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Chapter 1

| ntroduction

Humans are able to convey meanings to each other by using common symbols,
words. Language is often considered to be a hallmark of intelligence [27]. In this
Master’s Thesis, the emergence of associations between concepts and words is stud-
ied with help of a computer simulation. The important question that is addressed
here is how a language learner, an agent, acquires the meaning of new words.

Acquisition of concepts and language goes hand in hand. Because of this,
the Thesis includes discussion on concepts and their formation. What are the views
on concepts? How could their acquisition be modeled? A discussion on the theme
is very important. The concepts and the modeling of concepts are discussed in
Chapter 2.

Language acquisition and the emergence of common vocabulary are in the
scope of this thesis. Chapter 3 concentrates on these themes. The nativist versus
non-nativist debate on language origins is briefly touched, but mainly we are inter-
ested in language acquisition and its computational modeling.

In this work, the acquisition of language is modeled with help of multi-agent
simulations using the language game approach. The approach used in the Thesis

is presented in more detail in Chapter 4. It follows the research on observational
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game by Vogt [49]. In this Thesis, the concepts are modeled as areas formed in a
Self-Organizing Map [18] due to unsupervised learning. The map may be seen as
representing a domain in a conceptual space, introduced by Gardenfors [7]. In this
way, the Self-Organizing Map is used as a model for an agent’s ontology.

The experimental settings and the results for the experiments are presented
in Chapter 5. The purpose of the experiments is to confirm the hypothesis that
after enough language games the agents are able to communicate with an emerging
shared language, when the Self-Organizing map is used as a model for conceptual
spaces.

In this thesis, computer simulations of multiple agents are used. It seems
thus appropriate to address the question on the role of computer simulations in
cognitive systems research. In general, it can be seen that the autonomous agents
research in cognitive sciences has two goals [52]: The engineering point of view is
concerned mostly with the design and construction of artefacts. The scientific point
of view tries to explain how natural systems work. In this work an agent simulation
environment is constructed based on observations on language acquisition process
in humans. Some attempts are made to capture real aspects of language in these
simulations. But even when a language emerges, the simulation environment is
only a simple piece of (wo)man-made program dependent on the initial settings.
Thus, the purpose is only to show that the process might be “somewhat like this”.

The use of a simulated environment raises another question. In [36], strong

scepticism toward the use of agent simulations is presented:

Computational models and artificial models [...] must be clearly dis-
tinguished. For example, it is possible to build a computational model
of how a bird flies, which amounts to a simulation of the environment
around the bird, a simulation of the aerodynamics of the body and the

wings, a simulation of the pressure differences caused by movement of
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the wings, etc. Such a model is highly valuable but would however not
be able to fly. [...] Very often results from simulation only partially
carry over to artificial systems. When constructing a simulation, one
selects certain aspects of the real world that are carried into the virtual
world. But this selection may ignore or overlook essential characteris-

tics which play a role unknown to the researcher.

When constructing artificial systems, should not we then rather build real
systems equipped with means to explore a real (physical) environment? One cannot
deny the importance of ’real’ robotic experiments in this field. But as Ziemke [52]
argues, simulations have an important, complementary role in the field of research:
In many cases they allow for more extensive, systematic experimentation.

A thorough overview on the advantages and disadvantages on robotic exper-
iments and simulated environments is presented in [27]. The main points are that
simulations are in principle fast, cheap and flexible. Additionally, the social dimen-
sions of (multiple agents) are easier to create than in robotics and the experimenter
does not need to be present all the time, and the debugging is easier. But as Steels
has pointed out in [36], reliable and good simulations of physical systems are hard
to create.

The structure of the remaining thesis is the following. In Chapter 2 theo-
retical background of the concepts and their acquisition is presented. Chapter 3
discusses language, language acquisition and naming game or language game mod-
els by Steels [37] and others. Chapter 4 presents the approach taken in this Master’s
Thesis. Chapter 5 contains the description of the experiments and the results. Chap-

ter 6 concludes and an outline for the future work around the theme is given.



Chapter 2

Conceptual modeling

What is a concept? How should concepts be modeled? Are they innate, should they
be learned? This chapter tries to find answers to these questions by presenting some
views on concepts.

There is a constant debate on the principles behind the conceptual systems.
The supporters of the Language of Thought hypothesis (LOT), Jerry Fodor being
one of the most famous of them, argue that to have a conceptual representation is
to possess some kind of expression which is made of concatenated symbols [1].
A cognitive agent is seen as some kind of logic machine that operates using these
symbols (mind-as-a-machine) [20]. These symbols then form a mental language
or mentalese, as it is sometimes called, which is seen as innate. Concept learning
is then re-testing of hypotheses available already at birth. For others, this kind of
view on the innateness of concepts is already slightly disturbing. For many people
(including the author), it seems quite counter-intuitive that, e.g., the concept of
carburetor would be innate (example from [21]).

The symbolic approach has generally been adopted in traditional Al simula-
tions. In those systems, the meanings used by the agents were simply other, hand

coded symbols. The intelligent behavior was then manipulating these symbols in a
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rule-based manner. Here, symbols mean arbitrary tokens that can be manipulated
by rules.

Now we get to the problematic issue: What are these mental symbols then?
From where does any meaning come to them? This question is called the symbol
grounding problem and it was compressed to the following form by Harnad [10, p.

335]:

How can the semantic interpretation of a formal symbol system be
made intrinsic to the system, rather than just parasitic on the mean-
ings in our heads? How can the meanings of the meaningless symbol
tokens, manipulated solely on the basis of their (arbitrary) shapes, be

grounded in anything but other meaningless symbols?

Harnad illustrated this problem by constructing his version of Searle’s [33]
symbol grounding problem. In this problem, a person is trying to learn Chinese
from a Chinese-Chinese dictionary only, thus replacing symbols with other symbols
found from the dictionary ad infinitum.

Harnad’s solution to the symbol grounding problem was to ground sym-
bolic representations bottom-up from two kinds of non-symbolic representations:
1) iconic representations that are analogs of proximal sensory projections and 2)
categorical representations that are learned by innate feature detectors picking up
the invariant features of object and event categories from the sensory projections.
The elementary symbols would then be names for these categories and higher-order
symbolic representations would be grounded in the elementary symbols.

A strong opponent to the LOT view is Lakoff who is working with the em-
bodied cognitive models [20]. The principle of embodiment is that the meaning is
grounded in bodily experiments. In [20, p. 206], he offers strong criticism on

symbolical concept systems:

Cognitive models that are embodied are not made up merely of items in
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an artificial language. [...] In objectivist accounts such [bodily] experi-
ences are simply absent. It is as though human beings did not exist, and
their language and its (not their) meanings existed without any beings

at all.

Lakoff’s view is that embodied cognitive models structure thought and they
are used in forming categories and in reasoning. The cognitive models characterize
the concepts, which are used via the embodiment of the models. A further note
on the embodiment is that most cognitive models are embodied with respect to
use. Abstract conceptual structures are indirectly meaningful: They are understood
because of their systematic relationship to directly meaningful structures.

Of course, the embodiment approach as such does not provide help in find-
ing out how one gets from the continuous sensory signals to the symbolic level of

words. Anyhow, it provides a link for the meaning creation and acquisition.

2.1 Different views on concepts

In this section, three views on concepts are presented in more detail. First of them is
the Classical View. The second, the Prototype Theory, began from Eleanor Rosch’s
observations on prototype effects. The third is the Conceptual Spaces Theory de-
veloped by Peter Gardenfors. For a thorough review on different views on concepts
including some that are not presented here, consider Laurence and Margolis’ re-
view [21]. In the following, some basic definitions related to conceptual systems
are presented.

In general, concepts are seen as mental particulars in the field of linguistics
and cognitive science. This is not agreed by all. For example, it is usual to think
concepts as abstract entities in the field of philosophy [21]. Very often theories of

concepts concentrate on the notion of lexical concepts — i.e., concepts that corre-



CHAPTER 2. CONCEPTUAL MODELING 7

spond to lexical items in natural language. In this work, the word concept is taken
as a means for specifying a relationship between world and language.

A category is a group of objects that are considered equivalent, and generally
a category has a name, e.g., ’dog’ or "animal’. [31]. Rosch presents two principles
according to which the category systems function. These principles are 1) cognitive
economy and 2) perceived world structure. The function of the category systems
is to provide maximum information regarding the world with the least cognitive
effort.

For an individual, it is useful in many ways to be able to distinguish perceived
items from other items. This sorting to categories is often called categorization. It
has a major role in perception, thinking and language, and it is probably significant
in motor performance as well [9].

By categorical perception, it is commonly meant that the differences among
items belonging to the same category are diminished and the differences between
items falling to different categories are magnified. This phenomenon has been
demonstrated, e.g., for speech [9].

The purpose of the conceptual system is to interpret the world, not merely to
record it as a video recorder does [2]. Thus, a human categorizes components from
for example a photo, which is beyond the capabilities of a recorder. Furthermore, a

human is capable of drawing inferences from these categorized components.

2.1.1 Classical Theory

In the Classical Theory of concepts, the structure of concepts is seen as a set of
definitions [21]. According to this view, for example, a concept for ’bird” could
include the following set of definitions: “has wings’, ’can fly’, ’lays eggs’, etc. that
are necessary and sufficient conditions for something to be a bird. This kind of

notion on concepts has a long history in philosophy (e.g., [22]).
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This kind of view to concepts is quite problematic. Many problems faced by
the Classical Theory can be listed [21]: For instance, there are only few exam-
ples of (well) defined concepts, and even lexical concepts do not show effects of
definitional structure in psychological experiments. Wittgenstein’s writings [51] on
family resemblance were among the first to question the classical view. He pointed
out that there are categories like ’games’ that do not fit into this kind of theory.
There are all kinds of games but the games do not share properties that are common
to all of them. What makes it possible for us to have a category for games is family
resemblance: They are similar to each other in a variety of ways instead of them all
having certain common definitions.

It is also possible to have a concept in spite of massive ignorance or error. We
are able to ’have a concept’ even if we are mistaken about the properties we think
its instances to have. Laurence and Margolis [21] take diseases as an example. Peo-
ple used to believe the diseases were caused by evil spirits, or, in case of a physical
explanation, ’bad blood’. Nowadays it is however believed that these people were
wrong about the nature of such diseases, or that they made a coarse-grained catego-
rization into physiological and psychological domain. But saying this supposes that
we are still talking about the same concept. Thus, their most fundamental beliefs or
definitions could not be correct, and the matter of possessing a concept cannot be
knowing the necessary and sufficient conditions for its application.

Another problem is that some concepts are fuzzy, i.e., boundaries of the cat-
egories are not sharp. According to the classical theory, in which the categorization
should always be determinate, fuzzy categorization should not be possible.

A further problem are typicality effects, which proved to be the most influ-
ential argument against the Classical Theory. In experiments, people judge some
instances of a category to be better examples of a concept than others. For example,
a sparrow is judged as a more typical example of the category ’bird’ than a penguin
[21].
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A newer version of the classical theory is the neoclassical theory, in which

the definitions encoding the concept are thought to be partial [21].

2.1.2 Prototype Theory

The Prototype Theory emerged in the 1970s as an alternative to the classical theory
to include the experimental findings of typicality effects of concepts [21]. The core
idea of the prototype theory is that most lexical concepts are complex representa-
tions, whose structure encodes a statistical analysis of the properties their members
tend to have.

Prototype theory has its own problems as well. Some researchers argue that
the existence of prototypes tells nothing about concepts, since well defined concepts
also exhibit typicality effects. The problem of ignorance and error is as much a
problem in prototype theory as it was a problem in the classical theory.

Many concepts do not seem to have prototypes at all. It seems that there are
some concepts for which people fail to represent any central tendencies at all. Lau-
rence and Margolis [21] give some examples of them. There are concepts that are
not instantiated at all, e.g., 31st century invention, others that have too heteroge-
neous extensions, e.g., objects that weigh more than a gram, and some others that
seem to be too abstract, e.g., belief. As a related problem they state that it is per-
fectly possible to have a concept without knowing a prototype for it, even if others
who possess the concept do.

Rosch herself argues [31] that empirical findings of prototypicality effects
have been confused with theories of processing: They seem only to constrain, but
not specify, representation and process models. She also writes that prototypes
appear to be just those members of a category that most reflect the redundancy
structure of the category as a whole. Following this line of thought, it could be said

that the aforementioned concepts are similar in such a way that there are not enough
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redundancy structure that could be reflected in a form of prototypes.
There is also the problem of how compositional concepts are formed. In
many cases a prototype for a complex concept is not a prototype for the constituents

of that complex concept [21].

2.1.3 Conceptual Spaces

The Conceptual Spaces Theory (CST) [7] was developed by Gérdenfors in order to
be able to model conceptual representations in a cognitive framework. According to
the theory, concepts could be modeled as geometrical areas in a multidimensional
conceptual space rather than as symbols or connections among neurons. Or rather,
there are three different levels of representation, in which each of these approaches
is suitable: symbolic, conceptual and sub-conceptual.

A conceptual space is built upon geometrical structures based on a number
of quality dimensions. Concepts are not independent of each other but can be struc-
tured into domains, e.g., concepts for colors in one domain, spatial concepts in other
domain. These quality dimensions represent various ’qualities’ of objects. Garden-
fors also claims that the quality dimensions of conceptual spaces are independent
of and more fundamental than the symbolic representations.

A conceptual space consists of a class D1, Ds, ..., D,, of quality dimensions.
A point in the space is represented by a vector v = [dy,d2,...,d,] [7]. Temper-
ature, weight, brightness, and the spatial dimensions height, width and depth are
listed as possible quality dimensions perceivable with the human sensory system.
Gardenfors points out that the metrics vary according to the perceiver. For example,
the temperature is not necessarily perceived similarly by everybody and the height
is perceived differently from different distances. It is also pointed out that there
is not, in general, a unique way of choosing a dimension to represent a particular

quality, but various possibilities. As Gardenfors points out, even though the rep-
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resentations of the world and our perceptions of it vary, scientific representations
could be used in construction of an artificial system. When constructing an artificial
system, the input on different sensors is described in terms of scientifically modeled
dimensions.

He sees the basic quality dimensions as innate [7], but new dimensions could
be added by the learning process, and learning new concepts is sometimes con-
nected with expanding the conceptual space with new dimensions. These spatial
dimensions may also be culturally dependent. The question of how ’natural’ these
dimensions are is avoided, but Gardenfors is certain that they are useful from an
instrumentalist point of view. He also proposes that certain neural network or sta-
tistical methods, e.g., Multi-Dimensional Scaling and Self-Organizing Maps could
be used as a basis for a domain in a conceptual space [7]. The Self-Organizing Map
reduces the dimensionality of the data in a systematic and meaningful way, which
can be seen as moving from sub-conceptual to conceptual level.

Gardenfors sees categories as convex regions in a conceptual space. The
concepts are learned by learning a limited number of examples and by generalizing
from them. The similarity of two objects can be defined as a distance between their
representation points in the conceptual space.

According to him, when adopting this view of concepts, the prototype effects
can be explained in the conceptual spaces. The prototypes would simply be those
instances of the category that are located in the central parts of these regions. This
central point would represent a possible object with the most typical features of the
category, but the existence of such an object within the members of the category
would not be needed.

One essential asset of the conceptual spaces theory is that it incorporates the
concept of distance. This distance measure can then be used, e.g., for categoriza-
tion: The perceived item belongs to the category of which the prototype is nearest

to the representation of the item in conceptual spaces. The use of this kind of ap-
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proach is explained in more detail in Section 2.2.2. In general, the conceptual
spaces theory proposes a mediating level between sensory and symbolic levels. It
provides a medium to get from the continuous space of sensory information to a
higher conceptual level, where regions in it could then be associated to discrete

symbols.

2.2 Formation of concepts

How does one then aquire a concept? In the framework of this Master’s Thesis it is
assumed that concepts are indeed learned in interaction with the world and that they
are not innate [38]. Laurence and Margolis [21] suggest that one acquires a concept
by assembling its features, which are often considered to correspond to sensory
properties. In the following, work related to the themes of this thesis that are used
for studying concept acquisition and possible mechanisms for concept learning is

presented.

2.2.1 Concept learning using SOMs

Schyns [32] demonstrated how simple concepts could be learned with a modular
neural network model. The model has two modules, one for categorizing the input
in an unsupervised manner and another module for learning the names in a super-
vised mode.

The input for the Self-Organizing Map, which was used as a categorization
module, was pictorial image data varied in such a fashion that there were ’proto-
types’, which were never directly shown to the SOM [32]. Instead, the map was
fed distortions around these prototypes. In a sense, this image data could then cor-
respond to certain ’sensory data’. The result of this experiment was that the map

learned to represent the prototypes which were never fed to the system. Schyns sees
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that the categorization module fills the definitions of the prototype theory.

As statistical approaches, [30] and [13] can be mentioned. In these studies, an
attempt was made to acquire the semantics of words from textual data. In [30], the
research was conducted using generated data (the researchers generated three-word
sentences themselves) and later in [13] with real word data using Grimm’s tales
in English as a source. In the experiments, Self-Organizing Maps and contextual
information for words (preceding and following word of the target word) were used.
The experiments show that based on the contextual information the target words
were indeed organized in a SOM in a way that seems meaningful to us — nouns in
one group, verbs in another.Words with similar usage (e.g., verbs with past tense,
nouns describing humans) could also be found in smaller subgroups.

It seems, though, that a single Self-Organizing Map cannot be used for rep-
resentation of the totality of concepts, but rather, various SOMs are needed for
different domains. Additionally, a system to produce the per-concept feature selec-
tion for more complex concepts would be needed. See more detailed discussion on
this in [19].

2.2.2 Discrimination games

A possible model of how agents could learn concepts from the environment has
been proposed by Luc Steels [38] by means of discrimination games. It is based
on a hypothesis that origins of meanings are based on construction and selection

processes embedded in the discrimination tasks. He writes:

Meaning is a conceptualization or categorization of reality which is
relevant from the viewpoint of the agent. Meanings can be expressed
through language, although they need not be. Meaning takes many
forms depending on the context and nature of the situation concerned.

Some meanings are perceptually grounded. Others grounded in social
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interactions and others in the behavioral interaction between the agent

and the environment.

The principle of perceptual grounding is that low level sensory information is
used. The pressure for categorization comes from an agent’s need to distinguish a
target object from other objects in the context. Agents construct new segmentations
of the continuous sensory space. Each object has a set of features that are values of

a sensory channels.

Steels’ discrimination game

In Steels’ model [38], the agent plays the discrimination game alone. Initially, there
are no innate features but the system knows which property of the object utilizes
which sensory channel. The context, in which the game is played, includes the
objects that are currently in the field of attention of the agent. One object is then
selected randomly as a target or topic of the game. Then the feature sets for the topic
and the other objects are derived. The game consists of an attempt to find possible
discriminating feature sets that could separate the topic from the other objects in
the context.

In Steels’ model, an agent playing the games produces a discrimination tree
by using emerging feature detectors for finer and finer distinctions. Each feature
detector has an attribute name, a set of possible values, a function and a sensory
channel. As the discrimination process advances, a hierarchical structure is formed.

If a discrimination game is unsuccessful, it implies that there are not enough
distinctions to distinguish the topic from the other objects in the context. Two
things are used to correct the situation: (1) If some sensory channel does not yet
have feature detectors, a new one may be constructed. This is the preferred option.
(2) Otherwise, an existing feature may be refined by creating a new feature detector

that further segments the region covered by that feature.
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If the game is successful and there is more than one possible feature set that
can be used to describe the topic, a feature set is chosen based on three criteria.
(1) The smallest set is preferred. Thus the least number of features are used. (2)
In case of equal size, the set in which the features imply the smallest number of
segmentations is chosen. Thus, most abstract features are chosen. (3) In case of
equal depth of segmentation, the set of which the features have been used the most
is chosen, which should encourage the development of a minimal set of features.
The outcome is a hierarchical tree of segmentation of each feature space. Features
that are not used at all are eliminated.

The results of their experiments show that the system is able to produce a
discrimination between objects both when the number of objects is constant during

the simulation and when the number of objects increases steadily [38].

Vogt’s discrimination game

\Vogt [48] has refined the method introduced by Steels [38] in such a way that it
includes the notion of Gérdenfors’ Conceptual Spaces described in Section 2.1.3.
The discrimination game is used as a part of the simulation in which agents try to
come up with a common vocabulary by playing language games. These language
games are explained in more detail in Chapter 3.

In the simulation, each agent constructs a private ontology. Initially, the on-
tologies are empty. The task in the discrimination game is the same as in Steels’
games: Find a category (one or more) for the object that distinguishes the topic from
others in a given context, which contains some limited number (usually five) of ob-
jects. If a game fails, the agent’s ontology is expanded to improve discrimination in
future games.

The main difference between Steels’ and Vogt’s work is how categories are

represented. While Steels used discrimination trees, in Vogt’s work the emerging
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categories were represented as prototypes. These prototypes are points in an n-
dimensional conceptual space [7]. The categories are defined in such a way that all
the points that are nearest to the prototype presenting the category belong to that
category. This is equivalent to a Voronoi tessellation of the space.

The agents use the quality dimensions of the conceptual space to construct
their ontology. Vogt uses four quality dimensions, on which the agents can also
perceive information: R, G, B, and S corresponding to colors red, green, blue and
the shape of the object, respectively. With these quality dimensions the agents can
construct different conceptual spaces, a holistic space containing all dimensions,
’RGBS’, a color space ’RGB’ and a shape space ’S’ or a ’redgreen’ space and a
"blueshape’ space. Overlapping spaces are not allowed. Vogt’s viewpoint is that the
compositional conceptual space might be a starting point for an evolving composi-
tional language as well.

The categorization proceeds in a similar manner as in Steels’ discrimination
game. An agent categorizes all objects in the context by combining features from
each dimension to form a multi-dimensional category. The game succeeds if the
category is distinctive: It is not a category for any other object in the visual field of
the agent. If the game fails, the features of the topics are added as new exemplars
of categorical features in the agent’s ontology, unless they exist there already.

Again, the idea of how fine the partition of the space is depends on the objects.
The finer the distinctions needed to be perceived are, the finer must be the partition
of the conceptual space. When an object is categorized, it is put to the category

corresponding to the nearest neighboring prototype to that object.



Chapter 3

L anguage emer gence

In the previous chapter, the concepts and computational models for the study of
their formation were discussed. In this chapter, the focus is on language and the

forms of its emergence. First, the language origins are discussed briefly.

3.1 Languageorigins

The most controversial question regarding the origins of language is whether the
language ability is based on overall cognitive abilities, or whether there is a spe-
cific language device in the brain. The question of the origins of language is not
exactly at the focus of this thesis, but as the debate is a heated one, both views are
summarized briefly in this section.

One still common hypothesis is that there is some kind of biological lan-
guage faculty or language organ in the brain, which is separable from the general
cognitive abilities [11], [28], [29]. The language learning is then only a matter of
setting parameters and in this way refining innate knowledge (Universal Grammar
hypothesis) [5].

An opposite view to the origins of language is that language is a culturally

17
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emergent phenomenon: thus the similarities in languages can be explained by hu-
man cognitive and social universals [42] instead of specific ’language genes’. In
[39], individual adaptation, cultural evolution and self-organization are given as the
basic mechanisms for language evolution. The language is seen as an autonomous
evolving adaptive system maintained by a group of distributed agents without cen-
tral control and it is viewed from a functional perspective and it is preserved in
individuals’ memories instead of in genes, and transmitted in a cultural fashion
based on learning by imitation.

On the question of how the information is preserved and what shapes the
language, various selectionist criteria are offered in [39]. These criteria include
attempts to maximize communicative success, minimize cognitive processing and
memory load. He sees that the coherence in language use, i.e., how consistently a
certain utterance is used to express a certain meaning, arises in the model from self-
organization, in a certain kind of positive feedback loop: If a word is successfully

used, its use will be preferred in a similar situation.

3.1.1 Computational studieson language origins

Computational approaches to the study of evolved communication are numerous
and only a few of them are mentioned here. These studies are very interesting
examples as in them the use or need of language in the environment was taken into
account.

In the study of Werner and Dyer [50] the task of the agents in the simulated
environment was to find males in a situation where females were able to emit sounds
and see the males, whereas the males were blind. Thus, evolving communication,
the ability to hear and interpret the signals was favored in the environment.

In the study of MacLennan [23] in the field of synthetic ethology, language

arises as a side effect of cooperation. Another study, by Cangelosi and Parisi [3],
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studies the emergence of communication in the context of how a word relates to
behavior or real word phenomenon, and how language improves the fitness of the
agent population. In all of these studies the need of communication arises from
the criterion that the ’speaker’ must be able to perceive something useful that the
"hearer’ cannot. The agents are able to learn word-meaning pairs successfully, but in
these studies meaning space and word/signal space are very small and pre-defined.
Thus, it is rather a form of animal communication, than language in the normal
sense.

For a more thorough reviews on the computational approaches to study lan-
guage origins, see [4], [16] and [26]. See also [24] on different levels of language

emergence.

3.2 Acquisition of word meanings

Let us now turn our attention to the question of language learning. How do language
learners acquire the meaning of novel words? The difference between language
acquisition and language emergence is that children living in an existing language
community learn an existing language: They do not have to come up with one from
the scratch®.

One argument for the nativist view (see Section 3.1), as it is sometimes called,
is the poverty of stimulus argument [8]. According to it, children cannot learn a
language based on positive evidence only. Thus, language needs to be innate. For
counter-arguments to the poverty of stimulus argument, see e.g., [53].

But what kind of information does a language learner receive then? An infant

must receive some kind of cues which help to distinguish what the adult is talking

1Although, it seems that if they do not have a language, they will develop one, of which the
famous Nicaraguan sign language case [34], where deaf children who weren’t taught but some

home-signs develop afully functional language in two generationsis a classical example.
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about. These cues come both in linguistic and extra-linguistic form. Vogt lists a
variety of social cues [49] available for a language learner. One, and probably the
most studied one, is the joint attention. To establish the joint attention the speaker
may indicate the topic of conversation by pointing or in some other manner. Thus,
joint attention is an equivalent of having associative feedback: symbol and referent
are available at the same time.

Another form of feedback is corrective feedback. It could be of form: “Give
me a bunny.” “No, not the car, the bunny.” What is more important, the feedback
does not need to be explicit, the child may be capable of inferring it from the con-
text. It is also possible that neither of these cues are needed, if agents can observe
the words in a context of various items. Thus, when agent perceives a word, let’s
say, 'fadiga’ in the context of red, green and blue objects and later in the context of

red, yellow and black object, it may infer that it means the red color 2.

3.2.1 Language games

The notion of language game was originally introduced by Wittgenstein [51]. In his
opinion, what defines language is how it is used. To him every occasion of language
use is a language game.

In a language game there is a dialogue between two agents, a speaker and a
hearer, within a particular contextual setting. The language game models discussed
here were introduced by Steels [37] to study how a coherent lexicon may emerge by
means of cultural interactions, individual adaptation and self-organization. Within
this framework, the cultural evolution of language may be studied: The evolutionary
process is not at the level of subsequent agent generations but rather in subsequent

language games.

20f course, thisrequiresthat the previousinstance was held in the memory of the agent available

for later analysis.
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There are currently three types of language games used within this frame-
work. These include the observational, guessing and selfish games [49] that model
different aspects of communication and language acquisition. The games have been
simulated, e.g., in [6], [35] [37], [46, 47, 48] or implemented in a population of
physical robots, e.g., in [40] and [44].

Observational game

In an observational game, joint attention is established between the speaker and the
hearer. The learning is thought to be associative: the topic of the game (the referent
in the world) and the word are presented at the same time.

In Vogt’s observational games ([48], [49]), two agents are first selected ran-
domly from the population of agents. One is assigned the role of speaker, the other
is the hearer. The division of tasks is arbitrary. The speaker selects randomly one
meaning from the context (in [48]) or from the shared, predefined ontology of mean-
ings (in [49]) and informs the hearer, what the topic is by means of extra-linguistic
information. In this way, the joint attention is formed.

The speaker then searches its lexicon for words that are associated with the
topic of the game. Each association has a certain association score. These associ-
ations scores are adapted based on the result of the game. The association having
the highest association score is selected.

If the speaker does not find any word associated with the meaning, it invents
a new word and adds the word-meaning association to the lexicon with a low initial
association score. Then, the selected word is uttered.

The hearer searches its own lexicon for an association in which the word
matches the received word and the meaning corresponds to the topic of the game. If
the hearer succeeds in finding a proper association, the game succeeds. Otherwise,

it fails.
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If the game is a success, both agents increase the association score of the used
association and they laterally inhibit all competing associations. An association is
competing, when either the meaning corresponds to the topic but the communicated
word is different or when the word is same but the meaning is not.

If the game is a failure, the hearer adopts the word and adds the word meaning
pair to its lexicon, with a low initial association score. The speaker lowers the used

association. See [49] and [48] for further details.

Guessing game

A guessing game [44] is played with a finite (small) number of objects. Typically
in reported experiments the size of the context or number of objects within the
agent’s visual field has been about five, e.g., [48]. The speaker chooses the topic
of the game from this context, but does not inform the hearer about it. The speaker
provides only the utterance it uses to denote the topic. The hearer must then guess,
which of the objects the speaker means, hence the name of the game. The speaker
produces for the hearer some corrective feedback on whether the guess was right or
not. The guessing game is thus similar to reinforcement learning [41]. Both agents

adapt their own lexicon according to the results of the game.

Selfish game

The third game, introduced by Vogt [44] and Smith [35], is called the selfish game.
The agents have no way of knowing whether their communication was successful,
as no feedback is given. Thus, the learner must infer the meanings of words from
their co-occurrences in different contexts or situations. The game is called ‘self-
ish’ as in some way the speaker does not care whether the message was correctly

understood.



Chapter 4

L anguage game appr oach

4.1 Introduction

The previous chapters contain more general discussion on concepts and different
aspects of language and they can be seen as laying the groundwork for the more
experimental work presented in following chapters. This chapter presents the ap-
proach used in this Master’s Thesis and in the next chapter the experiments are
presented in more detail.

There are two main problems that we are trying to address within this Thesis:
The first one is how to model the conceptual learning and the second is the question
of how language is acquired in such a way that a common vocabulary emerges in
a population of learners (or agents). In the model presented later in more detail
the learning task is divided into two phases: First, the agents develop an organized
representation of the world based on the data. Next, the agents engage in series of
observational games of which the basic description is given in Section 3.2.1.

In this work, the conceptual spaces approach presented in Section 2.1.3 is
adopted for the modeling conceptual representations: Specifically, Self-Organizing

Maps are used as models for agents’ conceptual maps. (Cf. also [12] and [14] on

23
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Self-Organizing Map as a semantic memory model.) The language acquisition pro-
cess is modeled in a simulation environment. In this environment, a population of
simulated agents will engage in series of language games similar to those described

in section 3.2.1.

4.2 Conceptual maps

In this Thesis, the Self-Organizing Map is used as an implementation for a concep-
tual map. In the following, the principles of the Self-Organizing Map are presented

in more detail.

421 Sdf-Organizing Map

The Self-Organizing Map (SOM) [18] (also called the Kohonen map or the Self-
Organizing Feature Map) is a neural network model developed originally by Teuvo
Kohonen in the early 1980s [17]. It produces a topological ordering by mapping the
input space to an array of nodes. The purpose of the SOM is usually visualization
of data sets.

Each node of the SOM consists of a prototype vector of the same dimension
as the input vectors. The nodes are organized in the form of a sheet, cylinder or a
toroid. Typically, the topological neighborhood is either hexagonal or rectangular
as illustrated in Fig. 4.1.

The Self-Organizing Map functions according to the competitive learning
principle. When an input vector is fed into the system, a prototype vector that best
matches the input vector is selected. The best-matching unit (BMU) is the node
with the smallest distance to the input vector in some metric. Usually the Euclidean
distance is used, but other distance metrics can be used as well. If the input vector

contains only partial information (some parts of the input vector are not known),
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Figure 4.1: Neighborhood topologies of the Self-Organizing Map: a) hexagonal

and b) rectangular.

the BMU is searched only by the existing part.
In the adaptation process, the best matching unit and its neighbors in the topo-
logical ordering are moved toward that input in the space. The degree of adaptation

depends on the learning function:
mi(t + 1) = my(t) + hei (1) [2(t) — my(t)], (4.1)

in which the h;(t) is the neighborhood function defining how large the neighbor-
hood is, m; is the ith map unit, z(¢) the input vector, and ¢ is the discrete time

coordinate. Most commonly used is the Gaussian neighborhood function:

2

hei = a(t) - exp (%) ) (4.2)

where 0 < «(t) < 1 is the learning-rate factor monotonically decreasing in the

course of the learning and o2(¢) corresponds to the neighborhood radius, also de-

creasing monotonically in the course of the learning. The r. and r; are the vectorial

locations on the grid. Another commonly used neighborhood function is a bubble.

It is constant in the whole neighborhood (defined by neighborhood size) and zero
elsewhere.

The neighborhood size and « are relatively large in the beginning of learning

in order to get a rough, global ordering in the map. As the learning process con-

tinues and the values decrease, a more local ordering is achieved. Typically « is
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close to (but smaller than) 1 and the neighborhood size may be in the beginning of
learning, half the size of the diameter of the map for the Gaussian function [18].

There are several ways to initialize the prototype vector values of the Self-
Organizing Map. The prototype vectors can be initialized randomly, the initial
values of the map can be taken from the available input samples, or the initialization
may be linear.

There are two different training algorithms for the SOM. In sequential train-
ing the prototype vectors are adapted after each input to the SOM, as described
earlier. A faster alternative is the batch training [18]. In the batch training the
whole data set is presented to the map before the map prototype vectors are adapted
at all. In each training step the data is then partitioned according to the Voronoi
regions of the map weight vectors. Next, the new prototype vectors are calculated

as "
Zj:l hie(t);
Z?:l hiC(t) ’

where ¢ = argming{|| ; — my ||} is the index of the BMU of the data sample z;.

m;(t+1) = (4.3)

The new prototype vector is a weighed average of the data samples, and the weight

for each data sample is then neighborhood function value h;.(t) at its BMU c.

4.2.2 Theagents ontologies

In this work, it is thought that a domain in a Conceptual Space (see Section 2.1.3)
could be represented as a Self-Organizing Map trained with observation data. In this
experiment, the color data, the RGB values of color pictures, is used for training of
the map. Following Géardenfors’ vocabulary, there are three quality dimensions in
this domain of the Conceptual Space: the R(ed), G(reen) and B(lue). The Self-
Organizing Maps are trained with the color data prior to the simulation, in which
the language acquisition is studied. After the initial training of the SOM, the map

is not changed. This corresponds to a situation in which a child initializes its fea-
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ture representations based on natural visual data. When an object (color vector) is
perceived during the simulation, it is mapped to the trained SOM by finding a unit
whose Euclidean distance to the perceived input is the smallest. This map node is
the best-matching unit (BMU) [18].

The objects the agents see belong to eight different categories: What the
agents perceive are slightly different instances of these categories. This differs con-
siderably from previous approaches, e.g., [49], where the meanings are presented
simply as integers. Also, in [48], only distinct prototypical colors are used: There
is no variation around the prototype.

The meaning of a word is taken to be a node or a group of (neighboring)
nodes in the Self-Organizing Map. Thus, the word is not directly associated with
’something in the world’, the referent, which in our case is the perceived data vector
but to a representation: The representation of the data vector is the BMU in the map.
Cf. also Vogt’s discussion [45] on Peirce’s semiotic triangle [25].

The association between a word and a concept is implemented by assigning
a word to a certain node in the conceptual map. The mapping between words and
conceptual map nodes is many-to-many. A node may have several words associated
with it and a word may be associated with several nodes. We are hypothesizing that
a general agreement on which word to use for which meaning emerges during the
simulation.

As described earlier in this chapter, the ordering of the prototype vectors is
topological in the Self-Organizing Map: Similar prototypes tend to be close to each
other and those further apart are more different. It can then be assumed that if we
think a concept is as an area, instances located nearby each other in a map are quite
similar, and they can be labeled with the same word. Here the notion of distance,
which is an essential feature of the theory of Conceptual Spaces is used. The size
of the map defines how fine-grained distinctions of the data can be made.

The level of similarity can be defined with the radius R. It describes the size
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of the neighborhood the word-meaning associations are searched from. This is also
the group of nodes that may be described with the same word and they can be seen
to belong to the same category. Figure 4.2 illustrates the neighborhoods in the map.
Black node is the BMU and different neighborhood sizes are marked with different

colors.
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Figure 4.2: Neighborhoods of different size around the BMU (black), 1-
neighborhood (yellow), 2-neighborhood (magenta), 3-neighborhood (blue).

4.3 Utterances

Each word is a discrete symbol in the simulation. A word is a string of characters
generated from a simple artificial language. Following Wittgenstein’s view on the
purpose of language, a word is uttered when it is needed. If there does not exist
a word that could be used to denote the topic of the conversation, a novel word is
generated from the language.

In the experiments, a very limited artificial language is used. In this language,

there are words of length four and of six characters. The alphabet contains vowels
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V = (a,e,i) and consonants C' = (b, ¢, d, f,g,h). In total, the alphabet consists
of nine letters. Each word of this language begins with a consonant which is then
followed by a vowel. The pattern is repeated either once or twice, so all the words
are either of the form ’"CVCV’ or "CVCVCV’. A similar approach is used in Vogt’s
experiments [47].

In many previous simulations, e.g., [3], the set of words that could be used
was small and fixed. In these simulations the set of words is finite but open: new
words can enter to the simulation, whereas the number of topics of the language

games is fixed.

4.4 QObservational game

As described in Section 3.2.1, in an observational game both agents know in ad-
vance what the topic of the game is. In Vogt’s and Steels’ robotic experiments
this was accomplished by pointing, and later in simulations by using other extra-
linguistic information. Our solution is that the agents are able to perceive only one
’object’ at the time and this is the topic of the language game. These objects and

their properties are presented in more detail in Section 5.1.3.

4.4.1 Structure of the agent

Each agent has a conceptual map based on a Self-Organizing Map and a lexicon.
The lexicon contains all words that are in the agent’s vocabulary, and information on
which nodes of the SOM they are associated to. It also contains a counter value for
the word-node pair describing how successfully a word has been used to express a
meaning previously. The minimum value of the counter is zero and as the maximum

value we have used is twenty.
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442 Thealgorithm of the observational game

Each language game in the simulation proceeds in a following way.

1.

Two agents are chosen randomly from the population of agents. One is as-
signed the role of the speaker, the other the hearer. The roles are divided

arbitrarily.

. The topic of the language game is chosen randomly from the set of topics and

shown to both agents.

Both the speaker and the hearer search for a node in their own conceptual

map that best matches the topic.

The speaker searches for the word that could match the topic. The search is
performed in a neighborhood of the BMU defined by R, which is an integer,
R > 1. The process of the word search is described later in more detail. If no
possible word is found, a new word is invented and associated to the BMU.

This word is communicated to the hearer.

. The hearer searches for a set of possible words that could denote the topic.

The search is performed in a similar way as in the case of speaker, but instead
of one best word, all the words that are found are returned. If the word the
speaker has uttered belongs to this set, the language game is considered a

success, otherwise the game fails.

In case of a successful game, both the speaker and the hearer increase their
counter for the word by one. If the uttered word was not among the labels of
the BMU, it is then added to it. The maximum value of the counter is set to
20.

If the game fails, the speaker decreases the counter of the uttered word by

one. The minimum value allowed for the counter is zero. If the speaker’s
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BMU node did not contain any label but the word was instead found from the
neighborhood, the word is not added to the BMU node of the speaker. The

hearer labels its BMU with the spoken utterance in any case.

4.4.3 Theimplemented word search process using the SOM

When an agent is shown the topic (the vector containing the features of the topic), it
finds a prototype vector from its conceptual map (SOM) that best matches the given
input vector. This prototype vector is called the best-matching unit (BMU). The
prototype vectors can be assigned labels, the words. The search algorithm searches
for words used to label the BMU and other nodes within the radius R neighborhood
of the BMU. Even though there is not any word associated to that particular node, a
word hypothesis can be made, if a word has been used for a similar enough object.
In other words, the same word may be used to denote a group of prototype vectors.

In this way a set of possible words is assumed. From this set, the uttered
word is selected: It is the one used most successfully earlier in the neighborhood of
the BMU, defined by the counter values associated to each word-node pair. In case
of multiple words with the same count one is selected randomly. If the set of words
is empty, a new word is generated and uttered.

The hearer searches for the possible words in a similar way to the point of
finding a set of words. The only difference is that there is no need to select the
best word but the set of possible words is compared to the word uttered by the
speaker. In general, the competing (word or node is the same) word-meaning pairs
are considered to be either synonymous or polysemous, both being features of nat-

ural languages as well.



CHAPTER 4. LANGUAGE GAME APPROACH 32

4.4.4 Cleaning of the lexicon

In the end of the simulation agents’ lexicons are cleaned up by removing words that
have not been used successfully during the simulation. This is done by removing all
words associated to a certain node if the value of the counter is zero, but only if there
is a better word hypothesis (counter value > 0) for the node in the neighborhood of

that node.

4.5 Differencesto previousstudies

The approach presented here owes considerably to previous work, especially by
\ogt [44],[49], [48]. The current model differs from the previous works in some
aspects. This section summarizes briefly the main differences.

The notion of conceptual spaces is also used in [48], but the conceptual repre-
sentations have been implemented in a different way. More specifically, the features
of the perceived object are taken as such and used as prototypical representations
of the concept. Whereas in this work, the representation of the object is the best-
matching unit in the Self-Organizing Map.

In [48], the initial ontologies of the agents are empty, and an agent acquires
the concepts during the simulation, and the acquisition of the shared vocabulary is
simultaneous to conceptual learning. In the approach presented here, the learning
process is divided in two phases: In the first phase the conceptual maps are trained
with color data and the trained map then serves as a basis for categorization. The
language emerges in the second phase, but the SOM is not changed during the
simulation.

A related difference is on what the agents are able to perceive. In this work,
it can be thought that the agents are able to perceive slightly different instances of

eight types of objects. In both [49] and [48] the number of different objects the
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agents are able to perceive is considerably larger, but the notion on which instances
should be considered belonging to the same category is not considered at all: All
the objects should belong to different categories ultimately.

In [48], the compositionality of language is mainly studied using the Iterated
Learning Model (ILM) by Kirby [15]. In the Iterated Learning Model the notion
of adult and children agents is used within the context of subsequent generations:
The adults are mainly the teachers and the children are the learners of the emerging
language. Neither the ILM or the compositionality of language is considered in
this Thesis. Also compared to [49] and [48] at this point of the study only the
observational game is implemented. The guessing and selfish game are left to future
research.

In Vogt’s studies, e.g., [44], [49] and [48], if the language game is successful,
the competing word-meaning associations (either the word or the meaning of a
word-meaning pair is the same as in the winning association) are inhibited and the
score of the winning association is increased. In our case only the counter of the
winning association is increased and no inhibition takes place. Additionally, in our
study the hearer agent produces all words that are within the radius R from the
BMU whereas in Vogt’s studies only the one with the biggest association score is
returned. Our solution corresponds to a more natural language situation in which
there are synonymous words corresponding to a meaning. The preferred words may
vary for each agent: while the word used by the speaker is not the one the hearer

prefers, it can still be perfectly understood.



Chapter 5

L anguage game experiments

This chapter reports the experiments made with the observational game described
in Chapter 4. The purpose of the experimental work is two-fold: The first goal of
the experiments was to verify the hypothesis that the agents are able to develop an
emergent and shared lexicon by engaging in the language games, while using the
SOM conceptual map model. Secondly, we are studying the association processes
between the map nodes and the utterances created by agents and how the areas that
are named with the same word are formed. To test how the varying parameters affect
the overall learning results, experiments were conducted with different population
sizes, different sizes of conceptual maps and varying the search radius, R, although

the purpose of these experiments was not to find the best parameters.

5.1 Methods

The simulation program used in the experiments was constructed using Matlab?.
The SOMs used as conceptual maps were implemented using the SOMToolbox for

Matlab [43]. The program code used in the experiments is available from the author.

htt p: // www. mat hwor ks. com
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In all experiments, 10 simulations were run with different random seeds for
5000 language games. There were three measures used to evaluate the outcome of
the simulations. The communication success was calculated after every language
game. The coherence and the specificity were calculated after every 250 games, and
the size of the lexicon was calculated in the end of the simulation. These measures
are explained later in more detail.

In the experiments, the training of the conceptual maps was separated from
language learning. A similar but considerably simpler approach was used in [49]:
In that study, the meanings were represented simply as integers. Simultaneous con-

ceptual learning and language learning was studied in [44], [46] and [48].

5.1.1 Color data

The agents’ conceptual maps were trained with color data vectors. Components
of the vector were R(ed), G(reen) and B(lue) values of a pixel in a color picture.
The color data consisted of 10 pictures — one for each agent. The size of these
pictures was 100x 100 pixels. Thus for each agent, the training set contained 10000
samples.

The color pictures were created by drawing color filled ellipses and rectangles
to a white background. The colors used and their equivalent RGB-values are given
in Table 5.1. To get less ’spiky’ distributions for each color, uniformly distributed
noise was added independently to each of the three color channels (RGB) of the
picture. The level of noise was set to 20% of the total color range. An example

picture is shown in Figure 5.1.

5.1.2 Training of the conceptual map

In the experiments, a hexagonal map topology was used. Three different map sizes

were used in the simulation experiments: small map was of size 8 x6 nodes or map
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Color

R(ed) G(reen) B(lue)

black
blue
green
cyan

red
magenta
yellow

white

0

0
0
0
1
1
1
1

0

0
1
1
0
0
1
1

0

R, O kP O Kk O Kk

Table 5.1: Colors and their equivalent RGB values.

36

Figure 5.1: An example of a color picture used to train an agent’s conceptual maps.
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yellow ® white

Figure 5.2: Self-Organizing maps of different size trained with the same data: left:

8x6 nodes, middle: 16 x12 nodes, and right: 24 x18 nodes (random initialization).

units, the medium size map was 16 x 12 nodes and the large map was 24 x 18 nodes.
The maps were initialized randomly.

The maps were trained in a batch training mode, explained in section 4.2.1.
The length of the training varied with the size of the map. The length of the training
was the default *long’ training, defined in the SOMToolbox functions [43] and it

was divided into two phases. The length of the rough training in epochs was

trough = 16n/1, (5.2
and for fine tuning the used length was

tfine = 64n/l, (5.2)

where n is the number of the nodes in the map and [ is the length of the training
data, which is 10000 in this case. The training length is always at least 1 epoch.
The initial radius for the training was rad;,; = max(1, max(mapsize)/2) and the
final radius for training is always rad;,, = 1. The value of the learning factor «
(see Eq. 4.2 on page 25) was kept at 0.5 for the rough training and 0.05 for the fine

training phase. The parameters for each map size are listed in Table 5.2.
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Map type map Size  t,ugn iINepochs ¢y, inepochs  rad;,; rady,
Small map [8 6] 1 1 4 1
Medium map [16 12] 1 1.23 8 1
Large map [24 18] 1 2.76 12 1

Table 5.2: Parameters for training the SOMs.

Figure 5.2 shows the U-matrices of the three SOMs trained with the same
data and illustrates the differences between them. In these U-matrices, the light
colored nodes mean that prototypes associated with the nodes are near each other
in the input space. The darker the color, the further apart the prototypes are in the
input space. A clear partitioning to eight different regions can be seen. One can also
notice that the larger the map, the clearer the separation to different regions in the
map is. The color names were added to the maps later to illustrate the organization
of the map: The BMUs were searched for each color vector, presented in Table 5.1,
and the corresponding color name was added as a label to that node. This kind of

labeling was not used during the simulations.

5.1.3 Language game topics

A set of objects that the agents are able to perceive was created for the topics of lan-
guage games. This was achieved by creating an additional picture in a similar way
as the pictures used for training the agents’ conceptual maps. For the purpose of
limiting the computational workload, the size of this picture was limited to 20x20
pixels. Thus, there were 400 different topics for the games. For each game, the

topic was chosen randomly from this group.
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5.1.4 Evaluation measures

When the main purpose of the work is to find out whether the agents are able to
communicate successfully, one should properly define what is meant by successful
communication. The reader should bear in mind that within this framework the use
of communication is more limited than in human populations. Thus, the definition
of successful communication is also more limited. In the previous Chapter (p. 30),
the definition for the successful language game was given: If the word used by the
speaker to denote the topic is found from the word set containing all possible words
the hearer associates with the topic, the game is considered as a success.

The overall communication success (CS), the pure outcome of the language
games, was measured in a similar way as in [6], [44] and [49]. It was calculated as
an average number of correctly played games in the past 100 games or less, if no
100 games had been played yet. It was calculated after every language game.

If we now pursue further to the realms of language, there are other issues that
contribute to the usefulness of the language, than only whether the language game
was successful or not. One of them is the language coherency, i.e., a certain word is
coherently used to denote a certain meaning in the agent community. Thus, a high
coherence level indicates that the agents have developed a shared lexicon that they
are using.

Coherence is a population measure. It is the rate in which agents would
produce a certain word to express a meaning. The coherence measure calculation
used in this work is taken from [6]. For each topic, a fraction of agents that has
the same word as a preferred word is calculated and the maximum fraction is taken.
This is then averaged over all topics. If an agent does not have a word to express a
meaning, the coherence is set to zero. The calculation of the coherence is illustrated
in Table 5.3.

The initial experiments were conducted using only the two aforementioned
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P1 P2 P3 P4 Ps
aq cihahe fadiba ceda dibi dibagi
as cihahe fadiba ceda hadafe cada
as fadiba fadiba ceda hadafe dibagi
ay dibagi fadiba dibi dibi dibagi
max. freq 2 4 3 2 3

coherence 0.5 1.0 0.75 0.5 0.75

Table 5.3: Calculation of coherence for referents p;—p; and for agents a; — ay.

measures. When examining those earlier results, it was noticed that if agents use
only one word to describe every possible referent, the communication success and
the coherence are still high. If we only evaluate the evolving language based on
communication success and coherence, a language consisting of only one word
would be considered useful, although it lacks the quality of being able to differenti-
ate between the referents. Thus, an additional measure, specificity, was introduced.
In this work, a specificity measure developed by De Jong [6] is used. In
[6], De Jong describes: “[S]pecificity indicates to what degree the words an agent
uses determine the referent that is the subject of communication”. The specificity
decreases if two meanings are referred to with the same word. In other words, speci-
ficity describes the amount of polysemy in the lexicon: the higher the specificity,
the less polysemy there is. In this thesis, the specificity based on preferred words
[6] is used. De Jong introduces also a measure of specificity based on entropy, but
for the purpose of this thesis the straight-forward use of the preferred-words based
specificity is sufficient.
For each agent, A;,, the specificity, spec(A;), is calculated from the following
formula:
spec(A;) = %, (5.3)

2
n2 — ng
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p1 p2 ps pa ps D fr Specificity

aa 1 1 1 1 1 5 1.0
aa 1 1 1 1 1 5 1.0
a3 2 2 1 1 1 7 0.9
ag 2 1 2 2 2 9 0.8

Table 5.4: Calculation of specificity for agents according to [6] for referents p;—ps

and for agents a; — ay.

where n, is the number of referents, and f; is frequency of the word related to
the concept, which describes how many referents the word is associated to. The
specificity of the population, spec, is then defined as the average specificity of the
agents:

spec = 2ty spec(Ai)’ (5.4)

Ng

where spec(A;) is the specificity of an agent and n, is the number of agents. Ad-
ditionally, if there is not a word to denote a certain referent (or topic), it means
that the referent cannot be separated from other referents. Now, it can be thought
that the referent is associated with all the other referents, and it has the frequency
fr = ns — 1, where n, is the number of referents. The calculation of the specificity
for the words of Table 5.3 is illustrated in Table 5.4.

Compared to the work by De Jong [6], where mapping between perceptions
and ’meanings’ is one-to one, in this work it is many-to-one: The agents are per-
forming some kind of rough categorization as well. At this point, the specificity
measure was introduced to show differences between different choices of parame-
ters, differences that otherwise could not have been perceived at all. Thus, it was
sufficient to calculate specificity only for the eight prototypical color vectors pre-
sented in Table 5.1.

In the end of each simulation run, the average size of lexicon was also cal-
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culated. In the lexicons, there were also words having a zero counter value, which
means that they were not used successfully at all in the course of the simulation,
i.e., an agent had come up with a word, but it had not been used successfully and
another word had been preferred since. To better show the difference in lexicon
sizes, the average size of the lexicon was calculated both before and after the re-
moval of the non-used words. The average lexicon size was calculated as a mean

of individual agent lexicon sizes.

5.2 Reaults

This section summarizes the results of the experiments. Altogether, the simulations
were run using small, medium and large maps. For the small map, the radii R = 1
and R = 2 were used, and for medium sized map radii R = 1, R = 2, and
R = 4 were used. The calculation using the large maps turned out to be very time-
consuming. Thus, simulation runs were conducted only with the radius R = 2. For
all experiments, the results are averaged over 10 simulation runs. All simulations
were run for the population sizes of 2, 4, 6, 8 and 10 agents except for the large map,
where only population sizes of 2, 4 and 6 agents were used, due to the computational
load. In the following, the significant results are highlighted. Figures showing the

results from all experiments are given in Appendix A.

5.2.1 First resultswith varying population size

First, overall results with varying population size are presented. In these experi-
ments, the middle-sized map was used and the search radius was setto R = 2.

The results are presented in Figure 5.3. The communication success (a)
climbs quickly close to the maximum value of 1.0. The communication success

level 1.0 indicates that each of the previous 100 language games ended success-
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fully. The larger the population is, the longer it takes to reach the maximum level,
but even in the case of 10 agents the level of 0.9 is reached after approximately
1250 games.

The coherence level (b) increases also quite rapidly. In case of population size
of 10 agents, the coherence level reaches 0.86, whereas with smaller population
sizes it is 0.9 or higher. Thus, as simulation advances, the agents begin to use
more and more the same word to denote the same referent, thus forming a shared
vocabulary. As pointed out earlier, the coherence does not say anything whether the
agents are using the same word to denote each referent. The specificity (c), rises
over 0.9 already after 250 games with each population size. Thus, there seems to be
no polysemy in this case: The agents are using a separate word for each prototypical
color (see Table 5.1).

The average size of the lexicon (d) stays between 10 and 17, rising only a little
as a function of the population size. The whiskers describe the amount of standard
deviation in the average values. The size of the lexicon, all words included, rises
highly as a function of the population size.

These first results seem promising. They clearly show that the agents can de-
velop a shared lexicon to denote the objects they perceive. The size of the popula-
tion seems only to affect on how quickly the communication success and coherence
levels grow. The reason behind this is that in larger populations, it takes longer for
the whole population to develop a common vocabulary, as in each language game,

there are always only two agents playing.

5.2.2 Varying the search radius

Next, the results from simulations with different search radii are presented. Now
we are comparing results where the population size and the size of the map were

kept constant. The middle-sized map with 16 x 12 nodes is used, and there are six
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Figure 5.3: Communication success (a), coherence (b), specificity (c) and the lexi-

con size (d) for varying population size, when R = 2 and the map size is 16 x 12.
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Figure 5.4: Communication success (a), coherence (b), specificity (c) and average
lexicon size (d) with varying the search radius when middle-sized (16 x 12) map

was used and the population size was six agents.

agents in the population. The results are presented in Figure 5.4.

Let us first inspect the communication success (a). With all search radii the
communication success reaches the maximum of 1.0. It seems that the larger the
radius, the faster the communication success level rises. This is due to the fact that
when the search space is small, the possibility to create a new word for a referent
increases. This in turn makes the vocabulary larger and as a consequence, it takes

longer for the whole population to learn all the words and to use them successfully.



CHAPTER 5. LANGUAGE GAME EXPERIMENTS 46

The coherence (b) seems also to climb the fastest with the largest search radius, and
the final level is 0.95 whereas it is 0.9 when using R = 1 or R = 2: Again, the
agents seem to be using coherently the same word to name the same referent.

Now the specificity measure (c) reveals something interesting. With the
smaller radii, the specificity is again over 0.95, and climbs there after only 500
language games. But when using the largest radius, R = 4, the specificity first rises
to the level of 0.4 and then drops to the level of 0.3 as the simulation advances:
This indicates that in the beginning of the simulation there is some variation in the
names for the language game topics. In the course of simulation few words are gain-
ing more and more popularity. And if we now look at the average lexicon size (d),
it seems to be very small (approximately 5). Remember, the lexicon size only tells
how many words have been successfully used at some point during the simulation:
Not every one of those is used in the end of the simulation.

Example conceptual maps are shown in Figure 5.5. They present U-matrices
labeled with the words used during the simulation. The one on the left is taken
from one of the ten simulation runs with the population size of six agents, where
R = 1 and the figure in the right presents a conceptual map from a simulation run
again with six agents, where R = 4. The visual interpretation of these figures may
be hard since the language is made up by the agents themselves. Thus, they are
shown for general interest only. It seems that in the map on the right there is one
dominant word, *bihi’, used to label almost everything. On the left-hand side there
are different words that seem to be dominant in different areas: ’fiha’ in the bottom
left corner, ’bihe’, in the bottom middle, *ficeca’ in the bottom right corner, *fifeba’
in the middle left, "gaci’ in the middle right, ’gedede’ in the top right, *figifi’ in the
top middle. In the top left corner there are various words. By only inspecting the
map it is impossible to say, which one of these is used the most.

The low specificity value does not affect the communication success at all.

The agents just seem to have one common word to denote everything. To explain
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Figure 5.5: Two example conceptual maps of size 16 x 12 from simulations of 6

agents. On left: R = 1, onright: R = 4.

this behavior, we will have to look again at the naming process used in the simula-
tion. As explained in Section 4.4.3, the agent is searching for a name associated to
the node that best matches the perceived language game topic. This node is called
the best matching unit (BMU). The word search process is extended to all the nodes
that are within the R-neighborhood (see Fig. 4.2) of the BMU node. Conversely, if
there is one node that is labeled (the word is used in a language game) with a certain
word, all the nodes within the R-neighborhood can be also labeled with that word,
if they happen to be BMU for another topic in some following language game. Then
again, all the nodes in the R-neighborhood can become labeled with the same word.

In the experiments presented here, the Self-Organizing Map size was 16 x 12.
The hexagonal lattice was used and the search radius was R = 4. We can think that
there is a ’first” word which becomes associated to one node in the map. If the
radius is R = 1, there would be maximum 6 other nodes that could be associated
with the same word in the next game (the immediate neighbors of the node, on the

side or corner of the map there are of course less neighbors). If the radius is R = 2,
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there are at the most 18 nodes that can be associated with the word. And when the
radius is R = 4, there maximum number of nodes that can be associated with the
word is 60. As the total number of nodes in the map is 192, the nodes that can
be associated with the same word cover almost a third of the whole map. Thus,
when another node further away from the first BMU becomes associated with the
same word and this happens multiple times, all the map nodes can easily become

associated with only one word quite fast.

5.2.3 Different mapsizes

Next we will compare the results of simulations with different map sizes. Again
the population size used was six agents. The search radius was kept at R = 2. The
results are presented in Figure 5.6. Both the communication success (a) and the
coherence (b) level rise slowest with the biggest map. Eventually the level of 1.0
is reached in case of the communication success with all map sizes. The coherence
level reached is 0.9. The results seem natural: while the search radius is small in
proportion to the map size, it takes longer to assign names for all the nodes in the
map. Consequently, it takes longer until the common vocabulary is achieved. The
specificity (c) and the average lexicon size results are as expected: When the map
size is small (and the search radius is large compared to it), the specificity again
drops in the same way as when we were using the middle sized map and R = 4.
(Compare to the results with small map and R = 1 in Fig. A.1, where specificity
level reaches 1.0 very quickly.)

As mentioned earlier, the calculation was very heavy when the large map
was used and the processing took very long. Our results do not reveal any specific
advantages of using the large map for the data we have been using. But are there
any differences in performance between the small and the middle-sized map, if

the search radii are selected appropriately according to the map size? Figure 5.7
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6 agents and the search radius R = 2.
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presents a comparison for simulations using small maps with search radius R = 1
and middle-sized maps with R = 2. Again, the agent population consisted of six
agents. Based on these results, there does not seem to be any difference in the
performance: In both cases, communication success rises to the maximum level of
1.0, there is a slight difference in the coherence levels and the specificity levels are
similar. The only considerable difference is between the average lexicon sizes, if all
created words are taken into account. But when only the successfully used words
are taken into account, the difference is again very small. Thus, based on these
observations, it seems that the smaller map might be the better choice if one wants

to limit the computational workload without affecting the results.

5.3 Discussion on theresults

In this section, some comments on the experimental results are presented. General
discussion on the domain of the thesis is presented in Chapter 6. The system seems
certainly to be working: The agents are able to map the perceived topics to the maps
and associate utterances to them. According our definition of successful communi-
cation, the agents are also able to communicate successfully and develop a shared
lexicon based on adaptation.

In these experiments the choice of the map sizes and the search parameter
R was quite arbitrary. If R is too small compared to the map size, every node is
labeled with a different word and if the R is too large, the same word is used to
denote all referents. Thus, one should be able to find a good middle grounds. It
seems that the use of small maps and R = 1 or middle-sized maps and R = 2 suits
best for the data used in the experiments.

As we have seen, the agents may begin to use only one word to denote all
the referents. This seems to be due to the too large R in relation to the map size. It

seems also important to point out that in the context of the observational game, the
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language is not necessarily needed: It is somewhat redundant as the hearer agent
always knows what the speaker is referring to. In guessing and selfish games there is
a crucial need to distinguish between different objects, whereas in the observational
game there is no such pressure that would force the agents to develop separate
words.

The averaging over 10 games was done in a similar fashion as in [49]. Further
statistical analysis would have been important to see whether there were large inter-
simulation variations that could not be now perceived at all. It would have been
interesting to add a measure to describe the global lexicon formation. This measure
could have been used to see how many words are used at each point during the
simulation. Now one could only draw some conclusions based on the conceptual
maps and the individual agent lexicons in the end of the simulation.

In the experiments conducted for this thesis, the natural "borders’ created be-
tween the regions (see Fig 5.2) of the SOM, i.e., the distances visualized by the
U-matrix, were not used at all. Instead, the search was based on the neighborhood
of the BMU only (Fig. 4.2). By using the knowledge on how near or far the neigh-
boring node is, one might be able to create groups of words which correspond better

to the perceived world structure (pre-trained maps).



Chapter 6
Discussion

6.1 Conclusions

In this Master’s thesis work some aspects of language acquisition and conceptual
modeling have been considered. In the field of conceptual modeling, the Conceptual
Spaces Theory by Gérdenfors [7] has been adopted. The theory provides a medium
between the symbolic level of words and the sensory level of ‘raw’ sensations. The
notion of distance provides a possibility to make graded conceptual system: The
more prototypical instances of a concept can be seen as more central than the less-
prototypical instances of the category.

The Self-Organizing map was used as a basis for the conceptual map of an
agent. Each agent’s conceptual map was trained with color data prior to the learn-
ing. The observations were then mapped to the conceptual map and labeled. Within
this framework, the pre-trained SOM seems a suitable basis for the conceptual map
as it can be used to reduce the representational complexity of the input data.

As a model for shared vocabulary acquisition, different types of language
games were discussed in this thesis. A computer simulation to model one of them,

the observational game, was implemented based on the work presented in [37], [44],
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and [49]. The main difference to the language game simulations presented in those
studies is that the conceptual maps of the agents were based on the Self-Organizing
map. The acquisition of concepts was not simultaneous to language learning in
the simulations, but the conceptual maps were trained with color data prior to the
language game simulations. The experiments were conducted using different sizes
of Self-Organizing Maps and search radii. The population size was also varied
between two and ten agents.

The results of the experiments show clearly that when using the observa-
tional game model and the SOM-based conceptual maps (1) the agents learned to
communicate successfully on the topics of the games and (2) a shared lexicon was

developed during the simulations.

6.2 Futurework

6.2.1 Other language game models

In this Master’s Thesis, only the observational game was implemented. It would be
interesting to implement the Guessing game and the Selfish game described in Sec-
tion 3.2.1 as well to see how the proposed conceptual map implementation behaves
with them. As pointed out in Section 5.3, the language is somehow redundant in
the observational game framework: Both the speaker and the hearer know for sure
what the topic of the game is and there is no need to have distinct words to separate
different objects. It would be interesting to study if the need to be able to iden-
tify the topic from a group of objects is a pressure enough to prevent the agents of
calling all referents with the same word.

Wittgenstein [51] listed various kinds of language games that are used in
different situations. A further and a very interesting continuation to the research

would be to create a simulation environment in which the three language game
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types presented within this thesis would be used when appropriate. Of course, what
defines the appropriate use is again a difficult question, where pragmatics should be

taken into account.

6.2.2 Simultaneous learning of concepts and words

In this Master’s Thesis work, the learning from visual data and the acquisition of the
vocabulary was divided in to two distinct phases: The Self-Organizing map was not
changed at all during the simulated language games. Anyhow, Vogt [48] and others
[20], [51], [7] argue that semantics of languages are a product of co-development of
language and meaning in embodied interaction of individuals in their environment:
Learning simpler concepts and associating words with them helps with the acquisi-
tion of more complex concepts. Thus, the language is seen as a means for creating
a coherent conceptual structure. Within the simulation framework described here,
the direct implementation is not possible, as the continuous training of the Self-

Organizing Map has problems that are not yet solved.

6.2.3 Useof multiple domains of Conceptual Spaces

In Chapter 4, the use of multiple maps for different domains was discussed briefly.
In this model, a more complex concept say ’apple’, would have properties in dif-
ferent domains. E.g., ’green’ (or ’yellow’, or ’red’) in color domain, ’round(ish)’
in shape domain, ’sweet’ in taste domain etc. Gardenfors [7] argues that which of
these properties would be important to the one holding the concept, would depend
on the context. The context-dependency would then cause some properties to be
more salient in that context. It is possible that these saliencies could be modeled
with some kinds of weights. Possibly, the research could be expanded further to
somewhat complex concepts: To those with properties extending to different do-

mains of Conceptual Spaces.
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6.2.4 Representation of action

So far we have discussed only the relations between objects in the world and their
links to the language. If we expand the scope further, how could action represen-
tation be modeled within the conceptual spaces? How would the action be then
represented in the map is a good question. Perhaps it could be modeled as some
kind of sensory information in an appropriate domain or appropriate domains. Gar-
denfors also addresses the representation of action very briefly in the context of
conceptual spaces. He describes action as dynamic properties of objects. To him
the action could be modeled using for example forces that are applied to body parts
during the action, and one could then have a conceptual space for these dynamical
forces. He seems sure that even if the analysis of the action is tedious, the functional

properties can be, in principle, explained from the more basic properties.
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Results of all experiments

A.1 Small map
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A.3 Largemap
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Figure A.1: Communication success (a), coherence (b), specificity (c) and the aver-

age lexicon size (d) for varying number of agents, when R = 1 and when used maps

were small.



APPENDIX A. RESULTS OF ALL EXPERIMENTS

Communication success

01 —— Bagents

—— 2agents
—— 4agents
——6agents

10 agents
;

P S R S S B
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Language games

—— 2agents
—— dagents
—— Gagents
—— Bagents
10 agents

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Language garmes

(@)

(©)

Coherence

—— 2agents
—— 4agents
——6agents
—— Bagents
10 agents
N

P S S S W
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Language games

Average size of lexicon

T T T T T
O Before removal of zeros|
0 After removal of zeros

1 2 3 4 5 6 7 8 9

Number of agents

(b)

65

Figure A.2: Communication success (a), coherence (b), specificity (c) and the av-

erage lexicon size (d) for varying number of agents, when R = 2 and when the used

conceptual maps were small.
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Figure A.5: Communication success (a), coherence (b), specificity (c) and the lexi-

con size (d) for varying population size, when R = 4 and map size 16 x 12.
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