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Abstract. Modern conflict-driven clause learning (CDCL) SAT solvers are very
good in solving conjunctive normal form (CNF) formulas. However, some appli-
cation problems involve lots of parity (xor) constraints which are not necessarily
efficiently handled if translated into CNF. This paper studies solving CNF formu-
las augmented with xor-clauses in the DPLL(XOR) framework where a CDCL
SAT solver is coupled with a separate xor-reasoning module. New techniques for
analyzing xor-reasoning derivations are developed, allowing one to obtain smaller
CNF clausal explanations for xor-implied literals and also to derive and learn new
xor-clauses. It is proven that these new techniques allow very short unsatisfiabil-
ity proofs for some formulas whose CNF translations do not have polynomial
size resolution proofs, even when a very simple xor-reasoning module capable
only of unit propagation is applied. The efficiency of the proposed techniques is
evaluated on a set of challenging logical cryptanalysis instances.

1 Introduction

Modern propositional satisfiability (SAT) solvers (see e.g. [1]) have been successfully
applied in a number of industrial application domains. Propositional satisfiability in-
stances are typically encoded in conjunctive normal form (CNF) which allows very
efficient Boolean constraint propagation and conflict-driven clause learning (CDCL)
techniques. However, such CNF encodings may not allow optimal exploitation of the
problem structure in the presence of parity (xor) constraints; such constraints are abun-
dant especially in the logical cryptanalysis domain and also present in circuit verifi-
cation and bounded model checking. An instance consisting only of parity constraints
can be solved in polynomial time using Gaussian elimination, but even state-of-the-art
SAT solvers relying only on basic Boolean constraint propagation and CDCL can scale
poorly on the corresponding CNF encoding.

In this paper we develop new techniques for exploiting structural properties of xor
constraints (i.e. linear equations modulo 2) in the recently introduced DPLL(XOR)
framework [2, 3] where a problem instance is given as a combination of CNF and xor-
clauses. In the framework a CDCL SAT solver takes care of the CNF part while a
separate xor-reasoning module performs propagation on the xor-clauses. In this paper
we introduce new techniques for explaining why a literal was implied or why a conflict
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occurred in the xor-clauses part; such explanations are needed by the CDCL part. The
new core idea is to not see xor-level propagations as implications but as linear arithmetic
equations. As a result, the new proposed parity explanation techniques can (i) provide
smaller clausal explanations for the CDCL part, and also (ii) derive new xor-clauses
that can then be learned in the xor-clauses part. The goal of learning new xor-clauses
is, similarly to clause learning in CDCL solvers, to enhance the deduction capabili-
ties of the reasoning engine. We introduce the new techniques on a very simple xor-
reasoning module allowing only unit propagation on xor-clauses and prove that, even
when new xor-clauses are not learned, the resulting system with parity explanations can
efficiently solve parity problems whose CNF translations are very hard for resolution.
We then show that the new parity explanation techniques also extend to more general
xor-reasoning modules, for instance to the one in [2] capable of equivalence reasoning
in addition to unit propagation. Finally, we experimentally evaluate the effect of the
proposed techniques on a challenging benchmark set modelling cryptographic attacks.

Related work. In [4] a calculus combining basic DPLL without clause learning and
Gauss elimination is proposed; their Gauss rules are similar to the general rule ⊕-Gen
we use in Sect. 8. The solvers EqSatz [5], lsat [6], and March eq [7] incorporate parity
reasoning into DPLL without clause learning, extracting parity constraint information
from CNF and during look-ahead, and exploiting it during the preprocessing phase
and search. MoRsat [8] extracts parity constraints from a CNF formula, uses them for
simplification during preprocessing, and proposes a watched literal scheme for unit
propagation on parity constraints. Cryptominisat [9, 10], like our approach, accepts a
combination of CNF and xor-clauses as input. It uses the computationally relatively ex-
pensive Gaussian elimination as the xor-reasoning method and by default only applies
it at the first levels of the search; we apply lighter weight xor-reasoning at all search lev-
els. Standard clause learning is supported in MoRsat and Cryptominisat; our deduction
system characterization of xor-reasoning allows us to exploit the linear properties of
xor-clauses to obtain smaller CNF explanations of xor-implied literals and xor-conflicts
as well as to derive and learn new xor-clauses.

2 Preliminaries

An atom is either a propositional variable or the special symbol > which denotes the
constant “true”. A literal is an atom A or its negation ¬A; we identify ¬> with ⊥
and ¬¬A with A. A traditional, non-exclusive or-clause is a disjunction l1 ∨ · · · ∨ ln
of literals. An xor-clause is an expression of form l1 ⊕ · · · ⊕ ln, where l1, . . . , ln are
literals and the symbol ⊕ stands for the exclusive logical or. In the rest of the paper,
we implicitly assume that each xor-clause is in a normal form such that (i) each atom
occurs at most once in it, and (ii) all the literals in it are positive. The unique (up to
reordering of the atoms) normal form for an xor-clause can be obtained by applying the
following rewrite rules in any order until saturation: (i) ¬A⊕ C  A⊕>⊕ C, and
(ii) A⊕A⊕ C  C, where C is a possibly empty xor-clause and A is an atom. For
instance, the normal form of ¬x1⊕x2⊕x3⊕x3 is x1⊕x2⊕>, while the normal form
of x1 ⊕ x1 is the empty xor-clause (). We say that an xor-clause is unary if it is either
of form x or x⊕> for some variable x; we will identify x⊕> with the literal ¬x. An



xor-clause is binary (ternary) if its normal form has two (three) variables. A clause is
either an or-clause or an xor-clause.

A truth assignment π is a set of literals such that > ∈ π and ∀l ∈ π : ¬l /∈ π. We
define the “satisfies” relation |= between a truth assignment π and logical constructs as
follows: (i) if l is a literal, then π |= l iff l ∈ π, (ii) if C = (l1∨· · ·∨ ln) is an or-clause,
then π |= C iff π |= li for some li ∈ {l1, . . . , ln}, and (iii) if C = (l1 ⊕ · · · ⊕ ln) is
an xor-clause, then π |= C iff π is total for C (i.e. ∀1 ≤ i ≤ n : li ∈ π ∨ ¬li ∈ π) and
π |= li for an odd number of literals of C. Observe that no truth assignment satisfies the
empty or-clause () or the empty xor-clause (), i.e. these clauses are synonyms for ⊥.

A cnf-xor formula φ is a conjunction of clauses, expressible as a conjunction

φ = φor ∧ φxor, (1)

where φor is a conjunction of or-clauses and φxor is a conjunction of xor-clauses. A
truth assignment π satisfies φ, denoted by π |= φ, if it satisfies each clause in it; φ
is called satisfiable if there exists such a truth assignment satisfying it, and unsatis-
fiable otherwise. The cnf-xor satisfiability problem studied in this paper is to decide
whether a given cnf-xor formula has a satisfying truth assignment. A formula φ′ is a
logical consequence of a formula φ, denoted by φ |= φ′, if π |= φ implies π |= φ′

for all truth assignments π. The set of variables occurring in a formula φ is denoted
by vars(φ), and lits(φ) = {x,¬x | x ∈ vars(φ)} is the set of literals over vars(φ).
We use C [A/D] to denote the (normal form) xor-clause that is identical to C except
that all occurrences of the atom A in C are substituted with D once. For instance,
(x1 ⊕ x2 ⊕ x3) [x1/(x1 ⊕ x3)] = x1 ⊕ x3 ⊕ x2 ⊕ x3 = x1 ⊕ x2.

3 The DPLL(XOR) framework

The idea in the DPLL(XOR) framework [2] for satisfiability solving of cnf-xor formulas
φ = φor ∧ φxor is similar to that in the DPLL(T ) framework for solving satisfiability of
quantifier-free first-order formulas modulo a background theory T (SMT, see e.g. [11,
12]). In DPLL(XOR), see Fig. 1 for a high-level pseudo-code, one employs a conflict-
driven clause learning (CDCL) SAT solver (see e.g. [1]) to search for a satisfying truth
assignment π over all the variables in φ = φor ∧ φxor.1 The CDCL-part takes care of
the usual unit clause propagation on the cnf-part φor of the formula (line 4 in Fig. 1),
conflict analysis and non-chronological backtracking (line 15–17), and heuristic selec-
tion of decision literals (lines 19–20) which extend the current partial truth assignment
π towards a total one.

To handle the parity constraints in the xor-part φxor, an xor-reasoning module M is
coupled with the CDCL solver. The values assigned in π to the variables in vars(φxor)
by the CDCL solver are communicated as xor-assumption literals to the module (with
the ASSIGN method on line 6 of the pseudo-code). If l1, ..., lm are the xor-assumptions
communicated to the module so far, then the DEDUCE method (invoked on line 7) of
the module is used to deduce a (possibly empty) list of xor-implied literals l̂ that are
logical consequences of the xor-part φxor and xor-assumptions, i.e. literals for which

1 See [2] for a discussion on handling “xor-internal” variables occurring in φxor but not in φor.



solve(φ = φor ∧ φxor):
1. initialize xor-reasoning module M with φxor

2. π = 〈〉 /*the truth assignment*/
3. while true:
4. (π′, confl) = UNITPROP(φor, π) /*unit propagation*/
5. if not confl : /*apply xor-reasoning*/
6. for each literal l in π′ but not in π: M .ASSIGN(l)
7. (l̂1, ..., l̂k) =M.DEDUCE()
8. for i = 1 to k:
9. C =M.EXPLAIN(l̂i)

10. if l̂i = ⊥ or ¬l̂i ∈ π′: confl = C, break
11. else if l̂i /∈ π′: add l̂i to π′ with the implying or-clause C
12. if k > 0 and not confl :
13. π = π′; continue /*unit propagate further*/
14. let π = π′

15. if confl : /*standard Boolean conflict analysis*/
16. analyze conflict, learn a conflict clause
17. backjump or return “unsatisfiable” if not possible
18. else:
19. add a heuristically selected unassigned literal in φ to π
20. or return “satisfiable” if no such variable exists

Fig. 1. The essential skeleton of the DPLL(XOR) framework

φxor ∧ l1 ∧ ... ∧ lm |= l̂ holds. These xor-implied literals can then be added to the cur-
rent truth assignment π (line 11) and the CDCL part invoked again to perform unit
clause propagation on these. The conflict analysis engine of CDCL solvers requires
that each implied (i.e. non-decision) literal has an implying clause, i.e. an or-clause
that forces the value of the literal by unit propagation on the values of literals appear-
ing earlier in the truth assignment (which at the implementation level is a sequence of
literals instead of a set). For this purpose the xor-reasoning module has a method EX-
PLAIN that, for each xor-implied literal l̂, gives an or-clause C of form l′1 ∧ ... ∧ l′k ⇒ l̂,
i.e. ¬l′1 ∨ ... ∨ ¬l′k ∨ l̂, such that (i) C is a logical consequence of φxor, and (ii) l′1, ..., l

′
k

are xor-assumptions made or xor-implied literals returned before l̂. An important spe-
cial case occurs when the “false” literal⊥ is returned as an xor-implied literal (line 10),
i.e. when an xor-conflict occurs; this implies that φxor ∧ l1 ∧ ... ∧ lm is unsatisfiable. In
such a case, the clause returned by the EXPLAIN method is used as the unsatisfied clause
confl initiating the conflict analysis engine of the CDCL part (lines 10 and 15–17).

In addition to the ASSIGN, DEDUCE, and EXPLAIN methods, an xor-reasoning mod-
ule must also implement methods that allow xor-assumptions to be retracted from the
solver in order to allow backtracking in synchronization with the CDCL part (line 17).

Naturally, there are many xor-module integration strategies that can be consid-
ered in addition to the one described in the above pseudo-code. For instance, the xor-
explanations for the xor-implied literals can be computed always (as in the pseudo-code



⊕-Unit+:
x C

C [x/>] ⊕-Unit−:
x⊕> C

C [x/⊥]

Fig. 2. Inference rules of UP; the symbol x is variable and C is an xor-clause

for the sake of simplicity) or only when needed in the CDCL-part conflict analysis (as
in a real implementation for efficiency reasons).

4 The xor-reasoning module “UP”

To illustrate our new parity-based techniques, we first introduce a very simple xor-
reasoning module “UP” which only performs unit propagation on xor-clauses. As such
it can only perform the same deduction as CNF-level unit propagation would on the
CNF translation of the xor-clauses. However, with our new parity-based xor-implied
literal explanation techniques (Sect. 5) we can deduce much stronger clauses (Sect. 6)
and also new xor-clauses that can be learned (Sect. 7). In Sect. 8 we then generalize
the results to other xor-reasoning modules such as the the one in [2] incorporating also
equivalence reasoning.

As explained above, given a conjunction of xor-clauses φxor and a sequence l1, . . . , lk
of xor-assumption literals, the goal of an xor-reasoning module is to deduce xor-implied
literals and xor-conflicts over ψ = φxor ∧ l1 ∧ · · · ∧ lk. To do this, the UP-module im-
plements a deduction system with the inference rules shown in Fig. 2. An UP-derivation
on ψ is a finite, vertex-labeled directed acyclic graph G = 〈V,E, L〉, where each vertex
v ∈ V is labeled with an xor-clause L(v) and the following holds for each vertex v:

1. v has no incoming edges (i.e. is an input vertex) and L(v) is an xor-clause in ψ, or
2. v has two incoming edges originating from vertices v1 and v2, and L(v) is derived

from L(v1) and L(v2) by using one of the inference rules.

As an example, Fig. 3 shows a UP-derivation for φxor ∧ (¬a) ∧ (d) ∧ (¬b), where
φxor = (a ⊕ b ⊕ c) ∧ (c ⊕ d ⊕ e) ∧ (c ⊕ e ⊕ f) (please ignore the “cut” lines for
now). An xor-clause C is UP-derivable on
ψ, denoted by ψ `UP C, if there exists
a UP-derivation on ψ that contains a ver-
tex labeled with C; the UP-derivable unary
xor-clauses are the xor-implied literals that
the UP-module returns when its DEDUCE
method is called. In Fig. 3, the literal f is
UP-derivable and the UP-module returns f
as an xor-implied literal after ¬a, d, and
¬b are given as xor-assumptions. As a di-
rect consequence of the definition of xor-
derivations and the soundness of the infer-
ence rules, it holds that if an xor-derivation Fig. 3: A UP-derivation

on ψ contains a vertex labeled with the xor-clause C, then C is a logical consequence
of ψ, i.e. ψ `UP C implies ψ |= C. A UP-derivation on ψ is a UP-refutation of



ψ if it contains a vertex labeled with the false literal ⊥; in this case, ψ is unsatisfi-
able. A UP-derivation G on ψ is saturated if for each unary xor-clause C such that
ψ `UP C it holds that there is a vertex v in G with the label L(v) = C. Note that UP
is not refutationally complete, e.g. there is no UP-refutation of the unsatisfiable con-
junction (a ⊕ b) ∧ (a ⊕ b ⊕ >). However, it is “eventually refutationally complete” in
the DPLL(XOR) setting: if each variable in ψ occurs in a unary clause in ψ, then the
empty clause is UP-derivable iff ψ is unsatisfiable; thus when the CDCL SAT solver
has assigned a value to all variables in φxor, the UP-module can check whether all the
xor-clauses are satisfied.

As explained in the previous section, the CDCL part of the DPLL(XOR) framework
requires an implying or-clause for each xor-implied literal. These can be computed by
interpreting the ⊕-Unit+ and ⊕-Unit− rules as implications

(x) ∧ C ⇒ C [x/>] (2)
(x⊕>) ∧ C ⇒ C [x/⊥] (3)

respectively, and recursively expanding the xor-implied literal with the left-hand side
conjunctions of these until a certain cut of the UP-derivation is reached. Formally, a cut
of a UP-derivation G = 〈V,E,L〉 is a partitioning (Va, Vb) of V . A cut for a non-input
vertex v ∈ V is a cut (Va, Vb) such that (i) v ∈ Vb, and (ii) if v′ ∈ V is an input
vertex and there is a path from v′ to v, then v′ ∈ Va. Now assume a UP-derivation
G = 〈V,E, L〉 for φxor ∧ l1 ∧ ... ∧ lk. For each non-input node v in G, and each cut
W = 〈Va, Vb〉 of G for v, the implicative explanation of v under W is the conjunction
Expl(v,W ) = fW (v), there fW is recursively defined as follows:

E1 If u is an input node with L(u) ∈ φxor, then fW (u) = >.
E2 If u is an input node with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u).
E3 If u is a non-input node in Va, then fW (u) = L(u).
E4 If u is a non-input node in Vb, then fW (u) = fW (u1) ∧ fW (u2), where u1 and u2

are the source nodes of the two edges incoming to u.

Based on Eqs. (2) and (3), it is easy to see that φxor |= Expl(v,W )⇒ L(v) holds. The
implicative explanation Expl(v,W ) can in fact be read directly from the cutW as in [2]:
Expl(v,W ) =

∧
u∈reasons(W ) L(u), where reasons(W ) = {u ∈ Va | L(u) /∈ φxor ∧

∃u′ ∈ Vb : 〈u, u′〉 ∈ E} is the reason set for W . A cut W is cnf-compatible if L(u) is a
unary xor-clause for each u ∈ reasons(W ). Thus if the cut W is cnf-compatible, then
Expl(v,W )⇒ L(v) is the required or-clause implying the xor-implied literal L(v).

Example 1. Consider again the UP-derivation on φxor ∧ (¬a) ∧ (d) ∧ (¬b) in Fig. 3. It
has four cuts, 1–4, for the vertex v12, corresponding to the explanations ¬a ∧ d ∧ ¬b,
c ∧ d, c ∧ (c⊕ e⊕>), and e ∧ c, respectively. The non-cnf-compatible cut 3 cannot be
used to give an implying or-clause for the xor-implied literal f but the others can; the
one corresponding to the cut 2 is (¬c ∨ ¬d ∨ f). ♣

The UP-derivation bears an important similarity with “traditional” implication graph
of a SAT solver where each vertex represents a variable assignment: graph partitions are
used to derive clausal explanations for implied literals. Different partitioning schemes
for such implication graphs have been studied in [13], and we can directly adopt some
of them for our analysis. A cut W = (Va, Vb) for a non-input vertex v is:



1. closest cut if W is the cnf-compatible cut with the smallest possible Vb part. Ob-
serve that each implying or-clause derived from these cuts is a clausification of a
single xor-clause; e.g., (¬c ∨ ¬e ∨ f) obtained from the cut 4 in Fig. 3.

2. first UIP cut if W is the cut with the largest possible Va part such that reasons(W )
contains either the latest xor-assumption vertex or exactly one of its successors.

3. furthest cut if Vb is maximal. Note that furthest cuts are also cnf-compatible as their
reason sets consist only of xor-assumptions.

In the implementation of the UP-module, we use a modified version of the 2-
watched literals scheme first presented in [14] for or-clauses; all but one of the vari-
ables in an xor-clause need to be assigned before the xor-clause implies the last one.
Thus it suffices to have two watched variables. MoRsat [8] uses the same data struc-
ture for all clauses and has 2 × 2 watched literals for xor-clauses. Cryptominisat [9]
uses a scheme similar to ours except that it manipulates the polarities of literals in an
xor-clause while we take the polarities into account in the explanation phase. Because
of this implementation technique, the implementation does not consider the non-unary
non-input vertices in UP-derivations; despite this, Thm. 3 does hold also for the imple-
mented inference system.

5 Parity explanations

So far in this paper, as well as in our previous works [2, 3], we have used the inference
rules in an “implicative way”. For instance, we have implicitly read the ⊕-Unit+ rule as

if the xor-clauses (x) and C hold, then C [x/>] also holds.

Similarly, the implicative explanation for an xor-implied literal l̂ labelling a non-input
node v under a cnf-compatible cut W has been defined to be a conjunction Expl(v,W )

of literals with φxor |= Expl(v,W )⇒ l̂ holding. We now propose an alternative method
allowing us to compute a parity explanation Expl⊕(v,W ) that is an xor-clause such that

φxor |= Expl⊕(v,W )⇔ l̂

holds. The variables in Expl⊕(v,W ) will always be a subset of the variables in the
implicative explanation Expl(v,W ) computed on the same cut.

The key observation for computing parity explanations is that the inference rules can
in fact also be read as equations over xor-clauses under some provisos. As an example,
the ⊕-Unit+ rule can be seen as the equation (x)⊕C ⊕> ⇔ C [x/>] provided that (i)
x ∈ C, and (ii) C is in normal form. That is, taking the exclusive-or of the two premises
and the constant true gives us the consequence clause of the rule. The provisos are easy
to fulfill: (i) we have already assumed all xor-clauses to be in normal form, and (ii)
applying the rule when x /∈ C is redundant and can thus be disallowed. The reasoning
is analogous for the ⊕-Unit− rule and thus for UP rules we have the equations:

(x)⊕ C ⊕> ⇔ C [x/>] (4)
(x⊕>)⊕ C ⊕> ⇔ C [x/⊥] (5)



As all the UP-rules can be interpreted as equations of form “left-premise xor right-
premise xor true equals consequence”, we can expand any xor-clause C in a node of
a UP-derivation by iteratively replacing it with the left hand side of the corresponding
equation. As a result, we will get an xor-clause that is logically equivalent to C; from
this, we can eliminate the xor-clauses in φxor and get an xor-clause D such that φxor |=
D ⇔ C. Formally, assume a UP-derivationG = 〈V,E,L〉 for φxor∧l1∧...∧lk. For each
non-input node v in G, and each cut W = 〈Va, Vb〉 of G for v, the parity explanation
of v under W is Expl⊕(v,W ) = fW (v), there fW is recursively defined as earlier for
Expl(v,W ) except that the case “E4” is replaced by

E4 If u is a non-input node in Vb, then fW (u) = fW (u1)⊕ fW (u2)⊕>, where u1
and u2 are the source nodes of the two edges incoming to u.

We now illustrate parity explanations and show that they can be smaller (in the sense
of containing fewer variables) than implicative explanations:

Example 2. Consider again the UP-derivation given in Fig. 3. Take the cut 4 first; we
get Expl⊕(v12,W ) = c ⊕ e ⊕ >. Now φxor |= Expl⊕(v12,W )⇔ L(v12) holds as
(c ⊕ e ⊕ >) ⇔ f , i.e. c ⊕ e ⊕ f , is an xor-clause in φxor. Observe that the implicative
explanation c∧e of v12 under the cut is just one conjunct in the disjunctive normal form
(c ∧ e) ∨ (¬c ∧ ¬e) of c⊕ e⊕>.

On the other hand, under the cut 2 we get Expl⊕(v12,W ) = d. Now φxor |=
Expl⊕(v12,W )⇔ L(v12) as d ⇔ f , i.e. d ⊕ f ⊕ >, is a linear combination of the
xor-clauses in φxor. Note that the implicative explanation for v12 under the cut is (c∧d),
and no cnf-compatible cut for v12 gives the implicative explanation (d) for v12. ♣
We observe that vars(Expl⊕(v,W )) ⊆ vars(Expl(v,W )) by comparing the definitions
of Expl(v,W ) and Expl⊕(v,W ). The correctness of Expl⊕(v,W ), formalized in the
following theorem, can be established by induction and using Eqs. (4) and (5).

Theorem 1. Let G = 〈V,E, L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node in
it, and W = 〈Va, Vb〉 a cut for v. It holds that φxor |= Expl⊕(v,W )⇔ L(v).

Recall that the CNF-part solver requires an implying or-clause C for each xor-
implied literal, forcing the value of the literal by unit propagation. A parity explanation
can be used to get such implying or-clause by taking the implicative explanation as a
basis and omitting the literals on variables not occurring in the parity explanation:

Theorem 2. Let G = 〈V,E,L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node
with L(v) = l̂ in it, and W = 〈Va, Vb〉 a cnf-compatible cut for v. Then φxor |=
(
∧

u∈S L(u))⇒ l̂, where S = {u ∈ reasons(W ) | vars(L(u)) ⊆ vars(Expl⊕(v,W ))}.
Observing that only expressions of the type fW (u) occurring an odd number of

times in the expression fW (v) remain in Expl⊕(v,W ), we can derive a more efficient
graph traversal method for computing parity explanations. That is, when computing a
parity explanation for a node, we traverse the derivation backwards from it in a breadth-
first order. If we come to a node u and note that its traversal is requested because an
even number of its successors have been traversed, then we don’t need to traverse u
further or include L(u) in the explanation if u was on the “reason side” Va of the cut.



Example 3. Consider again the UP-derivation in Fig. 3 and the cnf-compatible cut 1
for v12. When we traverse the derivation backwards, we observe that the node v9 has an
even number of traversed successors; we thus don’t traverse it (and consequently neither
v8, v5, v4 or v1). On the other hand, v6 has an odd number of traversed successors and it
is included when computing Expl⊕(v12,W ). Thus we get Expl⊕(v12,W ) = L(v6) =
(d) and the implying or-clause for f is d⇒ f , i.e. (¬d ∨ f). ♣

Although parity explanations can be computed quite fast using graph traversal as
explained above, this can still be computationally prohibitive on “xor-intensive” in-
stances because a single CNF-level conflict analysis may require that implying or-
clauses for hundreds of xor-implied literals are computed. In our current implemen-
tation, we compute the closest cnf-compatible cut (for which parity explanations are
very fast to compute but equal to implicative explanations and produce clausifications
of single xor-clauses as implying or-clauses) for an xor-implied literal l̂ when an expla-
nation is needed in the regular conflict analysis. The computationally more expensive
furthest cut is used if an explanation is needed again in the conflict-clause minimization
phase of minisat.

6 Resolution cannot polynomially simulate parity explanations

Intuitively, as parity explanations can contain fewer variables than implicative expla-
nations, the implying or-clauses derived from them should help pruning the remaining
search space of the CDCL solver better. We now show that, in theory, parity expla-
nations can indeed be very effective as they can allow small refutations for some for-
mula classes whose CNF translations do not have polynomial size resolution proofs.
To do this, we use the hard formulas defined in [15]; these are derived from a class
of graphs which we will refer to as “parity graphs”. A parity graph is an undirected,
connected, edge-labeled graph G = 〈V,E〉 where each node v ∈ V is labeled with
a charge c(v) ∈ {⊥,>} and each edge 〈v, u〉 ∈ E is labeled with a distinct vari-
able. The total charge c(G) =

⊕
v∈V c(v) of an parity graph G is the parity of all

node charges. Given a node v, define the xor-clause α(v) = q1 ⊕ . . .⊕ qn ⊕ c(v)⊕>,
where q1, . . . , qn are the variables used as labels in the edges connected to v, and
xorclauses(G) =

∧
v∈V α(v). For an xor-clause C over n variables, let cnf(C) de-

note the equivalent CNF formula, i.e. the conjunction of 2n−1 clauses with n literals in
each. Define clauses(G) =

∧
v∈V cnf(α(v)).

As proven in Lemma 4.1 in [15], xorclauses(G) and clauses(G) are unsatisfiable
if and only if c(G) = >. The unsatisfiable formulas derived from parity graphs can be
very hard for resolution: there is an infinite sequence G1, G2, . . . of degree-bounded
parity graphs such that c(Gi) = > for each i and the following holds:

Lemma 1 (Thm. 5.7 of [15]). There is a constant c > 1 such that for sufficiently
large m, any resolution refutation of clauses(Gm) contains cn distinct clauses, where
clauses(Gm) is of length O(n), n = m2.

We now present our key result on parity explanations: for any parity graph G with
c(Gi) = >, the formula xorclauses(G) can be refuted with a single parity explanation
after a number of xor-assumptions have been made:



Theorem 3. Let G = 〈V,E〉 be a parity graph such that c(G) = >. There is a UP-
refutation for xorclauses(G)∧ q1 · · · ∧ qk for some xor-assumptions q1, . . . , qk, a node
v with L(v) = ⊥ in it, and a cut W = 〈Va, Vb〉 for v such that Expl⊕(v,W ) = >. Thus
xorclauses(G) |= (> ⇔ ⊥), showing xorclauses(G) unsatisfiable.

By recalling that CDCL SAT solvers are equally powerful to resolution [16], and
that unit propagation on xor-clauses can be efficiently simulated by unit propagation
their CNF translation, we get the following:

Corollary 1. There are families of unsatisfiable cnf-xor formulas for which DPLL(XOR)
using UP-module (i) has polynomial sized proofs if parity explanations are allowed, but
(ii) does not have such if the “classic” implicative explanations are used.

In practice, the CDCL part does not usually make the correct xor-assumptions needed
to compute the empty implying or-clause, but if parity explanations are used in learning
as explained in the next section, instances generated from parity graphs can be solved
very fast.

7 Learning parity explanations

As explained in Sect. 5, parity explanations can be used to derive implying or-clauses,
required by the conflict analysis engine of the CDCL solver, that are shorter than those
derived by the classic implicative explanations. In addition to this, parity explanations
can be used to derive new xor-clauses that are logical consequences of φxor; these xor-
clauses D can then be learned, meaning that φxor is extended to φxor ∧ D, the goal
being to increase the deduction power of the xor-reasoning module. As an example,
consider again Ex. 2 and recall that the parity explanation for v12 under the cut 2 is
d. Now φxor |= (d ⇔ f), i.e. φxor |= (d ⊕ f ⊕ >), holds, and we can extend φxor to
φ′xor = φxor ∧ (d⊕ f ⊕>) while preserving all the satisfying truth assignments. In fact,
it is not possible to deduce f from φxor ∧ (d) by using UP, but f can be deduced from
φ′xor∧ (d). Thus learning new xor-clauses derived from parity explanations can increase
the deduction power of the UP inference system in a way similar to conflict-driven
clause learning increasing the power of unit propagation in CDCL SAT solvers.

However, if all such derived xor-clauses are learned, it is possible to learn the same
xor-clause many times, as illustrated in the following example and Fig. 4.

Example 4. Let φxor = (a ⊕ b ⊕ c ⊕ >) ∧ (b ⊕ c ⊕ d ⊕ e) ∧ ... and assume that CNF
part solver gives its first decision level literals a and ¬c as xor-assumptions to the UP-
module; the module deduces b and returns it to the CNF solver. At the next decision
level the CNF part guesses d, gives it to UP-module, which deduces e, returns it to the
CNF part, and the CNF part propagates it so that a conflict occurs. Now the xor-implied
literal e is explained and a new xor-clause D = (a ⊕ d ⊕ e ⊕ >) is learned in φxor.
After this the CNF part backtracks, implies ¬d at the decision level 1, and gives it to the
UP-module; the module can then deduce ¬e without using D. If ¬e is now explained,
the same “new” xor-clause (a⊕ d⊕ e⊕>) can be derived. ♣

The example illustrates a commonly occurring case in which a derived xor-clause
contains two or more literals on the latest decision level (e and d in the example); in
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Fig. 4. Communication between CNF part and UP-module in a case when duplicate xor-clauses
are learned; the d and a superscripts denote decision literals and xor-assumptions, respectively.

such a case, the xor-clause may already exist in φxor. A conservative approach to avoid
learning the same xor-clause twice, under the reasonable assumption that the CNF and
xor-reasoning module parts saturate their propagations before new heuristic decisions
are made, is to disregard derived xor-clauses that have two or more variables assigned
on the latest decision level. If a learned xor-clause for xor-implied literal l̂ does not have
other literals on the latest decision level, it can be used to infer l̂ with fewer decision
literals. Note that it may also happen that an implying or-clause for an xor-implied
literal l̂ does not contain any literals besides l̂ on the latest decision level; the CNF
part may then compute a conflict clause that does not have any literals on the current
decision level, which needs to be treated appropriately.

In order to avoid slowing down propagation in our implementation, we store and
remove learned xor-clauses using a strategy adopted from minisat: the maximum num-
ber of learned xor-clauses is increased at each restart and the “least active” learned
xor-clauses are removed when necessary. However, using the conservative approach to
learning xor-clauses, the total number of learned xor-clauses rarely exceeds the number
of original xor-clauses.

8 General xor-derivations

So far in this paper we have considered a very simple xor-reasoning module capable
only of unit propagation. We can in fact extend the introduced concepts to more general
inference systems and derivations. Define an xor-derivation similarly to UP-derivation

except that there is only one inference rule, ⊕-Gen :
C1 C2

C1 ⊕ C2 ⊕>, where C1 and C2

are xor-clauses. The inference rule ⊕-Gen is a generalization of the rules Gauss− and
Gauss+ in [4]. Now Thms. 1 and 2 can be shown to hold for such derivations as well.

As another concrete example of xor-reasoning module implementing a sub-class of
⊕-Gen, consider the Subst module presented in [2]. In addition to the unit propagation
rules of UP in Fig. 2, it has inference rules allowing equivalence reasoning:

⊕-Eqv+ :
x⊕ y ⊕> C

C [x/y]
⊕-Eqv− :

x⊕ y C
C [x/(y ⊕>)]

where the symbols x and y are variables while C is an xor-clause in the normal form
with an occurrence of x. Note that these Subst rules are indeed instances of the more
general inference rule⊕-Gen. For instance, given two xor-clausesC1 = (c⊕d⊕>) and
C2 = (b⊕ d⊕ e), the Subst-system can produce the xor-clause C2 [d/c] = (b⊕ c⊕ e)
which is also inferred by ⊕-Gen: (C1⊕C2⊕>) = ((c⊕ d⊕>)⊕ (b⊕ d⊕ e)⊕>) =
(b⊕ c⊕ e).



Subst-derivations are defined similarly to UP-derivations. As an example, Fig. 5
shows a Subst-derivation on φxor∧(a), where φxor = (a⊕b⊕c)∧(a⊕c⊕d)∧(b⊕d⊕e).
The literal e is Subst-derivable on φxor∧ (a);
the xor-reasoning module returns e as an xor-
implied literal on φxor after a is given as
an xor-assumption. The cnf-compatible cut
1 for the literal e gives the implicative ex-
planation (a) and thus the implying or-clause
(¬a∨e) for e. Parity explanations are defined
for Subst in the same way as for UP; the par-
ity explanation for the literal e in the figure
is > and thus the implying or-clause for e is
(e). Observe that e is not UP-derivable from Fig. 5: A Subst-derivation

φxor ∧ (a), i.e. Subst is a stronger deduction system than UP in this sense.
Parity explanations can also be computed in another xor-reasoning module, EC pre-

sented in [3], that is based on equivalence class manipulation. We omit this construction
due to space constraints.

9 Experimental results

We have implemented a prototype solver integrating both xor-reasoning modules (UP
and Subst) to minisat [17] (version 2.0 core) solver. In the experiments we focus on the
domain of logical cryptanalysis by modeling a “known cipher stream” attack on stream
ciphers Bivium, Crypto-1, Grain, Hitag2, and Trivium. To evaluate the performance
of the proposed techniques, we include both unsatisfiable and satisfiable instances. In
the unsatisfiable instances, generated with grain-of-salt [18], the task is to recover the
internal cipher state when 256 output stream bits are given. This is infeasible in practice,
so the instances are made easier and also unsatisfiable by assigning a large enough
number of internal state bits randomly. Thus, the task becomes to prove that it is not
possible to assign the remaining bits of the internal cipher state so that the output would
match the given bits. To include also satisfiable instances we modeled a different kind
of attack on the ciphers Grain, Hitag2 and Trivium where the task is to recover the
full key when a small number of cipher stream bits are given. In the attack, the IV and
a number of key stream bits are given. There are far fewer generated cipher stream
bits than key bits, so a number of keys probably produce the same prefix of the cipher
stream. All instances were converted into (i) the standard DIMACS CNF format, and
(ii) a DIMACS-like format allowing xor-clauses as well. Structurally these instances
are interesting for benchmarking xor-reasoning as they have a large number of tightly
connected xor-clauses combined with a significant CNF part.

We first compare the following solver configurations: (i) unmodified minisat, (ii)
up: minisat with watched variable based unit propagation on xor-clauses, (iii) up-pexp:
up extended with parity explanations, (iv) up-pexp-learn: up-pexp extended with xor-
clause learning, and (v) up-subst-learn: up using Subst-module to compute parity xor-
explanations and xor-clause learning. The reference configuration up computes closest
cnf-compatible cut parity explanations, and the other configurations use also furthest
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Fig. 6. Number of solved instances with regard to time and decisions on satisfiable Trivium bench-
mark (1020 instances, 51 instances per generated cipher stream length ranging from 1 to 20 bits)

Bivium Crypto-1 Grain Hitag2 Trivium
Solver # Dec. Time # Dec. Time # Dec. Time # Dec. Time # Dec. Time
minisat 51 834 80.9 51 781 691.1 1 - - 35 428 440.0 51 55 5.7
up 51 985 127.7 51 1488 1751.8 51 40 13.8 39 291 403.9 51 59 8.0
up-pexp 51 1040 147.8 51 1487 1748.2 51 35 10.9 37 124 148.0 51 62 9.8
up-pexp-learn 47 651 114.0 51 1215 1563.0 36 122 87.7 37 222 255.4 51 24 3.7
up-subst-learn 47 616 336.4 51 1037 2329.5 37 70 90.3 36 215 374.8 51 29 12.9
cryptominisat-2.9.2 51 588 89.8 51 0 0.06 51 89 10.4 51 0 0.07 51 71 6.04

Fig. 7. Results of the unsatisfiable benchmarks showing the number of solved instances (#) within
the 4h time limit, median of decisions (×103), and median of solving time

cuts selectively as described in Sect. 5. We also tested first UIP cuts, but the performance
did not improve.

The results for the satisfiable Trivium benchmarks are shown in Fig. 6. Learning
xor-clauses reduces the number of decisions needed substantially, and in the case of the
computationally less expensive UP reasoning module this is also reflected in the solving
time and in the number of solved instances. On the other satisfiable benchmark sets
learning new xor-clauses also reduced the number of required decisions significantly
but the number of propagations per decision is also greatly increased due to increased
deduction power and the reduction is not really reflected in the solving time.

The results for the unsatisfiable benchmarks are shown in Fig. 7. Parity explanations
reduce decisions on Grain and Hitag2, leading to fastest solving time. Learning parity
explanations reduces explanations on all benchmarks except Grain and gives the best
solving time on Trivium. Equivalence reasoning seems to reduce decisions slightly with
the cost of increased solving time. Obviously more work has to be done to improve data
structures and adjust heuristics so that the theoretical power of parity explanations and
xor-clause learning can be fully seen also in practice.

We also ran cryptominisat version 2.9.2 [10] on the benchmarks. As shown in Figs. 6
and 7, it performs (i) extremely well on the unsatisfiable Crypto-1 and Hitag2 instances
due to “failed literal detection” and other techniques, but (ii) not so well on our satisfi-
able Trivium instances, probably due to differences in restart policies or other heuristics.

10 Conclusions

We have shown how to compute linearity exploiting parity explanations for literals de-
duced in an xor-reasoning module. Such explanations can be used (i) to produce more



compact clausal explanations for the conflict analysis engine of a CDCL solver in-
corporating the xor-reasoning module, and (ii) to derive new parity constraints that
can be learned in order to boost the deduction power of the xor-reasoning module. It
has been proven that parity explanations allow very short refutations of some formulas
whose CNF translations do not have polynomial size resolution proofs, even when us-
ing a simple xor-reasoning module capable only of unit-propagation. The experimental
evaluation suggests that parity explanations and xor-clause learning can be efficiently
implemented and demonstrates promising performance improvements also in practice.
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2. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning DPLL with parity reasoning.
In: Proc. ECAI 2010, IOS Press (2010) 21–26
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A Proofs

Theorem 1. Let G = 〈V,E, L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node in
it, and W = 〈Va, Vb〉 a cut for v. It holds that φxor |= Expl⊕(v,W )⇔ L(v).

Proof. We show that φxor |= (fW (u) ⇔ L(u)) for each node u in G by induction on
the structure of the derivation G.

If u is an input node with L(u) ∈ φxor, then fW (u) = > and φxor |= (> ⇔ L(u))
as L(u) is a conjunct in φxor.

If u is an input node with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u) and φxor |=
(L(u)⇔ L(u)) holds trivially.

If u is a non-input node in Va, then fW (u) = L(u) and φxor |= (L(u) ⇔ L(u))
holds trivially.

If u is a non-input node in Vb with two incoming edges from nodes u1 and u2
respectively, then fW (u) = fW (u1) ⊕ fW (u2) ⊕ >. Because L(u) is obtained from
L(u1) and L(u2) by applying either ⊕-Unit+ or ⊕-Unit−, and the Eqs. (4) and (5) are
valid, we have φxor |= (L(u1)⊕ L(u2)⊕> ⇔ L(u)). By the induction hypothesis the
equations φxor |= (fW (u1) ⇔ L(u1)) and φxor |= (fW (u2) ⇔ L(u2)) hold, so we
have φxor |= (fW (u1)⊕ fW (u2)⊕> ⇔ L(u)), i.e. φxor |= (fW (u)⇔ L(u)).

For each u in G, it holds that φxor |= (fW (u) ⇔ L(u)). It follows that φxor |=
Expl⊕(v,W )⇔ L(v). ut

Theorem 2. Let G = 〈V,E,L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node
with L(v) = l̂ in it, and W = 〈Va, Vb〉 a cnf-compatible cut for v. Then φxor |=
(
∧

u∈S L(u))⇒ l̂, where S = {u ∈ reasons(W ) | vars(L(u)) ⊆ vars(Expl⊕(v,W ))}.

Proof. If φxor is unsatisfiable, then φxor |= (
∧

u∈S L(u))⇒ l̂ holds trivially.
Assume that φxor is satisfiable. As vars(

∧
u∈S L(u)) = vars(Expl⊕(v,W )) and

φxor |= Expl⊕(v,W )⇔ l̂ holds, it must be that either φxor |= (
∧

u∈S L(u))⇒ l̂ or
φxor |= (

∧
u∈S L(u))⇒ ¬l̂ holds (both cannot hold because then φxor would be un-

satisfiable). If φxor |= (
∧

u∈S L(u))⇒ ¬l̂ holds, then, as S ⊆ reasons(W ) holds,
φxor |= (

∧
u∈reasons(W ) L(u))⇒ ¬l̂ would also hold. Combined with the property

φxor |= (
∧

u∈reasons(W ) L(u))⇒ l̂ of implicative explanations, this means that φxor is

unsatisfiable, contradicting our assumption. Therefore, φxor |= (
∧

u∈S L(u))⇒ l̂ must
hold. ut

Theorem 3. Let G = 〈V,E〉 be a parity graph such that c(G) = >. There is a UP-
refutation for xorclauses(G)∧ q1 · · · ∧ qk for some xor-assumptions q1, . . . , qk, a node
v with L(v) = ⊥ in it, and a cut W = 〈Va, Vb〉 for v such that Expl⊕(v,W ) = >. Thus
xorclauses(G) |= (> ⇔ ⊥), showing xorclauses(G) unsatisfiable.

Proof. Let E′ ⊆ E be a spanning tree of G, and q1, . . . , qk the variables occurring on
the labels of the edges in E\E′. We construct a UP-refutation G′ for clauses(G)∧ q1 ∧
· · · ∧ qk by applying ⊕-Unit+ twice for each variable qi. Note for every leaf node u in
the spanning tree it holds that C = α(u) [q1/>] . . . [qk/>] is a unit xor-clause C fixing
the value of some variable x. We pick a leaf node u, propagate value of the variable



x by applying the rule ⊕-Unit+ or ⊕-Unit−, and remove the node u from the spanning
tree. We proceed until all nodes in the spanning tree are eliminated and we have derived
an empty xor-clause L(v) = ⊥ for a node v in the UP-refutation G′. Take the furthest
cut W . Computing the parity explanation for v we will get Expl⊕(v,W ) = > as there
are exactly two paths from each xor-assumption node qi to v and an odd number of
non-input nodes. The construction is illustrated in Fig. 8. ut
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Fig. 8. (a) a parity graph G, (b) a spanning tree of the graph, and (c) a UP-refutation for
xorclauses(G) ∧ b ∧ c with Expl⊕(v, cut1) = >.


