic
that the method should neither over-segment nor under-segment. Therefore, the implementation
adjusts α such that the development set precision and recall become approximately equal.

In the semi-supervised training for Morfessor FlatCat, the segmentations are initialized
to the ones produced by the supervised CRF model trained with the same amount of labeled
training data. As automatic adaptation of the hyperparameter α has not yet been implemented
for Morfessor FlatCat, values for both α and β are found by a combined grid search on the
development set. The computational demands of the grid search were reduced by using the
optimal hyperparameter values for Morfessor Baseline as an initial guess when constructing
the grid. We also choose the non-morpheme removal heuristics employed by Morfessor FlatCat
for each language separately using the development set. For English, Estonian and Finnish
the heuristics described by Grönroos et al. (2014) are beneficial, but they do not fit Turkish
morphology as well. For Turkish we convert non-morphemes into suffixes or stems, without
modifying the segmentation.

Adaptor Grammars. The technical details of the Adaptor Grammar model are described by
Johnson, Griffiths, and Goldwater (2007a) and the inference details are described by Johnson,
Griffiths, and Goldwater (2007b). For unsupervised AG learning we used the freely available

3 Available at https://github.com/aalto-speech/morfessor
4 Available at https://github.com/aalto-speech/flatcat

16



Ruokolainen et al. Minimally-Supervised Morphological Segmentation

implementation,5 which was also the basis for the semi-supervised implementation. Table label
resampling was turned on and all hyperparameters were inferred automatically as described by
Johnson and Goldwater (2009). The metagrammar for AG Select is the same as described by
Sirts and Goldwater (2013). Inductive learning with the posterior grammar was done with a
freely available CKY parser.6 For both unsupervised and semisupervised AG, we use a three-
level collocation-submorph grammar in which the final segmentation is parsed out as a sequence
of Morphs:

Word→ Colloc+

Colloc→ Morph+

Morph→ SubMorph+

SubMorph→ Char+

We experimented with two types of grammars, where the Word non-terminal is either cached
or not. These two grammar versions have no difference when trained transductively. However,
when training an inductive model, it may be beneficial to store the subtrees corresponding to
whole words because these trees can be used to parse the words in the test set that were seen
during training with a single rule. All models, both unsupervised and semi-supervised, are
trained on 50k most frequent word types. For semi-supervised experiments, we upweight the
labelled data by an integer number of times by repeatedly caching the subtrees corresponding
to morphemes in the annotated data. The additional cached subtrees are rooted in the Morph
non-terminal. Similarly to semi-supervised Morfessor, we experimented with initializing the
segmentations with the output of the supervised CRF model, which in some cases resulted
in improved accuracy over the random initialization. We searched the optimal values for each
experiment for the upweighting factor, cached vs non-cached root non-terminal, and random vs
CRF initialization on the development set.

AG model is stochastic and each segmentation result is just a single sample from the poste-
rior. A common approach in such a case is to take several samples and report the average result.
Maximum marginal decoding (MMD) (Johnson and Goldwater 2009; Stallard et al. 2012) that
constructs a marginal distribution from several independent samples and returns their mean value
has been shown to improve the sampling-based models’ results about 1-2% points. Although the
AG model uses sampling for training, the MMD is not applicable here because during test time
the segmentations are obtained using parsing. However, we propose another way of achieving
the gain in a similar range to the MMD. We train five different models and concatenate their
posterior grammars into a single joint grammar, which is then used as the final model to decode
the test data. Our experiments show that the posterior grammar concatentation, similarly to the
MMD, leads to consistent improvements of 1-2% points over the mean of the individual samples.

CRFs. The employed Python implementation of the CRF model follows the presentation of
Ruokolainen et al. (2013, 2014).7 As for the left and right substring features incorporated in
the model, we include all substrings which occur in the training data. The maximum substring
length and averaged perceptron learning of CRF model parameters are optimized on the held-out
development sets following Ruokolainen et al. (2013). For semi-supervised learning, we utilize

5 Available at http://web.science.mq.edu.au/~mjohnson/Software.htm
6 Also obtained from http://web.science.mq.edu.au/~mjohnson/Software.htm
7 Available at http://users.ics.aalto.fi/tpruokol/
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log-normalized successor and predecessor variety scores and binary Morfessor Baseline and AG
features following the presentation of Ruokolainen et al. (2014). The unsupervised Morfessor
Baseline and AG models are optimized on the development set as described above. The successor
and predecessor variety scores are estimated from all the available unannotated word forms apart
from words with a corpus frequency of one. The count cutoff is applied as a means of noise
reduction by removing peripheral phenomena, such as misspellings.

4.5 Results

Here we summarize the results obtained using the experiment setup described above. We present
overall segmentation accuracies and error analysis in Sections 4.5.1 and 4.5.2, respectively. We
then discuss the results in Section 4.6.

4.5.1 Boundary Precisions, Recalls, and F1-scores. In what follows, we first review unsuper-
vised and supervised results and, subsequently, assess the semi-supervised results.

Segmentation accuracies using unsupervised and supervised methods are presented in
Table 5. As for the supervised learning employing the CRF model, we report segmentation
accuracies obtained using 100 and 1,000 annotated word forms. Evidently, utilizing annotated
data provides a distinct advantage over learning from unannotated data. Particularly, learning the
supervised CRFs using 1,000 annotated word forms results in substantially higher segmentation
accuracies compared to learning in an unsupervised manner from hundreds of thousands or
millions of word forms. In fact, using merely 100 annotated instances results in higher accuracies
English and Turkish compared to the unsupervised methods. The balance between precision
and recall can be analyzed to assess how well the different methods are tuned to the amount
of segmentation present in the gold standard. As discussed in Section 4.3.2, high precision in
combination with low recall indicates under-segmentation, whereas high recall and low precision
indicates over-segmentation. Morfessor appears to favor precision over recall (see Finnish) in
case a trade-off takes place. In contrast, the AG heavily favors recall (see English). Meanwhile,
the supervised CRF model consistently prefers higher precision over recall.

The unsupervised and supervised learning results above utilize the available data only
partially. Thus, we next discuss results obtained using semi-supervised learning, that is, when
utilizing all available annotated and unannotated word forms. The obtained segmentation accu-
racies are presented in Table 6. We summarize the results as follows. First, the semi-supervised
CRF approach CRF (SSV) yielded highest segmentation accuracies for all considered languages
and data set sizes. The improvements over other models are statistically significant. Compared to
the supervised CRF model, the semi-supervised extension successfully increases the recall while
maintaining the high precision. As for the Morfessor family, MORF.FC (SSV) yields significantly
higher F1-scores compared to MORF.BL (SSV) on all languages. However, we found that without
the CRF initialization of MORF.FC (SSV), the performance gap decreases substantially, cf.
similar results reported by Grönroos et al. (2014). On the other hand, the variants appear to
behave in a similar manner in that, in the majority of cases, both approaches increase the obtained
precision and recall in a balanced manner compared to the unsupervised approach MORF. BL
(USV). Meanwhile, the AG variants AG (SSV) and AG SELECT (SSV) heavily favor recall over
precision, indicating over-segmentation.8 Lastly, in contrast to the unsupervised learning results,

8 Generally, in the presence of annotated training data, under-segmentation and over-segmentation can be avoided by
explicitly tuning the average level of segmentation. Such tuning is performed for Morfessor with the weighted
objective function and for AG by choosing the level in the parse tree from which to extract the segmentations. By
default, the AG segmentations were extracted from the Morph level as this gave the highest score on the
development set. However, the Estonian segmentations are extracted from the Colloc level, which also explains why
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Table 5
Precision, recall, and F1-scores for unsupervised and supervised methods. The columns titled Train
(unann.) denote the number of unannotated word forms utilized in learning. Meanwhile, the columns titled
Train (ann.) denote the number of annotated word forms.

Method Train (ann.) Train (unann.) Pre. Rec. F1
English
MORFESSOR BASELINE (USV) 0 384,903 76.3 76.3 76.3
AG (USV) 0 384,903 62.2 84.4 71.7
CRF (SV) 100 0 86.0 72.7 78.8
CRF (SV) 1,000 0 91.6 81.2 86.1
Estonian
MORFESSOR BASELINE (USV) 0 3,908,820 76.4 70.4 73.3
AG (USV) 0 3,908,820 78.4 73.4 75.8
CRF (SV) 100 0 79.2 59.1 67.7
CRF (SV) 1,000 0 88.4 76.7 82.1
Finnish
MORFESSOR BASELINE (USV) 0 2,206,719 70.2 51.9 59.7
AG (USV) 0 2,206,719 68.1 68.1 68.1
CRF (SV) 100 0 73.0 59.4 65.5
CRF (SV) 1,000 0 88.3 79.7 83.8
Turkish
MORFESSOR BASELINE (USV) 0 617,298 67.9 65.8 66.8
AG (USV) 0 617,298 72.7 76.5 74.6
CRF (SV) 100 0 84.6 71.8 77.7
CRF (SV) 1,000 0 90.0 87.3 88.6

in the semi-supervised setting the AG framework is significantly outperformed by the Morfessor
variants.

4.5.2 Error Analysis. Next, we examine how different error types contribute to the obtained
precision and recall measures, and consequently, the overall F1-scores. To this end, we discuss
the error analyses for English and Finnish presented in Tables 7 and 8, respectively.

Baselines. The first two lines in Tables 7 and 8 present the baseline models WORDS and LET-
TERS. The WORDS model corresponds to an approach, in which no segmentation is performed,
that is, all the word forms are kept intact. Meanwhile, the LETTERS approach assigns a segment
boundary between all adjacent letters. These approaches maximize precision (WORDS) and recall
(LETTERS) at the cost of the other. In other words, no model can produce more over-segmentation
errors compared to LETTERS, whereas no model can produce more under-segmentation errors
compared to WORDS.9

in the Estonian case the precision is higher than recall. These results suggests that AG (SSV) may benefit from yet
another layer in the grammar that would help to learn a better balance between precision and recall.

9 Intuitively, WORDS should yield zero recall. However, when applying macro averaging, a word having a gold
standard analysis with no boundaries yields a zero denominator and is therefore undefined. To correct for this, we
interpret such words as having recall 1 which explains the non-zero recall for WORDS.
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Table 6
Precision, recall, and F1-scores for semi-supervised methods.

Method Train (ann.) Train (unann.) Pre. Rec. F1
English
MORFESSOR BASELINE (SSV) 100 384,903 81.7 82.8 82.2
MORFESSOR FLATCAT (SSV) 100 384,903 83.6 83.0 83.3
AG (SSV) 100 384,903 69.0 85.8 76.5
AG SELECT (SSV) 100 384,903 75.9 79.4 77.6
CRF (SSV) 100 384,903 87.6 81.0 84.2
MORFESSOR BASELINE (SSV) 1,000 384,903 84.4 83.9 84.1
MORFESSOR FLATCAT (SSV) 1,000 384,903 86.9 85.2 86.0
AG (SSV) 1,000 384,903 69.8 87.1 77.5
AG SELECT (SSV) 1,000 384,903 76.7 82.3 79.4
CRF (SSV) 1,000 384,903 89.3 87.0 88.1

Estonian
MORFESSOR BASELINE (SSV) 100 3,908,820 77.0 76.1 76.5
MORFESSOR FLATCAT (SSV) 100 3,908,820 81.8 74.5 77.9
AG (SSV) 100 3,908,820 71.8 75.5 73.6
AG SELECT (SSV) 100 3,908,820 60.9 90.4 72.8
CRF (SSV) 100 3,908,820 81.5 82.1 81.8
MORFESSOR BASELINE (SSV) 1,000 3,908,820 80.6 80.7 80.7
MORFESSOR FLATCAT (SSV) 1,000 3,908,820 84.7 82.0 83.3
AG (SSV) 1,000 3,908,820 67.1 88.8 76.4
AG SELECT (SSV) 1,000 3,908,820 62.8 90.3 74.1
CRF (SSV) 1,000 3,908,820 90.2 86.3 88.2

Finnish
MORFESSOR BASELINE (SSV) 100 2,206,719 69.8 70.8 70.3
MORFESSOR FLATCAT (SSV) 100 2,206,719 77.6 73.6 75.5
AG (SSV) 100 2,206,719 65.5 70.5 67.9
AG SELECT (SSV) 100 2,206,719 66.8 73.6 70.0
CRF (SSV) 100 2,206,719 80.0 77.4 78.7
MORFESSOR BASELINE (SSV) 1,000 2,206,719 76.0 78.0 77.0
MORFESSOR FLATCAT (SSV) 1,000 2,206,719 81.6 80.2 80.9
AG (SSV) 1,000 2,206,719 69.7 77.6 73.4
AG SELECT (SSV) 1,000 2,206,719 69.4 74.3 71.8
CRF (SSV) 1,000 2,206,719 89.3 87.9 88.6

Turkish
MORFESSOR BASELINE (SSV) 100 617,298 76.6 80.5 78.5
MORFESSOR FLATCAT (SSV) 100 617,298 80.2 83.9 82.0
AG (SSV) 100 617,298 74.1 82.8 78.2
AG SELECT (SSV) 100 617,298 69.0 82.3 75.0
CRF (SSV) 100 617,298 81.3 86.0 83.5
MORFESSOR BASELINE (SSV) 1,000 617,298 85.1 89.4 87.2
MORFESSOR FLATCAT (SSV) 1,000 617,298 84.9 92.2 88.4
AG (SSV) 1,000 617,298 77.0 90.9 83.4
AG SELECT (SSV) 1,000 617,298 70.5 80.4 75.1
CRF (SSV) 1,000 617,298 89.3 92.0 90.7

Given the baseline results, we observe that the overall precision scores are most influenced
by over-segmentation of STEM and SUFFIX segment types due to their high frequencies. Simi-
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larly, the overall recall scores are most impacted by under-segmentation of STEM-SUFFIX and
SUFFIX-SUFFIX boundaries. Finnish recall is also substantially influenced by the STEM-STEM
boundary indicating that Finnish employs compounding frequently.

Morfessor. Similarly to the baseline (WORDS and LETTERS) results, the majority of over-
segmentation errors yielded by the Morfessor variants take place within the STEM and SUF-
FIX segments, while most under-segmentation errors occur at the STEM-SUFFIX and SUFFIX-
SUFFIX boundaries. When shifting from unsupervised learning using MORF.BL (USV) to semi-
supervised learning using MORF.BL (SSV) and MORF.FC (SSV), the over-segmentation prob-
lems are alleviated rather substantially, resulting in higher overall precision scores. For exam-
ple, consider the word form countermanded, for which MORF.BL (SSV) assigns the correct
segmentation countermand+ed, but which is severely oversegmented by MORF.BL (USV) as
counter+man+d+ed. One also observes a dramatic increase in the overall recall scores indicating
a smaller amount of under-segmentation taking place. For example, consider the word form
products, for which MORF.BL (SSV) assigns the correct segmentation product+s, but for which
MORF.BL (USV) assigns no boundaries. However, the under-segmentation errors do not decrease
consistently: while the STEM-SUFFIX and SUFFIX-SUFFIX errors are decreased substantially, one
additionally observes a decline or no change in the model’s ability to uncover STEM-STEM and
PREFIX-STEM boundaries.

Adaptor Grammars. Similarly to the baseline and Morfessor results, the majority of over-
segmentation errors yielded by the AG variants occur within the STEM and SUFFIX segments.
Compared to the unsupervised AG (USV) approach, the first semi-supervised extension AG
(SSV) manages to reduce over-segmentation of the STEM segments slightly and SUFFIX segments
substantially, thus resulting in overall higher precision. Meanwhile, the second extension AG
SELECT (SSV) also results in overall higher precision by reducing over-segmentation of STEM
segments substantially although, for Finnish, SUFFIX is oversegmented compared to AG SELECT
(USV). On the other hand, while both AG (SSV) and AG SELECT (SSV) improve recall on
Finnish compared to AG (USV), only AG (SSV) succeeds in improving recall for English. This is
because the AG SELECT (SSV) variant decreases the model’s ability to capture other than STEM-
SUFFIX and SUFFIX-SUFFIX boundaries compared to the unsupervised AG (USV) approach.

Conditional Random Fields. In contrast to the Morfessor and AG frameworks, the error patterns
produced by the CRF approach do not directly follow the baseline approaches. Particularly, we
note that supervised CRF (SV) approach successfully captures SUFFIX-SUFFIX boundaries and
fails to find STEM-STEM boundaries, that is, behaves in opposite manner to the baseline results.
CRF (SV) also under-segments the less frequent PREFIX-STEM and STEM-SUFFIX boundaries
for English and Finnish, respectively. Meanwhile, the semi-supervised extension CRF (SSV)
alleviates the problem of finding STEM-STEM boundaries substantially, resulting in improvement
in overall recall. For example, CRF (SSV) correctly segments compound forms rainstorm and
windpipe as rain+storm and wind+pipe, whereas CRF (SV) incorrectly assigns no segmentation
boundaries to neither of these forms. Note that improving recall means that CRF (SSV) is
required to segment more compared to CRF (SV). For English, this increased segmentation
results in a slight increase in over-segmentation of STEM, that is, the model trades off the increase
in recall for precision. For example, while CRF (SV) correctly segments ledgers as ledger+s,
CRF (SSV) yields an incorrect segmentation led+ger+s.
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Table 7
Error analysis for English. Over-segmentation and under-segmentation errors reduce precision and recall,
respectively. For example, the total precision of MORF. BL (USV) is obtained as
100.0− 20.6− 2.9− 0.0− 0.1 = 76.4. The lines MORF. BL (USV), MORF. BL (SSV), and MORF. FC
(SSV) correspond to the unsupervised Morfessor Baseline, semi-supervised Morfessor Baseline, and
semi-supervised Morfessor FlatCat models, respectively.
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WORDS 0.0 0.0 0.0 0.0 100.0 55.1 8.6 5.9 4.4 2.5 0.6 23.1
LETTERS 71.1 11.8 1.7 0.3 15.1 0.0 0.0 0.0 0.0 0.0 0.0 100.0
MORF.BL (USV) 20.6 2.9 0.0 0.1 76.4 17.0 4.7 0.6 1.1 0.0 0.2 76.4
MORF.BL (SSV) 14.3 1.3 0.1 0.0 84.4 9.8 0.6 2.8 2.1 0.0 0.4 84.3
MORF.FC (SSV) 11.2 1.7 0.0 0.1 87.1 8.6 0.5 2.2 2.5 0.1 0.4 85.5
AG (USV) 31.8 5.8 0.1 0.0 62.3 10.6 3.5 0.1 0.7 0.2 0.2 84.7
AG (SSV) 27.8 2.1 0.1 0.1 70.0 10.1 1.4 0.2 0.6 0.2 0.2 87.3
AG SELECT (SSV) 18.4 4.8 0.0 0.1 76.6 8.2 1.4 2.2 4.1 1.5 0.4 82.2
CRF (SV) 7.3 0.9 0.1 0.0 91.8 10.4 0.5 4.2 2.9 0.1 0.4 81.5
CRF (SSV) 9.6 0.8 0.0 0.1 89.5 8.4 0.5 1.4 1.9 0.0 0.4 87.4

4.6 Discussion

When increasing the amount of data utilized for learning, that is, when shifting from fully
unsupervised or supervised learning to semi-supervised learning, we naturally expect the seg-
mentation method families to improve their performance measured using the F1-score. Indeed, as
shown in Tables 5 and 6, this improvement takes place within all considered approaches. In some
cases, as exemplified by the CRF model on English, achieving a higher F1-score may require a
trade-off between precision and recall, that is, the model lowers precision somewhat to gain recall
(or vice versa). However, by examining the error analyses in Tables 7 and Tables 8, we also
observe the occurrence of a second kind of trade-off, in which the semi-supervised Morfessor
and AG approaches trade off under-segmentation errors to other under-segmentation errors.
Particularly, while the STEM-SUFFIX and SUFFIX-SUFFIX boundary recall errors are decreased,
one also observes an increase in the errors at STEM-STEM and PREFIX-STEM boundaries. This
type of behavior indicates an inherent inefficiency in the models’ ability to utilize increasing
amounts of data.

Next, we discuss potential explanations for the empirical success of the discriminatively
trained CRF approach. First, discriminative training has the advantage of directly optimizing
segmentation accuracy with few assumptions about the data generating process. Meanwhile,
generative models can be expected to perform well only if the model definition matches the
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Table 8
Error analysis for Finnish. Over-segmentation and under-segmentation errors reduce precision and recall,
respectively. The lines MORF. BL (USV), MORF. BL (SSV), and MORF. FC (SSV) correspond to the
unsupervised Morfessor Baseline, the semi-supervised Morfessor Baseline, and semi-supervised
Morfessor FlatCat models, respectively.
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WORDS 0.0 0.0 0.0 0.0 100.0 49.2 21.8 17.2 4.8 1.4 1.0 0.6 4.1
LETTERS 65.2 13.8 0.7 0.6 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
MORF.BL (USV) 26.6 3.4 0.0 0.2 69.7 28.8 17.1 1.7 0.5 0.0 0.1 0.2 51.6
MORF.BL (SSV) 20.8 2.9 0.0 0.2 76.1 13.6 5.9 1.9 0.5 0.0 0.1 0.1 78.0
MORF.FC (SSV) 15.3 2.9 0.0 0.1 81.7 12.2 5.2 1.5 0.6 0.1 0.1 0.1 80.2
AG (USV) 28.3 3.3 0.1 0.2 68.1 19.0 11.5 0.7 0.2 0.3 0.0 0.2 68.1
AG (SSV) 27.9 2.1 0.1 0.2 69.7 14.7 6.5 0.7 0.2 0.1 0.1 0.1 77.6
AG SELECT (SSV) 24.2 6.1 0.0 0.1 69.5 13.2 7.8 2.4 1.1 0.8 0.2 0.1 74.4
CRF (SV) 9.3 2.3 0.0 0.0 88.3 10.7 2.2 5.8 1.1 0.1 0.3 0.2 79.7
CRF (SSV) 9.2 1.4 0.0 0.1 89.3 8.0 2.3 1.2 0.4 0.1 0.1 0.2 87.8

data generating process adequately. In general, discriminative approaches should generalize well
under the condition that sufficient amount of training data is available. Given the empirical
results, this condition appears to be fulfilled for morphological segmentation in the minimally-
supervised setting. Second, the CRFs aim to detect boundary positions based on rich features
describing substring contexts. As the substrings are more frequent than lexical units, their use
enables more efficient utilization of sparse data. For example, consider a training data that
consists of a single labeled word form kato+lla (on roof ). When segmenting an unseen word form
matolle (onto rug), with the correct segmentation mato+lle, the CRFs can utilize the familiar left
and right substrings ato and ll, respectively. In contrast, a lexicon-based model has a lexicon of
two morphs {kato, lla}, neither of which match any substring of matolle.

Finally, we discuss how the varying approaches differ when learning to split affixes and
compounds. To this end we first point out that, in the examined English and Finnish corpora, the
suffix class is closed and has only a small number of morphemes compared to the open prefix
and stem categories. In consequence, a large coverage of suffixes should be achievable already
with a relatively small annotated data set. This observation is supported by the evident success
of the fully supervised CRF method in learning suffix splitting for both considered languages.
On the other hand, while superiorly efficient at learning suffix splitting, the supervised CRF
approach is apparently poor at detecting compound boundaries. Intuitively, learning compound
splitting in a supervised manner seems infeasible since majority of stem forms are simply not
present in the available small annotated data set. Meanwhile, the semi-supervised CRF extension
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and the generative Morfessor and AG families, which do utilize the large unannotated word lists,
capture the compound boundaries with an appealing high accuracy. This result again supports
the intuition that in order to learn the open categories, one is required to utilize large amounts
of word forms for learning. However, it appears that the necessary information can be extracted
from unannotated word forms.

5. Future Work

In this section, we discuss our findings on potentially fruitful directions for future research.

On Improving Existing Approaches. Interestingly, the CRF-based segmentation method achieves
its success employing minimalistic, language-independent features with a simple feature-based
semi-supervised learning extension. Therefore, it seems plausible that one could boost the accu-
racy further by designing richer, language-dependent feature extraction schemes. For example,
one could potentially exploit features capturing vowel harmony present in Finnish, Estonian, and
Turkish. As for semi-supervised learning, one can utilize unannotated word lists in a straigth-
forward manner by using the feature set expansion approach as discussed by Ruokolainen et al.
(2014). Similar expansion schemes for CRFs have also been successfully applied in the related
tasks of Chinese word segmentation (Wang et al. 2011; Sun and Xu 2011) and chunking (Turian,
Ratinov, and Bengio 2010). Nevertheless, there exists numerous other approaches proposed for
semi-supervised learning of CRFs (Jiao et al. 2006; Mann and McCallum 2008; Wang et al.
2009) which could potentially provide advantage over the feature-based semi-supervised learning
approach. Naturally, one could also examine utilizing these techniques simultaneously with the
expanded feature sets.

As discussed in Section 3.3, it is possible for the generative models to utilize annotated data
in a straightforward manner by fixing samples to their true values. This approach was taken by
Poon, Cherry, and Toutanova (2009), Spiegler and Flach (2010), and Sirts and Goldwater (2013).
On the other hand, as discussed in Section 3.3.1, for the Morfessor family the fixing approach
was outperformed by the weighted objective function (Kohonen, Virpioja, and Lagus 2010). It
has been shown that the weighting can compensate for mismatch between the model and the
data generating process (Cozman et al. 2003; Cozman and Cohen 2006; Fox-Roberts and Rosten
2014). Therefore, it would appear to be advantageous to study weighting schemes in combination
with all the discussed generative models.

On Potential Novel Approaches. Based on the literature survey presented in Section 3.3.2, one can
observe that there exists substantial work on generative lexicon-based approaches and methods
based on discriminative boundary detection. In contrast, there exists little to no research on mod-
els utilizing lexicons and discriminative learning or generative boundary-detection approaches.
In addition, as mentioned in Section 3.3.2, so far there have been little work discussing a
combination of lexicon-based and boundary detection approaches. It could be fruitful to explore
these modeling aspects further in the future.

6. Conclusions

We presented a comparative study on data-driven morphological segmentation in a minimally-
supervised learning setting. In this setting the segmentation models are estimated based on a
small amount of manually annotated word forms and a large set of unannotated word forms.
In addition to providing a literature survey on published methods, we presented an in-depth
empirical comparison on three diverse model families. The purpose of this work is to extend the
existing literature with a summarizing study on the published methodology as a whole.
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Based on the literature survey, we concluded that the existing methodology contains substan-
tial work on generative lexicon-based approaches and methods based on discriminative boundary
detection. As for which approach has been more successful, both the previous work and the
empirical evaluation presented here strongly imply that the current state of the art is yielded
by the discriminative boundary detection methodology. In general, our analysis suggested that
the models based on generative lexicon learning are inefficient at utilizing growing amounts of
available data. Meanwhile, the studied discriminative boundary detection method based on the
conditional random field framework was successful in gaining consistent reduction in all error
types given increasing amount of data. Lastly, there exists little to no research on models utilizing
lexicons and discriminative learning or generative boundary-detection approaches. Studying
these directions could be of interest in future work.
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