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ABSTRACT: The core problem in the symmetry reduction method for state
space analysis is to decide whether two states are symmetric or to produce a
symmetric representative state for a state. This report presents algorithms for
the problem under data symmetries. The setting covers systems described in
the Murϕ language or in terms of high-level Petri nets. The first two algo-
rithms are based on refining ordered partitions by using symmetry respecting
invariants. The last algorithm exploits existing graph isomorphism algorithms
that are then applied on characteristic graphs of states, i.e. graphs correspond-
ing to the states in a symmetry respecting way. Some experimental results are
also reported.

KEYWORDS: Symmetry, reachability analysis, Petri nets, the Murϕ tool.
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1 INTRODUCTION

Model checking [Clarke et al. 1999] is an automatic technique for verifying
concurrent systems such as communication protocols. The main obstacle
for model checking is the so-called state space explosion problem [Valmari
1998]. It essentially means that a system may have exponentially many reach-
able states w.r.t. the size of the system description. A technique, among many
others, to alleviate this problem is the so-called symmetry reduction method
(see e.g. the articles in vol. 9, no. 1/2 of the Formal Methods in System De-
sign journal). It exploits the symmetries (automorphisms) of the state space,
the goal being to examine only one representative state in each set of mutu-
ally symmetric states (orbit). The core problem in the symmetry reduction
method is: Given a set of already generated states and a newly generated
one, does the set include a state that is symmetric to the newly generated
one? There are basically two alternative ways to solve this problem. First,
one can pairwisely compare the newly generated state with each already gen-
erated state for symmetry. Secondly, one can transform the newly generated
state into a symmetric, canonical representative state and test whether it is in
the set of already generated states. These two approaches can also be approx-
imated by using a sound but incomplete symmetry check in the first one and
by transforming the newly generated state into a symmetric, but not neces-
sarily canonical, representative state. Of course, approximation may result in
that more than one representative state from an orbit is examined.

In this report we develop algorithms for the above mentioned problem in
the following setting. We assume systems in which states are assignments for
a set of typed state variables. The type system for the state variables consists
of a set of primitive types, upon which common high-level data structures
such as lists, sets, structures, multi-sets, and association arrays are built. State
space symmetries are then produced by permuting the elements in the do-
mains of some primitive types. The class of systems studied in this report
covers the Murϕ description language [Ip and Dill 1996], and several classes
of high-level Petri nets: Well-Formed Nets [Chiola et al. 1991], Extended
Well-Formed Nets [Junttila 1999], and some commonly used subclasses of
Colored Petri Nets [Jensen 1995]. Some experimental results are also pre-
sented.

2 SYSTEMS

First, an abstract system model is introduced. The model covers the Well-
Formed Nets [Chiola et al. 1991], the Murϕ system [Ip and Dill 1996], and
the Extended Well-Formed Nets [Junttila 1999] in the sense that each system
described with one of these formalisms can be transformed into the model.
The main benefit of the model is that the details of the actual transition
relation (the semantics of the actual formalism) are abstracted away. Those
details play no role in the contributions of this paper.

First, a set T of types is assumed. Each type T ∈ T is associated with a
non-empty domain DT . A system is a triple

S = 〈X ,−→, s0〉

2 SYSTEMS 1



consisting of the following components.

– X = (XT )T∈T is a finite, pairwise disjoint family of typed state vari-
ables. A state s is an assignment to the state variables such that s(x) ∈
DT holds for each state variable x ∈ XT ∈ X . The set of all states is
denoted by S.

– −→ ⊆ S × S is the transition relation describing the dynamic behav-
ior of the system, i.e. how states evolve into others. We use s −→ s′ to
denote that 〈s, s′〉 ∈ −→.

– s0 ∈ S is the initial state.

To see the connection between this system model and the formalisms men-
tioned above, first consider a Murϕ description of a system. Translation to
the system model is easy since the Murϕ description consists of (i) a type
system, (ii) a set of state variables, and (iii) a set of rules that transform the
values of state variables, inducing the transition relation. Similarly, a Well-
Formed Net (Extended or not) consists of (i) a type system, (ii) a set of places
(which can be seen as state variables of multi-set types), and (iii) a set of tran-
sitions connected to places with arcs. The semantics of Well-Formed Nets
describe how the transitions modify the values of places (state variables) and
thus induce a transition relation.

The state space of a system S is the labeled transition system 〈S,−→, s0〉
consisting of all the possible states and transitions between them. The reach-
ability graph of S on the other hand describes which states can be reached
when the system is started in the initial state s0. Formally, it is the labeled
transition system RG = 〈 ~S,−→RG, s0〉, where ~S ⊆ S and −→RG ⊆ ~S × ~S
are inductively defined as follows.

1. s0 ∈ ~S.
2. If s ∈ ~S and s −→ s′, then s′ ∈ ~S and s −→RG s′.
3. Nothing else is in ~S or in −→RG.

2.1 Type System

We now build a type system T for the state variables. First, we assume a set
T0 of primitive types. Each primitive type T ∈ T0 is associated with a non-
empty, countable domain DT . Based on primitive types, the set T of types is
defined by the grammar

T ::= T0 | List(T ) | Struct(T, . . . , T ) | Set(T ) | Multi-Set(T ) |
AssocArray(T, T ) | Union(T, . . . , T )

where T0 ranges over T0. The types in T \ T0 are called structured types over
T0. The domains of structured types are defined inductively by the following
rules:

DList(T ) = D∗T DStruct(T1,... ,Tn) = DT1 × · · · ×DTn

DSet(T ) = ℘(DT ) DAssocArray(T1,T2) = [DT1  DT2 ]
DMulti-Set(T ) = [DT → N] DUnion(T1,... ,Tn) =

⋃
1≤i≤n{Ti} ×DTi

where ℘(A) denotes the powerset of the set A, [A → B] is the set of all
functions from A to B, and [A  B] denotes the set of all partial functions
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from A to B.12 Note that an element in the domain of an union type is a
pair consisting of a type name and an element of that type. This enables us
to retrieve the type of an element in an union in the case the domains of
the unionized types are overlapping. For instance, consider the union type
Union(T1, T2), where T1 = Struct(Int, Int) and T2 = List(Int). Now the list
element 〈T2, 〈3, 6〉〉 is distinguished from the structure element 〈T1, 〈3, 6〉〉.

Example 2.1 Consider the EWF-Net shown in Fig. 1 that is a variant of the
railroad net in [Genrich 1991] obtained by folding. For the railroad sections
we have the primitive type Secs with the domain DSecs = {s0, . . . , s5}, and
similarly for the trains the primitive type Trains with DTrains = {ta, tb}. The
net has two state variables: U of type Multi-Set(Struct(Trains,Secs)) and V
of type Multi-Set(Secs). The initial state is

s0 = {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}

and the transition relation is defined by the EWF-Net semantics, see [Junttila
1999]. The reachability graph of the net is shown in Fig. 2 (in which each
state {U 7→ v1, V 7→ v2} is denoted by “v1, v2”). ♣

s1

s4

〈ta, s0〉
〈tb, s3〉 prev(s)

next(s)〈s, t〉

〈next(s), t〉

next(si) = s(i+1)mod6

prev(si) = s(i−1)mod6
U V

Figure 1: An EWFN for Genrich’s railroad system

〈ta, s0〉+〈tb, s3〉,s1 + s4

〈ta, s2〉+〈tb, s5〉,s0 + s3

〈ta, s3〉+〈tb, s0〉,s1 + s4

〈ta, s4〉+〈tb, s1〉,s2 + s5

〈ta, s5〉+〈tb, s2〉,s0 + s3

〈ta, s3〉+〈tb, s5〉,s0 + s1

〈ta, s2〉+〈tb, s4〉,s0 + s5

〈ta, s1〉+〈tb, s3〉,s4 + s5 〈ta, s0〉+〈tb, s4〉,s1 + s2

〈ta, s1〉+〈tb, s5〉,s2 + s3

〈ta, s2〉+〈tb, s0〉,s3 + s4 〈ta, s0〉+〈tb, s2〉,s3 + s4

〈ta, s5〉+〈tb, s1〉,s2 + s3

〈ta, s4〉+〈tb, s0〉,s1 + s2 〈ta, s3〉+〈tb, s1〉,s4 + s5

〈ta, s4〉+〈tb, s2〉,s0 + s5

〈ta, s5〉+〈tb, s3〉,s0 + s1

〈ta, s1〉+〈tb, s4〉,s2 + s5

Figure 2: The reachability graph of the net in Fig. 1

3 DATA SYMMETRIES

A state space symmetry of a system S is a permutation ψS on the set S of
states preserving the transition relation, i.e. the symmetry condition

s −→ s′ ⇔ ψS(s) −→ ψS(s′)

1A partial function from a set A to a set B is a subset f of A × B such that each a ∈ A
appears at most once as the first component of pairs in f .

2We may use the formal sum notation to describe multi-sets, i.e. a multi-set b ∈ [A→ N]
over a set A may be denoted by

∑
v∈A b(v) ′ v. Elements with multiplicity 0 as well as the

unit multiplicities may be omitted, e.g. a multi-set b = {a 7→ 0, b 7→ 2, c 7→ 1} over the set
{a, b, c} may be written as b = 2 ′ b+ c.
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must hold for all states s, s′ ∈ S. A state space symmetry group ΨS is a
non-empty set of state space symmetries forming a group under the func-
tion composition operator ◦. Two states s, s′ are ΨS -symmetric, denoted by
s ≡ΨS s′, if ∃ψS ∈ ΨS , ψS(s) = s′. Since ΨS is a group, ≡ΨS is an equiv-
alence relation on S and the equivalence class in which a state s belongs is
called the ΨS -orbit of s.

A quotient state space of S is a labeled transition system QSS = 〈S,−→Q

, s′0〉 such that (i) s0 ≡ΨS s′0, (ii) s −→ s′ implies s −→Q s′′ for at least one
s′′ such that s′ ≡ΨS s′′, and (iii) s −→Q s′′ implies s −→ s′ for at least one
s′ such that s′ ≡ΨS s′′. That is, in a quotient state space the transitions can
be “redirected” to any state that is symmetric to the original successor state
(and no other transitions may exist). Obviously, there can be many different
quotient state spaces for S under the group ΨS . Furthermore,≡ΨS is a strong
bisimulation relation between any quotient state space and the original state
space. A quotient reachability graph of S is the reachable part of a quotient
state space QSS = 〈S,−→Q, s

′
0〉: QRG = 〈S̃,−→QRG, s

′
0〉, where S̃ ⊆ S

and −→QRG ⊆ S̃ × S̃ are inductively defined as follows.

1. s′0 ∈ S̃.
2. If s ∈ S̃ and s −→Q s′, then s′ ∈ S̃ and s −→QRG s′.
3. Nothing else is in S̃ or in −→QRG.

Again, any quotient reachability graph is strongly bisimilar to the reachability
graph. An algorithm that computes a quotient reachability graph is shown in
Fig. 3. Considering the efficiency of the algorithm, the crucial point is line
8 where the successor state is chosen for the current state. In order to get as
small as possible quotient reachability graphs, the successor state s′′ should
be chosen in a way that only one state in each set of mutually symmetric
states is present in S̃. There are basically two ways to achieve this:

1. For each state s′′′ already in S̃, check whether s′ ≡ΨS s′′′. If this is the
case, select s′′ = s′′′. Otherwise, select s′′ = s′.

2. Define a representative function, i.e. a function repr : S → S such
that repr(s) ≡ΨS s holds for all states s ∈ S , and let the successor state
s′′ be repr(s′). If repr fulfills the canonicity condition meaning that
s1 ≡ΨS s2 implies repr(s1) = repr(s2), then the quotient reachability
graph will have minimal number of states.

Since checking whether two states are symmetric and producing canonical
representative states is, in general, computationally at least as hard as testing
whether two graphs are isomorphic, see e.g. [Ip 1996; Junttila 1999], both
approaches above can be approximated (i) by using a sound but incomplete
symmetricity check in the first approach and (ii) by using a non-canonical
representative function in the second approach. This potentially trades the
computational cost of choosing a unique representative state per orbit for
producing bigger quotient reachability graphs.

3.1 Domain Permutations

The particular class of symmetries studied in this report is produced by per-
muting the domains of the types. Formally, a domain permutation for a
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1. Choose any s′0 such that s0 ≡ΨS s′0
2. Let W = {s′0}
3. Let S̃ = {s′0}
4. Let −→QRG = ∅
5. While W 6= ∅ do
6. Take any s ∈W and let W = W \ {s}
7. For all s′ such that s −→ s′ do
8. Choose any s′′ such that s′ ≡ΨS s′′

9. Let −→QRG = −→QRG ∪ 〈s, s′′〉
10. If s′′ /∈ S̃
11. Let W = W ∪ {s′′}
12. Let S̃ = S̃ ∪ {s′′}
13. Return QRG = 〈S̃,−→QRG, s

′
0〉

Figure 3: An algorithm for computing quotient reachability graphs

type T is a permutation ψT of its domain DT . A domain permutation group
for a type T is permutation group ΨT on DT (under the function compo-
sition operator ◦). A domain permutation for a set T ′ of types is a family
ψT

′
=
(
ψT
)
T∈T ′ of domain permutations for the member types. A domain

permutation group for a set T ′ of types is a non-empty set ΨT
′ of domain

permutations for T ′ forming a group under the type-wise function compo-
sition operator ∗ defined by:

(
ψT1
)
T∈T ′ ∗

(
ψT2
)
T∈T ′ =

(
ψT3
)
T∈T ′ , where

ψT1 ◦ ψT2 = ψT3 for all T ∈ T ′.
Assume that we have a domain permutation (group) for the set of primitive

types. It is extended to operate on all types and states as follows. First, each
domain permutation ψT0 =

(
ψT
)
T∈T0

for the set of primitive types is canon-
ically extended to the domain permutation ψT =

(
ψT
)
T∈T for all types by

the following inductive rules.

– ψList(T )(〈v1, . . . , vn〉) = 〈ψT (v1), . . . , ψT (vn)〉,
– ψStruct(T1,... ,Tn)(〈v1, . . . , vn〉) = 〈ψT1(v1), . . . , ψTn(vn)〉,
– ψSet(T )(V ) = {ψT (v) | v ∈ V },
– ψMulti-Set(T )(b) = {〈ψT (v), i〉 | 〈v, i〉 ∈ b},
– ψAssocArray(T1,T2)(a) = {〈ψT1(v1), ψT2(v2)〉 | 〈v1, v2〉 ∈ a}, and
– ψUnion(T1,... ,Tn)(〈Ti, v〉) = 〈Ti, ψTi(v)〉.

Finally, each domain permutation ψT =
(
ψT
)
T∈T for all types is extended to

operate on the set S of states by ψS(s)(x) = ψT (s(x)) for each state variable
x ∈ XT ∈ X . Thus each domain permutation ψT0 on primitive types induces
a unique permutation ψS on S. Furthermore, there is a unique group homo-
morphism from a domain permutation group ΨT0 to ΨS = {ψS |ψT0 ∈ ΨT0}.
Although ΨS is a permutation group on S, it is not necessarily a state space
symmetry group because the induced permutations ψS in it do not necessar-
ily preserve the transition relation.

3.2 Allowed Domain Permutations

The set of primitive types, T0, is partitioned into three subclasses: ordered,
cyclic, and unordered primitive types. (Unordered primitive types are called

3 DATA SYMMETRIES 5



scalar sets in the Murϕ terminology.) The difference between these classes is
what kind of domain permutation groups they are associated to.

1. For each ordered primitive type T the allowed domain permutation
group is the trivial group ΘT = {I}, where I is the identity mapping.

2. For each cyclic primitive type T , the domain DT = {v1, v2, . . . , vn}
is assumed to be finite and associated with the cyclic successor func-
tion succT such that succT (vi) = v(imodn)+1. The group of allowed
domain permutations for T is ΘT = {succ1

T , . . . , succnT} i.e. the cyclic
permutation group generated by succT .3

3. For an unordered primitive type T , the domain DT = {v1, v2, . . . , vn}
is assumed to be finite and the allowed domain permutation group is
the symmetric group ΘT = Sym(DT ) consisting of all permutations of
DT .

Cyclic and unordered primitive types are also called permutable primitive
types and the set of such types of denoted by TP .

The allowed domain permutation group ΘT0 for the set of primitive types
is the external direct product of the allowed domain permutation groups for
the individual primitive types:

ΘT0 =
⊗
T∈T0

ΘT = {
(
θT
)
T∈T0

| ∀T ∈ T0, θ
T ∈ ΘT}.

It is then extended to the allowed domain permutation group ΘT for all types,
and to the permutation group ΘS on the set S as described above. The fact
that ΘS is a state space symmetry group for the formalisms mentioned earlier
is guaranteed by imposing syntactic restrictions on system descriptions (in
some cases the system description writer is also expected to take care that no
symmetry-breaking constructions are used). For instance, it is not possible to
do any arithmetic operations such as addition between two elements in the
domain of an unordered primitive type. We may omit the superscripts and
simply write θ for θT0 , θT , and θS whenever the meaning is clear from the
context. Similarly for Θ. In addition, note that any θT0 , θT , or θS can be fully
specified by giving the domain permutations for the permutable primitive
types only. We say that two states are symmetric if they are Θ-symmetric.

Example 3.1 Continuing Ex. 2.1, assume that Secs is a cyclic primitive type
and Trains is an unordered primitive type. Then the size of the allowed
domain permutation group ΘT0 is |DSecs| · |DTrains|! = 6 · 2! = 12 and θ =(
θSecs = ( s0 s1 s2 s3 s4 s5

s2 s3 s4 s5 s0 s1 ) , θTrains =
( ta tb

tb ta

))
is an allowed domain permutation

mapping the initial state

s0 = {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}

into

θ(s0) = {U 7→ 〈ta, s5〉+〈tb, s2〉, V 7→ s0 + s3}
3For a function f : A→ A, fk means f ◦ . . . ◦ f︸ ︷︷ ︸

k times

.
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In fact, the states in the reachability graph shown in Fig. 2 belong to two
equivalence classes under Θ: the six states that are equivalent to the ini-
tial state s0 and the twelve states that are equivalent to the state {U 7→
〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5}. Figure 4 shows two quotient reachability
graphs for the net. ♣

〈ta, s0〉+〈tb, s3〉,s1 + s4

〈ta, s1〉+〈tb, s3〉,s4 + s5

〈ta, s3〉+〈tb, s0〉,s1 + s4

〈ta, s2〉+〈tb, s4〉,s0 + s5 〈ta, s0〉+〈tb, s2〉,s3 + s4

〈ta, s2〉+〈tb, s5〉,s0 + s3

Figure 4: Two quotient reachability graphs

3.3 Stabilizers and Storing Subgroups

We now introduce the concept of stabilizers for the elements of types and for
the states. In a nutshell, stabilizers are domain permutations that permute an
object to itself.

A domain permutation ψ =
(
ψT
)
T∈T fixes (or stabilizes) an element v ∈

DT of a type T if ψT (v) = v. The stabilizer (sub)group of v in a domain
permutation group Ψ is

Stab(Ψ, v) = {ψ | ψ ∈ Ψ and ψ is a stabilizer of v}.

Similarly for states, a domain permutation ψ =
(
ψT
)
T∈T is a stabilizer of

a state s if ψ(s) = s. Clearly this is equivalent to the requirement that
ψT (s(x)) = s(x) for each state variable x ∈ XT ∈ X . Given a domain
permutation group Ψ, the stabilizer group of a state s in Ψ is

Stab(Ψ, s) = {ψ ∈ Ψ | ψ(s) = s}.

Obviously, Stab(Ψ, s) =
⋂
x∈X Stab(Ψ, s(x)). Stabilizers can also be calcu-

lated iteratively: assuming that the state variables are x1, . . . , xn, let Ψ1 =
Stab(Ψ, s(x1)), Ψ2 = Stab(Ψ1, s(x2)), . . . , and Ψn = Stab(Ψn−1, s(xn)).
Now Ψn = Stab(Ψ, s).

Theorem 3.2 Assume a domain permutation ψ ∈ Ψ that maps a state s1 to
s2 i.e. ψ(s1) = s2. Then

1. Stab(Ψ, s2) = ψ ∗ Stab(Ψ, s1) ∗ ψ−1, where ψ ∗ Stab(Ψ, s1) ∗ ψ−1 =
{ψ ∗ ψ′ ∗ ψ−1 | ψ′ ∈ Stab(Ψ, s1)}, and

2. the left coset ψ ∗ Stab(Ψ, s1) = {ψ ∗ ψ′ | ψ′ ∈ Stab(Ψ, s1)} is exactly
the set of all domain permutations in Ψ mapping s1 to s2.

Consequently, (i) |Stab(Ψ, s1)| = |Stab(Ψ, s2)|, (ii) there are |Stab(Ψ, s1)|
domain permutations mapping s1 to s2, and (iii) there are |Ψ| / |Stab(Ψ, s1)|
states that are Ψ-symmetric to s1.

The elements in the group Stab(Θ, s), where Θ is the group of allowed
domain permutations, are of special importance and therefore they are called
the self-symmetries of the state s and Stab(Θ, s) is the self-symmetry group
of s.

3 DATA SYMMETRIES 7



Example 3.3 Continuing Examples 2.1 and 3.1, consider the initial state

s0 = {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}.

The self-symmetry group Stab(Θ, s0) has two members:

θ1 =
(
θSecs

1 = ( s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5 ) , θTrains

1 =
( ta tb

ta tb

))
and

θ2 =
(
θSecs

2 = ( s0 s1 s2 s3 s4 s5
s3 s4 s5 s0 s1 s2 ) , θTrains

2 =
( ta tb

tb ta

))
.

♣

Note that although the group of allowed domain permutations Θ can be
very large, there is no need to represent it explicitly — it is implicitly repre-
sented by the knowledge of which primitive types are cyclic or unordered.
However, it is not so easy to represent a subgroup of Θ, for instance the stabi-
lizer group of a state. Fortunately, there are efficient data structures for rep-
resentation of permutation groups, see [Butler 1991]. In order to use those
data structures, we only have to rename the domains of permutable primitive
types to be mutually disjoint. Now any domain permutation (group) can be
represented by a permutation (group) on the set

⋃
T∈TP DT .

4 VALUE TREES AND CHARACTERISTIC GRAPHS

An element of a complex structured type can be easily illustrated by its “parse
tree” that is here called a value tree. Formally, for a type T and an element
v ∈ DT , the value tree VT (T, v) is an edge weighted tree that has the node
T ::v as its root. The children of the root node are defined as follows.

– For a primitive type T , the root node T ::v has no children.
– A root node List(T )::〈v1, . . . , vn〉, has as its children the value trees
VT (T, vi), 1 ≤ i ≤ n, the edge to each VT (T, vi) having weight i.

– A root node Struct(T1, . . . , Tn)::〈v1, . . . , vn〉, has as its children the
value trees VT (Ti, vi), 1 ≤ i ≤ n, the edge to each VT (Ti, vi) having
weight i.

– A root node Set(T )::V has as its children the value trees VT (T, v) for
each v ∈ V , the edge to each such VT (T, v) having weight 1.

– A root node Multi-Set(T )::m has as its children the trees VT (T, v) for
each v ∈ DT with m(v) ≥ 1, the edge to each such VT (T, v) having
weight m(v).

– A root node AssocArray(T1, T2)::a has, for each 〈v1, v2〉 ∈ a, the fol-
lowing tree as its child with the edge to it having weight 1. The child
tree consists of an anonymous root node with two children: the value
tree VT (T1, v1) with the edge to it having weight 1 and the value tree
VT (T2, v2) with the edge to it having weight 2.

– A root node Union(T1, . . . , Tn)::〈Ti, vi〉 has the value tree VT (Ti, vi)
as its only child, the edge to it having weight 1.
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Struct(Bool, PIDs)::〈false , pid2〉

PIDs::pid1 Bool::false PIDs::pid2

Struct(Bool, PIDs)::〈true, pid1〉

PIDs::pid3 Bool::true PIDs::pid1

AssocArray(PIDs, Struct(Bool, PIDs))::{pid1 7→ 〈false , pid2〉, pid3 7→ 〈true, pid1〉}

1 1

1 1
2 2

1 2 1 2

Figure 5: A value tree

Example 4.1 Fig. 5 shows the value tree for the element

{pid1 7→ 〈false, pid2〉, pid3 7→ 〈true, pid1〉}

of type AssocArray(PIDs,Struct(Bool,PIDs)), where PIDs is a primitive
type with the domain DPIDs = {pid1, pid2, pid3, pid4} and Bool is a primi-
tive type with the domain DBool = {false, true}. ♣

It is straightforward to see that value trees have the following property:

Fact 4.2 If there is a path T ::v w1−→ n1
w2−→ n2 · · ·nk

wk+1−→ T ′::v′ from the
root node T ::v to a leaf node T ′::v′ in a value tree VT (T, v), then for each
allowed domain permutation θ there is a path T ::θT (v)

w1−→ θ(n1)
w2−→

θ(n2) · · · θ(nk)
wk+1−→ T ′::θT ′(v′) from the root node T ::θT (v) to a leaf node

T ′::θT ′(v′) in the value tree VT (T, θT (v)) (where θ(ni) is an anonymous
node if ni is, and Ti::θTi(vi) if ni = Ti::vi).

Assume a state variable x of type T . The value tree of x in a state s consists
of the root node x that has the value tree VT (T, s(x)) as its only child, the
edge to it having weight 1. Now the characteristic graph of a state s is a node
labeled and edge weighted directed graph Gs obtained as follows.

1. Take the disjoint union of the value trees of each state variable x in the
state s.

2. For each primitive type T and each element v ∈ DT , merge all the
nodes T ::v into one node.

3. For each permutable primitive type T , if there is no node T ::v for an
element v ∈ DT , include it into the graph.

4. For each cyclic primitive type T , add a directed edge of weight 1 from
each node T ::v to its successor node T ::succT (v)

5. Label nodes as follows:
(a) Each node T ::v for a permutable primitive type T is labeled with

T .
(b) Each node T ::v for an ordered primitive type T is labeled with

T.v.
(c) Each node T ::v for a non-primitive type T is labeled with T .
(d) Each node x corresponding to a state variable x is labeled with

var_x.
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Struct(Bool, PIDs)::〈false , pid2〉

PIDs::pid1 Bool::false PIDs::pid2

Struct(Bool, PIDs)::〈true, pid1〉

PIDs::pid3 Bool::truePIDs::pid4

AssocArray(PIDs, Struct(Bool, PIDs))::{pid1 7→ 〈false , pid2〉, pid3 7→ 〈true, pid1〉}

1 1

1 1
2 2

Bool.false Bool.true
21 1

2

PIDs PIDs

Struct(Bool, PIDs) Struct(Bool, PIDs)

AssocArray(PIDs, Struct(Bool, PIDs))

x2

1

x1

Struct(PIDs, PIDs)::〈pid1, pid1〉

1

2

1

Struct(PIDs, PIDs)

PIDs PIDs

var x2 var x2

Figure 6: A characteristic graph

Example 4.3 Recall the previous example and assume that Bool is an or-
dered primitive type and PIDs is an unordered primitive type. Figure 6 now
shows the characteristic graph of a state s over two state variables: (i) x1

of type Struct(PIDs,PIDs) having the value s(x1) = 〈pid1, pid1〉, and (ii)
x2 of type AssocArray(PIDs,Struct(Bool,PIDs)) having the value s(x2) =
{pid1 7→ 〈false, pid2〉, pid3 7→ 〈true, pid1〉}. Note especially that there
are two edges from the node Struct(PIDs,PIDs)::〈pid1, pid1〉 to the node
PIDs::pid1, and that there is an isolated node PIDs::pid4. ♣

An isomorphism from a node labeled and edge weighted directed graph
to another such graph is a bijective mapping from nodes to nodes preserv-
ing node labels, edges, and edge weights. Two such graphs are isomorphic if
there is an isomorphism between them. Since isomorphisms have to preserve
node labels and edge weights, it is quite straightforward to see that character-
istics graphs have the following properties:

Fact 4.4 For all allowed domain permutations θ, there is an isomorphism γ
from the characteristic graph Gs of a state s to the characteristic graph Gθ(s)

of the state θ(s) such that for each permutable primitive type T and for each
element v ∈ DT , θT (v) = v′ ⇔ γ(T ::v) = T ::v′.

Fact 4.5 If there is an isomorphism γ from the characteristic graph Gs of
a state s to the characteristic graph Gs′ of a state s′, then there is a unique
allowed domain permutation θ mapping s to s′ such that for each permutable
primitive type T and for each v ∈ DT , γ(T ::v) = T ::v′ ⇔ θT (v) = v′.

From these two facts it follows directly that the characteristic graphs of two
states are isomorphic iff the states are symmetric. Furthermore, the self-
symmetry group of a state can be easily extracted from the automorphism
group of the characteristic graph of the state.

Example 4.6 Recall Examples 2.1 and 3.1. Figure 7 shows the characteris-
tic graph for the state {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}. (For the sake
of simplicity, we have omitted some node names and labels that should be
obvious). ♣
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Secs::s0 Secs::s1 Secs::s2 Secs::s3 Secs::s4 Secs::s5Trains::tbTrains::ta

U V

1 1 1 1 11

1 1

1 1

2 21 1

1 1

var U var V

Figure 7: A characteristic graph

5 BASIC ALGORITHM BASED ON PARTITION REFINEMENT

We now present a relatively simple representative algorithm based on the
following basic idea. Consider a state and two elements in the domain of a
permutable primitive type. If the other element appears in the value of a state
variable but the other does not, we may think that the elements are somehow
different in the state. Distinguishing between the elements of permutable
primitive types according to this or some other more complex criteria, we
obtain an ordered partition of the elements. The main thing to take care
during the partitioning process is to see that for permuted states, the similarly
permuted elements are distinguished. In other words, the partitioning crite-
ria should be invariant with respect to the symmetries of the system. After
obtaining an ordered partition for the permutable primitive types, we select
an allowed domain permutation according to the partition and return the
state permuted with it as the representative state. The partitioning phase of
the algorithm resembles the preprocessing step used in many graph auto-
/isomorphism algorithms, where a partition of the vertices of a graph is ob-
tained by applying some vertex invariants, see e.g. [Kreher and Stinson 1999;
McKay 1981].

5.1 Ordered Partitions

An ordered partition of a non-empty set A is a list [C1, . . . , Cn] such that
{C1, . . . , Cn} is a partition of A i.e. (i) ∅ 6= Ci ⊆ A for all 1 ≤ i ≤ n, (ii)⋃n
i=1 Ci = A, and (iii) Ci ∩ Cj = ∅ for all i 6= j. The sets Ci are called the

cells (or blocks) of the partition. An ordered partition is discrete if all its cells
are singleton sets and unit if it contains only one cell (the set A). Define the
function incell from the ordered partitions of A and the elements of A to the
natural numbers by incell([C1, . . . , Cn], x) = i⇔ x ∈ Ci.

An ordered partition p1 of A is finer than (or a refinement of) an or-
dered partition p2, denoted by p1 ≤ p2, if each cell of p1 is a subset of
a cell of p2. An ordered partition p1 is a cell order preserving refinement
of an ordered partition p2, denoted by p1 � p2, if p1 ≤ p2 and for all
x, y ∈ A, incell(p1, x) < incell(p1, y) implies incell(p2, x) ≤ incell(p2, y).
That is, if p2 = [C2,1, . . . , C2,n], then any p1 such that p1 � p2 is of form
[C1,1,1, . . . , C1,1,d1 , . . . C1,n,1, . . . , C1,n,dn ], where

⋃
1≤j≤di C1,i,j = C2,i for

1 ≤ i ≤ n. For example, [{b}, {a}, {c}] ≤ [{a}, {b, c}], [{b}, {a}, {c}] �
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[{a}, {b, c}], and [{a}, {c}, {b}] � [{a}, {b, c}]. The relation � is reflexive,
transitive and antisymmetric, i.e. a partial order on the set of all ordered par-
titions of A.

A permutation γ ofA acts on ordered partitions ofA by γ([C1, . . . , Cn]) =
[γ(C1), . . . , γ(Cn)]. Clearly, incell(p, x) = incell(γ(p), γ(x)) for all ordered
partitions p of A and all x ∈ A. Furthermore, if γ(p1) = p2, p1 � p3, and
p2 � p3, then γ(p3) = p3.

5.2 Basic Algorithm

We now present the basic representative state algorithm. The idea is that,
given a state for which we wish to compute a representative,

1. we first assign the state in a symmetry respecting way a partitioning of
the domains of the permutable primitive types,

2. then select an allowed domain permutation based on the partitioning,
and

3. finally return the state permuted with the selected domain permutation
as the representative.

First, we define an ordered permutable primitive type partition to be a
family p =

(
pT
)
T∈TP

, where each pT is an ordered partition of the domain
DT . The set of all ordered permutable primitive type partitions is denoted by
P. The definitions for ordered partitions are naturally extended to ordered
permutable primitive type partitions. That is, p is discrete (unit) if all its
constituent partitions are discrete (unit). Similarly, a domain permutation
ψ =

(
ψT
)
T∈TP

acts on a partition p =
(
pT
)
T∈TP

by ψ(p) =
(
ψT (pT )

)
T∈TP

and
(
pT1
)
T∈TP

�
(
pT2
)
T∈TP

if pT1 � pT2 for all T ∈ TP . As we will deal
exclusively with ordered partitions, we usually omit the prefix “ordered” and
simply speak of partitions. For convenience, we may also omit the prefix
“permutable primitive type” whenever no confusion can arise.

Given a state s, we associate it with a partition by using a function that
respects the group of allowed domain permutations (i.e. symmetries of the
system).

Definition 5.1 (Invariant Partition Generators) A function G : S → P

that maps each state to a permutable primitive type partition is an invariant
partition generator if

G(θ(s)) = θ(G(s))

holds for all allowed domain permutations θ ∈ Θ.

That is, for permuted states the partition assigned by G should be similarly
permuted. We will develop a way to produce such functions in Sec. 5.3.

Next, we select an allowed domain permutation according to the partition
produced by an (fixed) invariant partition generator. The set of allowed do-
main permutations from which we have to select is given by the following
compatibility definition.

Definition 5.2 (Compatibility) An allowed domain permutation
(
θT
)
T∈TP

is compatible with a partition
(
pT
)
T∈TP

if
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– For each cyclic primitive type T with DT = {v1, . . . , vn} and pT =
[CT

1 , . . . , C
T
m], θT is such that it maps an element v ∈ CT

1 to v1.
– For each unordered primitive type T with DT = {v1, . . . , vn} and

pT = [CT
1 , . . . , C

T
m], θT must fulfill the following: if incell(pT , vi) <

incell(pT , vj), then for the permuted elements vi′ = θT (vi) and vj′ =
θT (vj) it holds that i′ < j′. That is, the n1 elements in the first cell CT

1

are mapped to v1, . . . , vn1 , the n2 elements in the second cell CT
2 are

mapped to vn1+1, . . . , vn1+n2 , and so on.

Obviously, for each partition there is at least one allowed domain permuta-
tion compatible with it.

To sum up, assuming an arbitrary but fixed invariant partition generator G,
the procedure for generating (not necessarily canonical) representative states
is described in Alg. 1.

Algorithm 1 Representative algorithm 1
Input: A state s

Output: A representative state that is symmetric to s

Require: An invariant partition generator G
1: Compute the partition p = G(s)
2: Choose any allowed domain permutation θ that is compatible with p

3: Return θ(s) as the representative state

The following lemma and corollary show that this algorithm preserves the
possibility for perfect reduction in the sense that, for all symmetric states, it
is possible to choose the same representative state. That is, there is nothing
inherent in the algorithm that would force the set of representative states for
a set of mutually symmetric states to contain more than one state. Of course,
choosing the right allowed domain permutations in line 2 of Alg. 1 may re-
quire an exponential amount of work or very good luck, but nevertheless it is
possible to do so.

Lemma 5.3 Let θ̂ be an allowed domain permutation compatible with a
partition p. Then for each allowed domain permutation θ it holds that the
allowed domain permutation θ̂ ∗ θ−1 is compatible with the partition θ(p).

Corollary 5.4 Assume an invariant partition generator G, and take two sym-
metric states, s1 and s2. Let θ̂1 be an allowed domain permutation compat-
ible with the partition G(s1). Then there is an allowed domain permutation
θ̂2 compatible with the partition G(s2) such that θ̂1(s1) = θ̂2(s2).

Example 5.5 Consider the state s = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5}
for the railroad system net in Fig. 1 (recall Ex. 2.1 and Ex. 3.1). Assume an
invariant partition generator G that produces the partition

G(s) =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
.

for s. Having the fixed ordering s0 < s1 < · · · < s5 between the railroad
sections and ta < tb between the train identities, the four possible domain
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permutations compatible with the partition are

θ1 =
(
θSecs

1 = ( s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5 ) , θTrains

1 =
( ta tb

ta tb

))
,

θ2 =
(
θSecs

2 = ( s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5 ) , θTrains

2 =
( ta tb

tb ta

))
,

θ3 =
(
θSecs

3 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

3 =
( ta tb

ta tb

))
, and

θ4 =
(
θSecs

4 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

4 =
( ta tb

tb ta

))
.

The corresponding possible representative states for s are:

θ1(s) = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5} = s,

θ2(s) = {U 7→ 〈ta, s3〉+〈tb, s1〉, V 7→ s4 + s5},
θ3(s) = {U 7→ 〈ta, s5〉+〈tb, s1〉, V 7→ s2 + s3}, and
θ4(s) = {U 7→ 〈ta, s1〉+〈tb, s5〉, V 7→ s2 + s3}.

Now consider the state s′ = {U 7→ 〈ta, s0〉+〈tb, s4〉, V 7→ s1 + s2} ob-
tained from s by rotating the railroad sections 3 steps and swapping the train
identities, i.e. by applying

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains =
( ta tb

tb ta

))
.

Since s′ = θ(s), the invariant partition generator G must assign the partition
θ(G(s)) to s′, i.e.

G(s′) = θ(G(s)) =
(
pSecs

s′,4 = [{s3, s5}, {s1, s2}, {s0, s4}], pTrains
s′,4 = [{ta, tb}]

)
.

The four possible domain permutations compatible with the partition are

θ1′ =
(
θSecs

1′ = ( s0 s1 s2 s3 s4 s5
s3 s4 s5 s0 s1 s2 ) , θTrains

1′ =
( ta tb

ta tb

))
= θ2 ∗ θ−1,

θ2′ =
(
θSecs

2′ = ( s0 s1 s2 s3 s4 s5
s3 s4 s5 s0 s1 s2 ) , θTrains

2′ =
( ta tb

tb ta

))
= θ1 ∗ θ−1,

θ3′ =
(
θSecs

3′ = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

3′ =
( ta tb

ta tb

))
= θ4 ∗ θ−1, and

θ4′ =
(
θSecs

4′ = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

4′ =
( ta tb

tb ta

))
= θ3 ∗ θ−1.

The corresponding possible representative states for s′ are:

θ1′(s
′) = {U 7→ 〈ta, s3〉+〈tb, s1〉, V 7→ s4 + s5} = θ2(s),

θ2′(s
′) = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5} = θ1(s),

θ3′(s
′) = {U 7→ 〈ta, s1〉+〈tb, s5〉, V 7→ s2 + s3} = θ4(s), and

θ4′(s
′) = {U 7→ 〈ta, s5〉+〈tb, s1〉, V 7→ s2 + s3} = θ3(s).

Thus the sets of possible representative states for s and s′ are the same. This
was expected because of Lemma 5.3, Corollary 5.4, and the fact that s and s′

are symmetric. ♣

Producing Canonical Representative States
Assuming that the set S of states is totally ordered, algorithm Alg. 1 can be
extended to produce canonical representative states. For a state s, simply
compute the partition G(s) and then check all the allowed domain permuta-
tions θ that are compatible with G(s) and return the smallest state θ(s) found
as the representative state. By Cor. 5.4, this procedure produces canonical
representative states.
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5.3 Partition Refiners and Invariants

We now focus on building invariant partition generators. First, we introduce
partition refiners. They are functions that, given a state and a partition, return
a cell order preserving refinement of the partition in a symmetry respecting
way.

Definition 5.6 (Partition Refiners) A partition refiner is a functionR : S ×
P→ P such that for all states s ∈ S and for all partitions p ∈ P it holds that
(i) R(s, p) � p and (ii) θ(R(s, p)) = R(θ(s), θ(p)) for all allowed domain
permutations θ.

Partition refiners can be composed:

Lemma 5.7 The composition R2 ?R1 of two partition refiners R1 and R2,
defined by (R2 ?R1)(s, p) = R2(s,R1(s, p)), is a partition refiner.

This implies that any finite sequenceRn?Rn−1?· · ·?R1 of partition refiners,
read byRn?(Rn−1?(· · · (R2?R1))) orRn(s,Rn−1(s, · · · (s,R1(s, p)) . . . )),
is also a partition refiner. That is, we first refine the argument partition with
the first refiner, then refine the resulting partition with the second refiner,
and so on. When a partition refiner is applied to the unit partition, the result
is an invariant partition generator.

Theorem 5.8 For a partition refiner R, the function GR(s) = R(s, p0),
where p0 =

(
pT0 = [DT ]

)
T∈TP

is the unit partition, is an invariant partition
generator.

Now the task of building invariant partition generators is reduced to build-
ing partition refiners. This task is accomplished by using invariants. An
invariant is a function that tries to distinguish between the elements of a
permutable primitive type under a given state and partition. It must distin-
guish the elements in a way that respects the allowed domain permutations,
i.e. under a permuted state and partition, the invariant should distinguish the
similarly permuted elements. Formally, we define the following:

Definition 5.9 (Invariants) An invariant for a permutable primitive type T
is a function I from the domain DT × S × P such that for all elements
v ∈ DT , for all states s ∈ S, for all partitions p ∈ P, and for all allowed
domain permutations θ ∈ Θ, it holds that

I(v, s, p) = I(θT (v), θ(s), θ(p)).

The codomain of I is assumed to be a set with a total order <.

We say that an invariant I is partition independent if it does not depend on
the partition argument, otherwise it is partition dependent. Invariants can
also be defined for types instead of states:

Definition 5.10 (Type Invariants) A type invariant for a permutable primi-
tive type T in a type T ′ is a function I from the domain DT ×DT ′ ×P such
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that for all elements v ∈ DT , for all elements v′ ∈ DT ′ , for all partitions
p ∈ P, and for all allowed domain permutations θ ∈ Θ, it holds that

I(v, v′, p) = I(θT (v), θT
′
(v′), θ(p)).

Again, the codomain of I is assumed to be a set with a total order <.

Type invariants can be interpreted as invariants:

Lemma 5.11 If I is a type invariant for a permutable primitive type T in a
type T ′ and x is a state variable of type T ′, then Ix(v, s, p) = I(v, s(x), p) is
an invariant for T .

Example 5.12 Define for each primitive type T and for each type T ′ the
function ]T ′T : DT ×DT ′ → N∪ {∞}, read “the element v of type T appears
]T
′

T (v, v′) times in the element v′ of type T ′”, by the following rules:

1. If T ′ is primitive type, then ]T ′T (v, v′) = 1 if T = T ′ and v = v′, and 0
otherwise.

2. ]List(T ′)
T (v, 〈v′1, . . . , v′n〉) =

∑
1≤i≤n ]

T ′
T (v, v′i)

3. ]Struct(T ′1,... ,T
′
n)

T (v, 〈v′1, . . . , v′n〉) =
∑

1≤i≤n ]
T ′i
T (v, v′i)

4. ]Set(T ′)
T (v, V ′) =

∑
v′∈V ′ ]

T ′
T (v, v′)

5. ]Multi-Set(T ′)
T (v,m) =

∑
v′∈DT ′

m(v′) · ]T ′T (v, v′)

6. ]AssocArray(T ′1,T
′
2)

T (v, a) =
∑
〈v′1,v′2〉∈a

(]
T ′1
T (v, v′1) + ]

T ′2
T (v, v′2))

7. ]Union(T ′1,... ,T
′
n)

T (v, 〈T ′i , v′〉) = ]
T ′i
T (v, v′)

It is easy to see that ]T ′T (v, v′) = ]T
′

T (θT (v), θT
′
(v′)) for all allowed domain

permutations θ. Now the function I]T in T ′(v, v
′, p) = ]T

′
T (v, v′) is a partition

independent type invariant for T in T ′. If x is a state variable of type T ′, then
the corresponding invariant is I]T in x(v, s, p) = I]T in T ′(v, s(x), p), i.e. the
number of times v appears in the value of x in the state s. ♣

We will introduce more invariants later, including some partition depen-
dent ones, too. Given an invariant for a permutable primitive type T and a
partition p, we may refine the partition according to the invariant by splitting
the cells of the partition for T so that each new cell contains all the elements
in the original cell that are assigned to the same value by the invariant.

Definition 5.13 Given an invariant I for a permutable primitive type T , de-
fine the functionRI : S ×P→ P byRI(s, p) = pref, where

1. for any permutable primitive type T ′ 6= T , pT
′

ref = pT
′ , and

2. the partition pTref is the one such that for all v, v′ ∈ DT ,
(a) incell(pTref, v) = incell(pTref, v

′) iff incell(pT , v) = incell(pT , v′)
and I(v, s, p) = I(v′, s, p), and

(b) if incell(pTref, v) < incell(pTref, v
′), then either

i. incell(pT , v) < incell(pT , v′), or
ii. incell(pT , v) = incell(pT , v′) and I(v, s, p) < I(v′, s, p).

Lemma 5.14 The functionRI is a partition refiner.
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When the partition refiner RI is applied to a partition p in a state s,
i.e. partition p is replaced by RI(s, p), we say that p is refined according to
I . Given a sequence I1.I2. . . . .In of invariants (for arbitrary primitive types),
we say that a partition p is refined according to the sequence to mean that
the partition refiner sequenceRIn ?RIn−1 ? · · · ?RI1 is applied to it.

To sum up, we obtain an invariant partition generator by (i) defining a
sequence I1.I2. . . . .In of invariants, and (ii) refining the unit partition ac-
cording to the sequence (by Lemma 5.14 and Thm. 5.8).

Example 5.15 Consider the state s = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5}
for the railroad system net in Fig. 1 (cf Ex. 5.5). Initially, the partition is the
unit partition

ps,0 =
(
pSecs

s,0 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,0 = [{ta, tb}]

)
.

We now apply the invariant sequence I]Trains in U .I]Trains in V .I]Secs in U .I]Secs in V

to the partition (recall Ex. 5.12). Refining the partition for Trains according
to the invariant I]Trains in U leads to

ps,1 =
(
pSecs

s,1 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,1 = [{ta, tb}]

)
,

i.e. does not change anything since both ta and tb appear once in the value
of U . Similarly, refining the partition for Trains according to the invariant
I]Trains in V changes nothing. Refining the partition for Secs according to the
invariant I]Secs in U leads to

ps,3 =
(
pSecs

s,3 = [{s0, s2, s4, s5}, {s1, s3}], pTrains
s,3 = [{ta, tb}]

)
,

distinguishing the railroad sections s1 and s3 from the others because they
appear once in the value of U while the others do not. Further refining
according to the invariant I]Secs in V gives us

ps,4 =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
.

Applying the same sequence of invariants to the state s′ = θ(s) = {U 7→
〈ta, s0〉+〈tb, s4〉, V 7→ s1 + s2}, where θ is as defined in Ex. 5.5, gives the
partition

ps′,4 = θ(ps,4) =
(
pSecs

s′,4 = [{s3, s5}, {s1, s2}, {s0, s4}], pTrains
s′,4 = [{ta, tb}]

)
.

♣

5.4 Some Useful Invariants

A Successor Based Invariant for Cyclic Primitive Types
We are now ready to introduce our first partition dependent invariant. Using
this invariant, it is possible to exploit the partition produced so far to obtain
further partition refinement. For a cyclic primitive type T , consider the func-
tion

IT,succ(v, s, p) = incell(pT , succT (v))

i.e. the function that returns the cell number of the successor element of
the element v in the partition p. That is, IT,succ distinguishes between two
elements if their successors are already distinguished in the current partition
p.
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Lemma 5.16 The function IT,succ is an invariant.

Therefore, if we have refined the initial partition according to an invariant
sequence, we may further refine the resulting partition by using the invariant
IT,succ. The resulting partition may again be further refined by the same
invariant until no refinement happens i.e. we reach a fixed point (in other
words, the sequence of length |DT | of invariant IT,succ is applied). Note that,
while IT,succ is partition dependent, it does not depend on the state argument
i.e. is state independent.

Example 5.17 Reconsider the state

s = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5}

and the partition

ps,4 =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
for it given in Ex. 5.15. Evaluating the invariant ISecs,succ in the partition gives

ISecs,succ(s0, s, ps,4) = 3, ISecs,succ(s1, s, ps,4) = 1,
ISecs,succ(s2, s, ps,4) = 3, ISecs,succ(s3, s, ps,4) = 2,
ISecs,succ(s4, s, ps,4) = 2, and ISecs,succ(s5, s, ps,4) = 1.

Refining according to this results in the partition

ps,5 =
(
pSecs

s,5 = [{s0, s2}, {s5}, {s4}, {s1}, {s3}], pTrains
s,5 = [{ta, tb}]

)
.

Further evaluating the invariant ISecs,succ in this partition gives

ISecs,succ(s0, s, ps,5) = 4, ISecs,succ(s1, s, ps,5) = 1,
ISecs,succ(s2, s, ps,5) = 5, ISecs,succ(s3, s, ps,5) = 3,
ISecs,succ(s4, s, ps,5) = 2, and ISecs,succ(s5, s, ps,5) = 1.

Refining according to this results in the partition

ps,6 =
(
pSecs

s,6 = [{s0}, {s2}, {s5}, {s4}, {s1}, {s3}], pTrains
s,6 = [{ta, tb}]

)
.

Now there are only two domain permutations compatible with the partition:

θ1 =
(
θSecs

1 = ( s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5 ) , θTrains

1 =
( ta tb

ta tb

))
, and

θ2 =
(
θSecs

2 = ( s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5 ) , θTrains

2 =
( ta tb

tb ta

))
.

The corresponding possible representative states for s are:

θ1(s) = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5} = s, and
θ2(s) = {U 7→ 〈ta, s3〉+〈tb, s1〉, V 7→ s4 + s5}.

Applying the same successor invariants to the state

s′ = {U 7→ 〈ta, s0〉+〈tb, s4〉, V 7→ s1 + s2}

in the partition

ps′,4 =
(
pSecs

s′,4 = [{s3, s5}, {s1, s2}, {s0, s4}], pTrains
s′,4 = [{ta, tb}]

)
18 5 BASIC ALGORITHM BASED ON PARTITION REFINEMENT



results in

ps′,6 =
(
pSecs

s′,6 = [{s3}, {s5}, {s2}, {s1}, {s4}, {s0}], pTrains
s′,6 = [{ta, tb}]

)
.

Now the two domain permutations compatible with the partition are:

θ1′ =
(
θSecs

1′ = ( s0 s1 s2 s3 s4 s5
s3 s4 s5 s0 s1 s2 ) , θTrains

1′ =
( ta tb

ta tb

))
, and

θ2′ =
(
θSecs

2′ = ( s0 s1 s2 s3 s4 s5
s3 s4 s5 s0 s1 s2 ) , θTrains

2′ =
( ta tb

tb ta

))
.

The corresponding possible representative states for s′ are:

θ1′(s
′) = {U 7→ 〈ta, s3〉+〈tb, s1〉, V 7→ s4 + s5} = θ2(s), and

θ2′(s
′) = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→ s4 + s5} = θ1(s) = s.

♣

Ordered Structured Types
Consider a structured type T ′ composed only of primitive types, lists, struc-
tures and unions. Now the value tree (recall Sec. 4) for any v′ ∈ DT ′ is
ordered in the sense that the children of each node can be totally ordered by
the arc labelings. Therefore, it is possible to uniquely number the nodes in
the value tree, for instance in a depth-first manner. Now each element v of
a primitive subtype T of T ′ that appears in the element v′ can be associated
with a unique number, e.g. the smallest number of those nodes of form T ::v
in the tree. The elements of T ′ not appearing in v′ can be associated with
the number 0. For instance, consider the value tree shown in Fig. 8 for the
element l = 〈〈v3, 3, u1〉, 〈v3, 2, u3〉〉 of type List(Struct(T1, Int, T2)), where
T1 is an unordered primitive type with DT1 = {v1, v2, v3, v4} and T2 is a
cyclic primitive type with DT2 = {u1, u2, u3, u4}. The depth-first numbering
of nodes is shown in boldface font in the figure. Thus the elements of T1 are
associated with integers by the mapping {v1 7→ 0, v2 7→ 0, v3 7→ 1, v4 7→ 0}
and those of T2 by {u1 7→ 3, u2 7→ 0, u3 7→ 7, u4 7→ 0}. Define the func-
tion Idfs-numbering of T in T ′ : DT × DT ′ ×P → N to be the mapping described
above. It should be obvious that it is a partition independent type invariant
with the following property: if two elements, v1 and v2, of type T appear in
the element v′, then I(v1, v

′, p) 6= I(v2, v
′, p). Therefore, refining a partition

according to such an invariant leads to a partition in which all the elements
appearing in the element v′ are in their own cells. For cyclic primitive types,
the resulting partition should be further refined by using the successor based
invariant described earlier.

The above procedure does not work for structured types composed of sets,
multi-sets or association arrays. This is because the value tree is not ordered
in the above sense and therefore we cannot assign the nodes in it a unique
numbering. However, this restriction can be circumvented in some spe-
cial cases. For instance, consider an association array where the domain
of the first type (the type whose elements are associated with elements of
the second type) is not permuted by allowed domain permutations, e.g. a
type AssocArray(Int[1-3],Struct(T1, Int)), where Int[1-3] with the domain
DInt[1-3] = {1, 2, 3} is an ordered primitive type. This type corresponds to a
normal array of size 3 (with possibly undefined elements), and the elements
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Int::3T1::v3 T2::u1 Int::2 T2::u3

1
2

3
2

31

21
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9

T1::v3

1 2 3 5 6 7

Figure 8: An ordered value tree

Int[1-3]::1

1 2

Int[1-3]::3

1 2

T1::v3 Int::7 T1::v2 Int::1

1 2 21

T1::v3 Int::7 T1::v2 Int::1

1 2 21

1 3

Figure 9: Mapping an unordered value tree into an ordered one

in it are totally ordered. In this kind of case the value tree can be modified
to be ordered, as shown in Fig. 9 for an element {1 7→ 〈v3, 7〉, 3 7→ 〈v2, 1〉},
and the above procedure for producing type invariants can be applied.

Although state variables of the “easy” structured types described above are
common in Murϕ descriptions, in high-level Petri nets the state variables are
of multi-set types which are not handled by the above procedure. Yet the
above procedure can be applied to multi-sets over the “easy” structured types
in some important special cases: if a multi-set contains only one element or
all the elements in the multi-set have different multiplicities, then the value
tree becomes ordered and the above procedure works fine. The same applies
to set types in the case a set contains only one element.

There is an important special case that often occurs in high-level Petri
nets: a state variable of type Multi-Set(T ), where T is a permutable prim-
itive type. Define the partition independent invariant Imultiplicity : DT ×
DMulti-Set(T ) ×P → N by Imultiplicity(v,m, p) = m(v). In the case T is an un-
ordered primitive type, Imultiplicity has the property that if a partition is refined
according to this invariant, resulting in a partition p1, then θMulti-Set(T )

2 (m) =

θ
Multi-Set(T )
3 (m) for all allowed domain permutations θ2 and θ3 that are com-

patible with partitions p2 � p1 and p3 � p1, respectively. Thus Imultiplicity in
some sense canonizes the multi-set value m.

Hash-Like Invariants
The invariants we have been using so far have been quite simple. We could
introduce more complicated special invariants, but there are too many of
them to cover all imaginable cases. For instance, assuming a state variable
x of type Multi-Set(Struct(Int, T )), where Int with DInt = {0, 1, 2, . . . } is
an ordered primitive type, the function IT,x,〈3,v〉 for the type T defined by
IT,x,〈3,v〉(v, s, p) = s(x)(〈3, v〉), i.e. the number of 〈3, v〉-elements in the
value of x in the state s, is an invariant. The more complicated the types
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of the state variables get, the more complicated the possible invariants get,
too. We now show how to calculate a general purpose invariant that depends
on the structure of a state in a degree larger than the earlier ones. It is also
partition dependent. Moreover, calculating the invariant is relatively easy: it
resembles the way one would compute a hash value for a structured object.

For each primitive type T , we define a function

gT (v, T ′, v′, p)

over four arguments: the first argument is an element v in the domain of the
type T , the second argument is a type T ′, the third argument is an element
v′ in the domain of the type T ′, and the last argument is a partition. The first
argument v is the element for which we compute the “hash value”, while the
second and third arguments describe the object in which we perform this
computation. The fourth argument gives the current partition. The function
gT is defined recursively top-down on the structure of the second argument
type T ′: the value depends on the values of the subtypes of T ′. In the leaves,
when T ′ is a primitive type, the function has a value depending on (i) the
relationship between the types T and T ′, (ii) the relationship between the
values as the first and third argument, and (iii) the partition into which the
third argument belongs.

Firstly, we assume an associative and commutative binary operation ⊕ on
Z. Furthermore, for a type T , hT : Z → Z and hT,n : Zn → Z are assumed
to be arbitrary functions unless otherwise stated. The inductive definition of
the function gT now is:

1. For an ordered primitive type T ′, gT (v, T ′, v′, p) = hT ′(v
′), where hT ′

is a function from DT ′ to Z.
2. For a cyclic primitive type T ′ with DT ′ = {v1, . . . , vn},

gT (v, T ′, v′, p) ={
hT ′(incell(pT

′
, v′)) if T 6= T ′

hT ′,2(k, incell(pT
′
, v′)) if T = T ′ and v′ is the k-successor of v.

3. For an unordered primitive type T ′,

gT (v, T ′, v′, p) =

{
hT ′,2(incell(pT

′
, v′), 0) if T 6= T ′ or T = T ′ ∧ v 6= v′

hT ′,2(incell(pT
′
, v′), 1) if T = T ′ and v = v′.

4. For a list type T ′ = List(T1),

gT (v, T ′, 〈v1, . . . , vn〉, p) = hT ′,n(gT (v, T1, v1, p), . . . , gT (v, T1, vn, p)).

5. For a structure type T ′ = Struct(T1, . . . , Tn),

gT (v, T ′, 〈v1, . . . , vn〉, p) = hT ′,n(gT (v, T1, v1, p), . . . , gT (v, Tn, vn, p)).

6. For a set type T ′ = Set(T1),

gT (v, T ′, v′, p) = hT ′

(⊕
v′′∈v′

gT (v, T1, v
′′, p)

)
.
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7. For a multi-set type T ′ = Multi-Set(T1),

gT (v, T ′, v′, p) = hT ′

 ⊕
v′′∈DT1

,v′(v′′)≥1

hT ′,2(v′(v′′), gT (v, T1, v
′′, p))

 .

8. For an association array type T ′ = AssocArray(T1, T2),

gT (v, T ′, v′, p) = hT ′

 ⊕
〈v1,v2〉∈v′

hT ′,2(gT (v, T1, v1, p), gT (v, T2, v2, p))

 .

9. For an union type T ′ = Union(T1, . . . , Tn),

gT (v, T ′, 〈Ti, v′〉, p) = hT ′(gT (v, Ti, v
′, p)).

Lemma 5.18 If θ =
(
θT
)
T∈T is an allowed domain permutation, then

gT (v, T ′, v′, p) = gT (θT (v), T ′, θT
′
(v′), θ(p)).

Corollary 5.19 For a permutable primitive type T and for a type T ′,

IT,hash in T ′(v, v
′, p) = gT (v, T ′, v′, p)

is a type invariant. Similarly, if x is a state variable of type T ′, then

IT,hash in x(v, s, p) = gT (v, T ′, s(x), p)

is an invariant.

Example 5.20 Consider again the state s = {U 7→ 〈ta, s1〉+〈tb, s3〉, V 7→
s4 + s5} for the railroad system net in Fig. 1, recall Examples 5.5, 5.15 and
5.17. Let ⊕ be the integer addition operation, and let

hTrains,2(1, 0) = 374, hTrains,2(2, 0) = 1374,
hTrains,2(1, 1) = 242 · 374, hTrains,2(2, 1) = 242 · 1374,
hSecs,2(k, 1) = (k + 1) · 837, hSecs,2(k, 2) = (k + 1) · 274,
hSecs,2(k, 3) = (k + 1) · 97, hSecs,2(k, 4) = (k + 1) · 4732,
hSecs,2(k, 5) = (k + 1) · 194, hSecs,2(k, 6) = (k + 1) · 958,
hMulti-Set(Struct(Trains,Secs)(x) = x, hMulti-Set(Struct(Trains,Secs)),2(x, y) = x · y,
hStruct(Trains,Secs),2(x, y) = x · by

2
c.

Initially, the partition is

ps,0 =
(
pSecs

s,0 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,0 = [{ta, tb}]

)
.

When we evaluate the invariant ISecs,hash in U in the partition, we get

ISecs,hash in U (s0, s, ps,0) =
gSecs(s0,Multi-Set(Struct(Trains,Secs)), 〈ta, s1〉+〈tb, s3〉, ps,0) =

1 · gSecs(s0,Struct(Trains,Secs), 〈ta, s1〉, ps,0)
+1 · gSecs(s0,Struct(Trains,Secs), 〈tb, s3〉, ps,0) =

1 · (gSecs(s0,Trains, ta, ps,0) · bgSecs(s0,Secs, s1, ps,0)/2c)
+1 · (gSecs(s0,Trains, tb, ps,0) · bgSecs(s0,Secs, s3, ps,0)/2c) =

1 · (hTrains(1, 0) · bhSecs,2(1, 1)/2c) + 1 · (hTrains(1, 0) · bhSecs,2(3, 1)/2c) =
1 · (374 · b(2 · 837)/2c) + 1 · (374 · b(4 · 837)/2c) =

1 · (374 · 837) + 1 · (374 · 1674) =
939114,
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and

ISecs,hash in U(s1, s, ps,0) = 625702,

ISecs,hash in U(s2, s, ps,0) = 1252152,

ISecs,hash in U(s3, s, ps,0) = 938740,

ISecs,hash in U(s4, s, ps,0) = 1565190, and
ISecs,hash in U(s5, s, ps,0) = 1251778.

Now the partition is refined into

ps,1 =
(
pSecs

s,1 = [{s1}, {s3}, {s0}, {s5}, {s2}, {s4}], pTrains
s,1 = [{ta, tb}]

)
.

Evaluating ISecs,hash in V in this partition yields no further information since
the partition for Secs is already discrete. Evaluating ITrains,hash in U in the parti-
tion gives ITrains,hash in U(ta, s, ps,1) = 37883582 and ITrains,hash in U(tb, s, ps,1) =
12555928, refining the partition into

ps,2 =
(
pSecs

s,2 = [{s1}, {s3}, {s0}, {s5}, {s2}, {s4}], pTrains
s,2 = [{tb}, {ta}]

)
.

Now there is only one allowed domain permutation compatible with ps,2,
namely

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s5 s0 s1 s2 s3 s4 ) , θTrains =
( ta tb

tb ta

))
,

and the corresponding representative state is

θ(s) = {U 7→ 〈ta, s2〉+〈tb, s0〉, V 7→ s3 + s4}.

♣

Note that the h-functions defined in the above example are not probably very
optimal since they are quite similar. Although they suffice for demonstra-
tive purposes, in a real implementation some bit twisting operations should
be applied instead in order to reduce the possibility of value collision. The
main thing to take care of is that the operation ⊕ is commutative and asso-
ciative. The h-functions may, for instance, employ pseudo-random numbers
to obtain relative independence from each other.

5.5 Limitations of Invariant Partition Generators

We now study some fundamental, inherent limitations involved in the use
of invariant partition generators. Directly from the definition of invariant
partition generators we observe the following. Let s and s′ be two symmetric
states and let G be an invariant partition generator. If θ is an allowed domain
permutation mapping s to s′, then θmaps the cells in the partition G(s) to the
corresponding cells in G(s′) since G(θ(s)) = θ(G(s)) ⇒ G(s′) = θ(G(s)).
From this fact we are able to obtain a lower limit for the sizes of cells in
partitions produced by any invariant partition generator.

Fact 5.21 Let θ =
(
θT
)
T∈TP

be a self-symmetry of a state s, i.e. θ(s) = s

or, equivalently, θ ∈ Stab(Θ, s). Then G(θ(s)) = θ(G(s)) implies G(s) =
θ(G(s)) for any invariant partition generator G. Thus each self-symmetry of s

respects the cells in G(s), meaning that if v ∈ DT belongs to the cell CT
i in

the partition G(s), then θT (v) belongs to the cell CT
i , too.

5 BASIC ALGORITHM BASED ON PARTITION REFINEMENT 23



Optimal invariant partition generator functions, i.e. functions that pro-
duce minimal partitions whose cells are as small as possible, are probably
not, in general, computable in polynomial time. For if we could always com-
pute such functions efficiently, we would know by the fact above whether the
group Stab(Θ, s) is non-trivial (has other elements besides the identity): if
a partition has a cell with more than one element for some primitive type,
then Stab(Θ, s) is non-trivial. Combined with the construction in the proof
of Theorem 3.4 in [Ip 1996], the non-triviality of Stab(Θ, s) would reveal
us that a graph has non-trivial automorphisms. For this task we know no
polynomial-time algorithms.

6 IMPROVEMENTS BASED ON SEARCH TREES

Recall the Algorithm 1 for producing representative states. Assuming a fixed
invariant partition generator G, given a state s, we produce the partition G(s)
and take arbitrarily an allowed domain permutation θ that is compatible with
it and return θ(s) as the representative. In the case the partition G(s) has a
non-singleton cell for a permutable primitive type, there may be many com-
patible allowed domain permutations and thus, potentially but not necessar-
ily, many possible representative states for s. Especially, when G(s) has a
non-singleton cell of size n for an unordered primitive type, the choice of
which element will be the “first” one does not affect in any way the n − 1
choices we must make for the rest of the elements. Nor does it affect the
choices that have to be made for other non-singleton cells. We now present
an improvement that can reduce the set of possible representative states. In
this approach the choices may affect or eliminate the choices yet to be taken.

First, we assume a fixed invariant partition generator G and a fixed parti-
tion refinerR.

Definition 6.1 (Search Trees) The search tree of a state s and a partition
p =

(
pT
)
T∈TP

is a tree T (s, p) defined by the following inductive rules.

1. If each partition pT in p is discrete, then the tree T (s, p) is the single
leaf node p.

2. Otherwise, let pT = [CT
1 , . . . , C

T
n ] be the first non-discrete partition

in p (according to some fixed ordering between the permutable primi-
tive types). Let CT

i = {vi,1, vi,2, . . . } be the first non-singleton cell in
pT . The tree T (s, p) then consists of the root node p which has as its
children the trees T (s,R(s, pj)), where for each 1 ≤ j ≤

∣∣CT
i

∣∣ the
partition pj is the same as p except that the partition for T is

pTj = [CT
1 , . . . , C

T
i−1, {vi,j}, CT

i \ {vi,j}, CT
i+1, . . . ].

In other words, for each element in the first non-discrete cell CT
i , we

split the cell in two parts by distinguishing the element into its own cell
and refine the resulting partition with the refinement invariants. The
child T (s,R(s, pj)) above is called the vi,j -child of the node p and the
edge from p to it is labeled with T.vi,j . We use p

T.v−→ p′ to denote that
p′ is a v-child of p.
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The search tree T (s) of a state s is the search tree T (s,G(s)).

We now modify our representative algorithm Alg. 1 as follows. Given a
state s, we travel along one, arbitrary path in the search tree T (s) until a leaf
node (discrete partition) p is encountered, take the unique allowed domain
permutation θ that is compatible with p and return θ(s) as the representative.
The resulting algorithm is shown in Alg. 2.

Algorithm 2 Representative algorithm 2
Input: A state s

Output: A representative state that is symmetric to s

1: Build the partition p = G(s)
2: Choose any path in the search tree T (s, p) ending in a discrete partition

p′

3: Let θ be the unique allowed domain permutation compatible with p′

4: Return θ(s) as the representative state

Example 6.2 Consider the state s = {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}
for the railroad system net in Fig. 1. Refining the initial partition with the
invariant sequence I]Trains in U .I]Trains in V .I]Secs in U .I]Secs in V (i.e. applying the
invariant partition generator) gives us the partition

p =
(
pSecs = [{s2, s5}, {s1, s4}, {s0, s3}], pTrains = [{ta, tb}]

)
.

This partition is the best one can get by using any invariant partition gen-
erator function in the sense that the elements in any cell in it cannot be
distinguished by any such function. This is because the allowed domain per-
mutation

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains =
( ta tb

tb ta

))
is a self-symmetry of s (recall Fact 5.21). Assuming a fixed ordering s0 < s1 <
· · · < s5 between the railroad sections and ta < tb between the train iden-
tities, the four possible domain permutations compatible with the partition
are

θ1 =
(
θSecs

1 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

1 =
( ta tb

ta tb

))
,

θ2 =
(
θSecs

2 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

2 =
( ta tb

tb ta

))
,

θ3 =
(
θSecs

3 = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

3 =
( ta tb

ta tb

))
, and

θ4 =
(
θSecs

4 = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

4 =
( ta tb

tb ta

))
.

The corresponding two possible representative states for s are:

θ1(s) = θ4(s) = {U 7→ 〈ta, s4〉+〈tb, s1〉, V 7→ s2 + s5} and
θ2(s) = θ3(s) = {U 7→ 〈ta, s1〉+〈tb, s4〉, V 7→ s2 + s5}.

Assume the partition refiner R that is induced by the invariant sequence
that first contains 6 ISecs,succ invariants and after those enough hash-like in-
variants described in Sec. 5.4. The search tree T (s, p) has p as the root node.
The cell {s2, s5} is now the first non-singleton cell in p and thus p is split into

p1,1 =
(
pSecs

1,1 = [{s2}, {s5}, {s1, s4}, {s0, s3}], pTrains
1,1 = [{ta, tb}]

)
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Figure 10: A search tree

and

p2,1 =
(
pSecs

2,1 = [{s5}, {s2}, {s1, s4}, {s0, s3}], pTrains
2,1 = [{ta, tb}]

)
,

respectively. Refining these with the 6 invariants ISecs,succ gives us

p1,2 =
(
pSecs

1,2 = [{s2}, {s5}, {s1}, {s4}, {s0}, {s3}], pTrains
1,2 = [{ta, tb}]

)
and

p2,2 =
(
pSecs

2,2 = [{s5}, {s2}, {s4}, {s1}, {s3}, {s0}], pTrains
2,2 = [{ta, tb}]

)
,

respectively. Refining these with the invariant ISecs,hash in U or ISecs,hash in V

improves nothing since the partitions for Secs are already discrete. However,
refining the partitions with the ITrains,hash in U invariant, by using the functions
of Ex. 5.20, yields the partitions

p1,3 =
(
pSecs

1,3 = [{s2}, {s5}, {s1}, {s4}, {s0}, {s3}], pTrains
1,3 = [{ta}, {tb}]

)
and

p2,3 =
(
pSecs

2,3 = [{s5}, {s2}, {s4}, {s1}, {s3}, {s0}], pTrains
2,3 = [{tb}, {ta}]

)
,

respectively. These two partitions are the two leaf nodes of the search tree
T (s), shown in Fig. 10, and the allowed domain permutations compatible
with them are

θ1,3 =
(
θSecs

1,3 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

1,3 =
( ta tb

ta tb

))
= θ1, and

θ2,3 =
(
θSecs

2,3 = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

2,3 =
( ta tb

tb ta

))
= θ4.

The corresponding representative state for s is:

θ1,3(s) = θ2,3(s) = {U 7→ 〈ta, s4〉+〈tb, s1〉, V 7→ s2 + s5}.

♣

6.1 Properties of Search Trees

We now list some properties of search trees.

Theorem 6.3 For each allowed domain permutation θ, a partition pchild is a
v-child of the root node of the search tree T (s, p) iff the partition θ(pchild) is
a θT (v)-child of the root node of the search tree T (θ(s), θ(p)).
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Corollary 6.4 For all allowed domain permutations θ, p
T1.v1−→ p1 · · ·

Tn.vn−→ pn

is a path in the search tree T (s, p) iff θ(p)
T1.θT1 (v1)−→ θ(p1) · · · Tn.θ

Tn (vn)−→ θ(pn)
is a path in the search tree T (θ(s), θ(p)).

Corollary 6.5 For all allowed domain permutations θ, a partition p′ is a node
in the search tree T (s, p) iff the partition θ(p′) is a node in the search tree
T (θ(s), θ(p)).

Since θ(G(s)) = G(θ(s)) for the invariant partition generator G, the above
results generalize to search trees for states, for instance:

Corollary 6.6 For all allowed domain permutations θ, a partition p′ is a node
in the search tree T (s) iff the partition θ(p′) is a node in the search tree
T (θ(s)).

Corollary 6.7 For all self-symmetries θ ∈ Stab(Θ, s) of a state s, a partition
p′ is a node in the search tree T (s) iff the partition θ(p′) is.

Since R(s, p) � p holds for the partition refiner R used in the construc-
tion of search trees, we have some additional properties. First of all, all the
nodes in a search tree are mutually distinct partitions. Furthermore, each de-
scendant of a node is a cell order preserving refinement of the node. It is also
easy to verify that if θ is compatible with a partition p1, then θ is compatible
with any partition p2 such that p1 � p2. Therefore, the number of possible
representative states for Alg. 2 is at most that for Alg. 1 (when the same in-
variant partition generator is used). In addition, by Cor. 6.7 it holds that the
number of leaf nodes in the search tree T (s) is a multiple of |Stab(Θ, s)|.

Given a discrete partition p, there is a unique allowed domain permuta-
tion, denote it by θ̂p, that is compatible with it. Thus the set of leaf nodes in
a search tree T (s, p) defines the set ST (s,p) of states by: if pleaf is a leaf node
in T (s, p), then and only then the corresponding state θ̂pleaf(s) is in ST (s,p).
Define ST (s) = ST (s,G(p)).

Lemma 6.8 For any allowed domain permutation θ, ST (s,p) = ST (θ(s),θ(p))

and consequently ST (s) = ST (θ(s))

This implies that the sets of possible representative states returned by Alg. 2
for symmetric states are the same, i.e. Alg. 2 preserves the possibility for per-
fect reduction.

6.2 Producing Canonical Representative States

Although Alg. 2 is better than Alg. 1, it does not necessarily produce canon-
ical representative markings. In order to accomplish this, we assume a total
order < on the set S of states. Given a state s, we can now select the small-
est state w.r.t. the order < in the set ST (s) as the representative state. This
can be done by performing a depth-first search in the search tree T (s). This
procedure produces canonical representative states because ST (s) = ST (θ(s))

for any allowed domain permutation θ as stated by Lemma 6.8. The prob-
lem is that the search tree can have exponentially many nodes, at least it has
|Stab(Θ, s)| nodes by Corollary 6.7. Fortunately, we can prune the search
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tree with some techniques adapted from the graph isomorphism algorithms,
see e.g. [McKay 1981; Kreher and Stinson 1999].

Pruning by Image Restriction. Assume that sbest is the smallest state in
ST (s) found so far during the the search tree traversal. If the current partition
whose children are not yet traversed is p and we can deduce that all the states
in ST (s,p) must be larger than sbest , then we can backtrack i.e. skip the sub-tree
T (s, p) of T (s). Deducing that all the states in ST (s,p) must be larger than
sbest can be done by the following observations. First, if an allowed domain
permutation θ̂1 is compatible with a descendant p1 of p in the search tree,
then θ̂1 is also compatible with p. Thus if a state is in ST (s,p), then it must
be produced from s by applying an allowed domain permutation θ fulfilling
the following rules: (i) if pT = [CT

1 , . . . , C
T
c ] for an unordered primitive

type T with DT = {v1, . . . , vn}, then θ must map CT
1 to {v1, . . . , v|CT1 |},

CT
2 to {v|CT1 |+1, . . . , v|CT1 |+|CT2 |} and so on, and (ii) if pT = [CT

1 , . . . , C
T
c ]

for a cyclic primitive type T with DT = {v1, . . . , vn}, then θ must map an
element in CT

1 to v1. Thus the possible images of the elements of permutable
primitive types are restricted by p and we may be able to deduce that all states
in ST (s,p) must be larger than sbest . Of course, this deduction step depends
on the selected total order < on the states.

Pruning with Self-Symmetries. Consider the root node p of a sub-tree
T (s, p) in the search tree T (s). Assume that it has two children, e.g. p

v−→
p1 and p

v′−→ p2. If there is a self-symmetry θ of s that (i) respects p,
i.e. θ(p) = p, and (ii) maps v to v′, then θ(p1) = p2. Now ST (s,p1) =
ST (θ(s),θ(p1)) = ST (s,θ(p1)) = ST (s,p2), meaning that the possible representa-
tive states in the sub-trees T (s, p1) and T (s, p2) are the same. Therefore, if
we have already traversed the sub-tree T (s, p1), we do not have to traverse
the sub-tree T (s, p2) in our quest for the smallest state.

The question now is, how do we obtain the self-symmetries of a state? It
turns out that they can be found during the search tree traversal. Assume that
we have already visited a leaf node p1 in the search tree. If we are currently
visiting a leaf node p2 and θ̂p2(s) = θ̂p1(s), then θ̂−1

p2
∗ θ̂p1 is a self-symmetry

of s. Of course, the natural candidate for the partition p1 to be remembered
and compared against during the search tree traversal is the partition p for
which the state θ̂p(s) is the smallest w.r.t. < encountered so far. As for every
leaf node p in the search tree and for every self-symmetry θ there is the cor-
responding leaf node θ(p) in the search tree and θ̂θ(p) = θ̂p ∗ θ−1 implying
(θ̂p ∗θ−1)−1 ∗ θ̂p = θ, every self-symmetry is encountered at least once during
the search tree traversal by using this strategy.

Finding the self-symmetries it not enough: recall that in order to prune
the child p

v′−→ p2 of a node p and only traverse the child p
v−→ p1, we

must have a self-symmetry that (i) respects p, i.e. θ(p) = p, and (ii) maps
v to v′. There are two well-known strategies for storing the self-symmetries
found during the search tree traversal and finding such that fulfill the above
requirement, see [Kreher and Stinson 1999; McKay 1981].

The first is to use a Schreier-Sims representation for storing the group of
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self-symmetries generated by the self-symmetries found so far. Assume that
the current search node p, whose v, v′-children we would like to prune, is
reached from the root node of the search tree via a path G(s)

T1.v1−→ p1 · · ·
Tn.vn−→

p. If there is a self-symmetry θ that fixes all the elements v1, . . . , vn, then θ
maps p to itself. Thus we must find whether there is a self-symmetry stored
into set of self-symmetries found so far that fixes v1, . . . , vn and maps v to v′.
This can be accomplished by using an operation called base change on the
Schreier-Sims representation of the self-symmetries found so far. Although
this is can be done in polynomial time in the size of the union of the domains
of the permutable primitive types (the number of permuted elements), the
exponent in the polynomial is usually relatively high, such as 5, depending
on the algorithm.

The other approach does not store the self-symmetries at all. Assume
that we have already visited a leaf node pn,1 by traversing a path G(s)

T1.v1−→
p1 · · ·

Ti.vi−→ pi
Ti+1.vi+1,1−→ pi+1,1 · · ·

Tn,1.vn,1−→ pn,1 and that we already have
traversed the whole sub-tree T (s, pi+1,1). Suppose now that we are cur-

rently visiting a leaf node pn,2 via a path G(s)
T1.v1−→ p1 · · ·

Ti.vi−→ pi
Ti+1.vi+1,2−→

pi+1,2 · · ·
Tn,2.vn,2−→ pn,2, i.e. the node pi is the latest common ancestor of pn,1

and pn,2. If θ̂pn,2(s) = θ̂pn,1(s), then θ = θ̂−1
pn,2
∗ θ̂pn,1 is a self-symmetry of

s. If it also holds that θ maps pn,1 to pn,2 then θ maps each pj , 1 ≤ j ≤ i,
to itself (as pn,1 � pj and pn,2 � pj) and vi+1,1 to vi+1,2. This implies that
θ maps pi+1,1 to pi+1,2 and the sub-trees T (s, pi+1,1) and T (s, pi+1,2) have
the same possible representative states. Therefore, we can immediately skip
the rest of the sub-tree T (s, pi+1,2) as T (s, pi+1,1) has already been traversed.
Furthermore, if a partition pj , 1 ≤ j ≤ i, has a v-child and a v′-child and a
power of θ maps v to v′, then the possible representative states in the v- and
v′-sub-trees of pj are the same.

6.3 A Relative Hardness Measure for States

We now present a hardness measure for states relative to the selected invariant
partition generator G and partition refiner R. The set of states, S, can be
divided into three classes:

– A state s is trivial if the search tree T (s) contains only one node,
i.e. G(s) is a discrete partition.

– A state s is easy if it is not trivial and for any two leaf nodes (discrete
partitions) p1 and p2 in the search tree T (s) it holds that there is a
self-symmetry θ ∈ Stab(Θ, s) such that θ(p1) = p2.

– A state s is hard if it is neither trivial nor easy.

These classes are closed under symmetries:

Lemma 6.9 If a state s is trivial/easy/hard, then θ(s) is also trivial/easy/hard
for any allowed domain permutation θ.

We say that an algorithm produces a canonical representative for a state
s if it holds that for all allowed domain permutations θ, the algorithm pro-
duces the same representative state for s and θ(s). That is, if two states are
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Figure 11: Two isomorphic graphs

symmetric then the algorithm will produce the same representative state for
them.

Theorem 6.10 If a state s is trivial, then Algorithm 1 produces a canonical
representative for it.

Theorem 6.11 If a state s is trivial or easy, then Algorithm 2 produces a
canonical representative for it.

6.4 A Sidetrack on Testing Symmetricity of two States

Let us consider the problem of determining whether two states, say s and s′,
are symmetric. Of course, given a canonical representative function, this task
is easy: compute the canonical representatives of the two states in question
and check whether they are equal. The other obvious (but highly inefficient)
solution is to test for each allowed domain permutation θ whether θ(s) = s′.
We now show how this approach can be improved by using the techniques
introduced earlier in this section.

Assuming an invariant partition generator G, we have directly from the
definition of invariant partition generators the following: if θ is an allowed
domain permutation mapping a state s to a state s′, then it must map the
partition G(s) to the partition G(s′). Based on this, it is sufficient to test
whether θ(s) = s only for those allowed domain permutations θ that map
the partition G(s) to the partition G(s′). Of course, if the cell structures of
the partitions differ, i.e. there is a primitive type T such that the partitions for
it in G(s) and G(s′) differ in the number of cells or in the size of the corre-
sponding cells, we can directly conclude that there are no allowed domain
permutations mapping G(s) to G(s′) and thus s and s′ are not symmetric. A
similar approach is taken in [Sistla et al. 2000], where symmetry respecting
signatures (partitions) are first built for states to be tested and then random
permutations mapping the signatures to each other are generated to find out
whether there is a permutation mapping the states to each other. That is, an
incomplete probabilistic algorithm is used.

Example 6.12 Consider a system that has a state variable G (for graph) of
type Set(Struct(Vertices,Vertices)), where Vertices is an unordered primi-
tive type with the domain DVertices = {v1, v2, v3, v4}. Take the states

s = {G 7→ {〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v1〉}}

and

s′ = {G 7→ {〈v3, v1〉, 〈v1, v4〉, 〈v4, v2〉, 〈v2, v3〉}}
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corresponding to the directed graphs shown in Fig. 11. The states are sym-
metric since θ =

(
θVertices = ( v1 v2 v3 v4

v3 v1 v4 v2 )
)

maps s to s′. After applying any
invariant partition generator G to the states, it must be that the partition
for Vertices is pVertices = [{v1, v2, v3, v4}] in both partitions G(s) and G(s′).
This follows from Fact 5.21 by observing that the stabilizer group Stab(Θ, s)
is generated by

(
θVertices = ( v1 v2 v3 v4

v2 v3 v4 v1 )
)

while Stab(Θ, s′) is generated by(
θVertices = ( v1 v2 v3 v4

v4 v3 v1 v2 )
)
.

There are 4! = 24 allowed domain permutations mapping the partition
pVertices in G(s) to the (same) partition pVertices in G(s′). However, by Thm. 3.2
there are only |Stab(Θ, s)| = 4 allowed domain permutations mapping s to
s′. This example can be extended to graphs with n vertices, where we will
have n! allowed domain permutations mapping the partitions to each other
but only n of them mapping the states to each other. Thus n! − n of n!,
i.e. almost all allowed domain permutations will fail in the symmetry testing
approach described above. ♣

The above symmetricity test can be improved by using search trees. As-

sume that we are given two states, s1 and s2. Take any path G(s1)
T1,v1,1−→

p1,1 . . .
Tn,v1,n−→ p1,n in the search tree T (s1) ending in a discrete partition p1,n.

Let θ̂1 be the allowed domain permutation compatible with the leaf partition
p1,n. If s1 and s2 are symmetric, then there is an allowed domain permuta-
tion θ mapping s1 to s2 and consequently (by Cor. 6.6) a leaf node θ(p1,n) in
the search tree T (s2,G(s2)). Then by Lemma 5.3, θ̂1∗θ−1 is compatible with
θ(p1,n) and (θ̂1 ∗ θ−1)(s2) = (θ̂1 ∗ θ−1)(θ(s1)) = θ̂1(s1). Furthermore, if θ̂2

is compatible with a discrete partition p2 in the search tree T (s2,G(s2)) and
θ̂1(s1) = θ̂2(s2), then (θ̂−1

2 ∗θ̂1)(s1) = s2 and the states are symmetric. There-
fore, in order to check whether s1 and s2 are symmetric, do a backtracking
search in the search tree T (s2) starting from the root node to find whether
there is a leaf node p2 in it such that the allowed domain permutation θ̂2 com-
patible with p2 maps s2 to θ̂1(s1). The states s1 and s2 are symmetric iff such
a leaf node can be found. To prune the search tree, note that if θ maps s1 to

s2, then by Cor. 6.4 there is a path θ(G(s1))
T1,θT1 (v1,1)−→ θ(p1,1) . . .

T1,θT1 (v1,n)−→
θ(p1,n) in the search tree T (s2) and by Lemma 5.3 θ̂1 ∗ θ−1 is compatible
with θ(p1,n) and (θ̂1 ∗ θ−1)(s2) = (θ̂1 ∗ θ−1)(θ(s1)) = θ̂1(s1). Therefore, if a

path G(s2)
T1,v2,1−→ p2,1 . . .

T1,v2,k−→ p2,k, k < n, is currently being traversed in the
search tree T (s2), and the cell structures of p1,k and p2,k differ (meaning that
there cannot be any θ mapping p1,k to p2,k), there is no need to traverse the
children of the node p2,k. Naturally, this algorithm can be made probabilistic
by randomly trying the paths in the search tree T (s2).

Example 6.13 (Ex. 6.12 continued) Applying any reasonably efficient invari-
ants, such as those described in Sec. 5.4, in the partition refinerR will make
the search tree for the state s to look something like this:

[{v1}, {v3}, {v4}, {v2}] [{v2}, {v4}, {v1}, {v3}] [{v3}, {v1}, {v2}, {v4}] [{v4}, {v2}, {v3}, {v1}]

[{v1, v2, v3, v4}]
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and the search tree for the state s′ is thus:

[{v1, v2, v3, v4}]

[{v1}, {v2}, {v3}, {v4}] [{v2}, {v1}, {v4}, {v3}] [{v4}, {v3}, {v1}, {v2}][{v3}, {v4}, {v2}, {v1}]

Now the domain permutation θ̂1 =
(
θ̂Vertices

1 = ( v1 v2 v3 v4
v1 v4 v2 v3 )

)
compatible

with the leftmost leaf node
(
pVertices = [{v1}, {v3}, {v4}, {v2}]

)
of the search

tree for s maps s to θ̂1(s) = {G 7→ {〈v1, v4〉, 〈v4, v2〉, 〈v2, v3〉, 〈v3, v1〉}}.
Now taking any leaf node in the search tree for s′, the allowed domain per-
mutation compatible with it maps s′ to θ̂1(s). For instance, the allowed do-
main permutation θ̂2 =

(
θ̂Vertices

2 = ( v1 v2 v3 v4
v2 v1 v4 v3 )

)
compatible with the leaf

node
(
pVertices = [{v2}, {v1}, {v4}, {v3}]

)
of the search tree for s′ maps s′ to

θ̂2(s′) = {G 7→ {〈v4, v2〉, 〈v2, v3〉, 〈v3, v1〉, 〈v1, v4〉}} = θ̂1(s). ♣

As the above example shows, using search trees can bring exponential savings
in the symmetricity test approach.

7 HANDLING VERY LARGE AND INFINITE SCALAR SETS

So far we have implicitly assumed that the domains of unordered primitive
types (scalar sets) are finite. However, it would be convenient to have un-
ordered primitive types with infinite domains. For instance, modeling un-
bounded resources such as process identifiers would require the domain to
be infinite. Without restrictions, infinite domains cause problems because
partitions are assumed to be ordered lists of subsets of domains. For instance,
if a partition contains two cells that have infinitely many elements and an in-
variant would distinguish infinitely many elements in both of these cells, then
the partition refined according to the invariant would result in an ordered list
that first has infinitely many cells (refined from the first original cell) and af-
ter that, yet infinitely many cells (refined from the second original cell). This
is absurd and would require partitions to be something else than ordered lists
or redefining the invariant partitioning process. Likewise, having a cell with
infinitely many elements not as the last cell would invalidate the Def. 5.2 of
compatible domain permutations.

However, these problem can be circumvented by assuming finite states
in the sense that only finitely many elements in the infinite domain of each
unordered primitive type actually appear in a given state. This is a plausible
assumption since infinitely many elements appearing in a state would also
cause some other problems, starting with the problem of how to represent
states. Now consider the allowed domain permutation θ that only swaps two
elements v and v′ of type T not appearing in the state s. Clearly θ(s) = s and
G(θ(s)) = θ(G(s)) implies G(s) = θ(G(s)), meaning that the elements v and
v′ must belong to the same cell in the partition assigned to s by any invariant
partition generator G. Therefore, invariant partition generators cannot distin-
guish between the elements not appearing in a state. Furthermore, if θ′ maps
the state s to s′, then θ′ ∗ θ also maps s to s′ meaning that it does not matter
how the non-appearing elements are permuted among themselves. Thus we
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may conclude that we can in effect ignore the elements of unordered primi-
tive types that do not appear in the state in question. An algorithmic view of
this is to first apply the following invariant for each unordered primitive type
T during the computation of the invariant partition generator.

Definition 7.1 The invariant IT,appears(v, s, p) is defined to be 0 if the ele-
ment v of a type T appears in the value of any state variable in the state s

(meaning that I]T in x(v, s, p) ≥ 1 for a x ∈ X ), and 1 otherwise.

This splits the elements in the domain of T into two cells: those that appear
in the state s (a finite set under the assumption made above) and those that
do not (an infinite set under the assumption made above). We then ignore
the latter cell. Because we have chosen that the elements appearing in the
state are assigned the value 0 by IT,appears (i.e. have a smaller value than those
not appearing in the state), the n elements appearing in the state are in the
first cell and are thus “compressed” into the first n elements in the domain
by any allowed domain permutation compatible with the partition produced
this way.

Another view of the same thing is to first apply an allowed domain permu-
tation that “compresses” the elements appearing in the domains of infinite
unordered primitive types and then use the algorithms for finite domains de-
scribed previously without modification. That is, for a finite state s1, take any
allowed domain permutation θ1 that, for each infinite unordered primitive
type T , maps the n elements in DT appearing in the state s1 to the first n
elements in the domain DT . Similarly for another finite state s2. Now the
states s1 and s2 are symmetric iff s′1 = θ1(s1) and s′2 = θ2(s2) are symmetric
and if they are, there is an allowed domain permutation that (i) maps θ1(s1)
to θ2(s2) and (ii) for each infinite unordered primitive type fixes all the ele-
ments not appearing in θ1(s1) or in θ2(s2). We can now reduce the domains
of all infinite unordered primitive types to finite sets consisting only of the
elements that appear in the state θ1(s1) or in θ2(s2). Now θ1(s1) and θ2(s2)
are symmetric under the allowed domain permutation group for the reduced
domains iff they are under the original allowed domain permutation group.
Furthermore, if θ1′(s

′
1) = θ2′(s

′
2), where θ1′ and θ2′ are allowed domain per-

mutations under the reduced domains, then θ1′(θ1(s1)) = θ2′(θ1(s2)) when
θ1′ and θ2′ are interpreted as if they were allowed domain permutations for
the unreduced domains. Thus the (canonical) representatives computer un-
der the reduced domains can be directly used as (canonical) representatives
of the original states.

8 ALGORITHMS BASED ON CHARACTERISTIC GRAPHS

Recall Sec. 4 describing characteristic graphs for states. Assuming that we
have an algorithm deciding whether two node labeled, edge weighted di-
rected graphs are isomorphic, the obvious algorithm for deciding whether
two states are symmetric under the group Θ of all allowed domain permuta-
tions is to build the characteristic graphs Gs and Gs′ for the two states s and s′

in question and then check whether Gs and Gs′ are isomorphic. (In the case
our graph isomorphism algorithm only supports a weaker form of graphs,
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say node labeled undirected graphs, we have to transform the characteristic
graph into that graph class by replacing edges with additional, appropriately
labeled vertices.)

We now show how to obtain a canonical representative function for states,
provided that we have a canonizer for graphs. Formally, a canonizer for
graphs is a function K from graphs to graphs such that (i) for all graphs
G, G and K(G) are isomorphic, and (ii) if two graphs G and G′ are iso-
morphic, then K(G) = K(G′). Furthermore, we assume a canonizer that
produces graphs that have the vertex set drawn from {1, 2, . . . }. That is, if
G has a finite vertex set V , then the canonical form K(G) has the vertex set
{1, 2, . . . , |V |}. In addition, it is assumed that an isomorphism κ from G
to K(G) is provided. For instance, the nauty tool [McKay 1990] includes a
canonizer that also gives a mapping κ.

A graph canonizer K is extended to KS operating on states as follows.
Given a state s, consider its characteristic graph Gs = 〈V, . . .〉. Assume that
κ is a mapping from the vertices of Gs to the vertices of its canonical version
K(Gs). Take the allowed domain permutation θ =

(
θT
)
T∈TP

that is compat-
ible with κ, meaning that the following rules are fulfilled.

– For each cyclic primitive type T with DT = {v1, . . . , vn}, consider the
set {κ(T ::v) | v ∈ DT} of κ-images of the nodes in the characteristic
graph corresponding to the elements in the domain of T . Now θT is the
one that maps the element v ∈ DT having the smallest value κ(T ::v)
in the set to v1.

– For each unordered primitive type T with DT = {v1, . . . , vn}, θT is
the one that maps an element v ∈ DT to vi iff v has the ith smallest
value κ(T ::v).

We denote the state θ(s) by KS(s). The whole algorithm is shown in Alg. 3.
The next theorem establishes the correctness of the algorithm.

Algorithm 3 Representative algorithm 3
Input: A state s

Output: A canonical representative state for s

Require: A graph canonizer K
1: Build the characteristic graph Gs

2: Compute a mapping κ from Gs to its canonical version K(Gs)
3: Take the allowed domain permutation θ that is compatible with κ
4: Return θ(s) as the canonical representative state

Theorem 8.1 The function KS is a canonical representative function.

Example 8.2 Consider the states s1 = {U 7→ 〈ta, s0〉+〈tb, s3〉, V 7→ s1 + s4}
and s2 = {U 7→ 〈ta, s4〉+〈tb, s1〉, V 7→ s2 + s5}. The states are symmetric
since both

θ1 =
(
θSecs

1 = ( s0 s1 s2 s3 s4 s5
s4 s5 s0 s1 s2 s3 ) , θTrains

1 =
( ta tb

ta tb

))
and

θ2 =
(
θSecs

2 = ( s0 s1 s2 s3 s4 s5
s1 s2 s3 s4 s5 s0 ) , θTrains

2 =
( ta tb

tb ta

))
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Figure 12: Two characteristic graphs and their common canonical version

map s1 to s2. The characteristic graphs Gs1 and Gs2 of the states are depicted
in Figs. 12(a) and 12(b), respectively. In the figures, we use the following
common abbreviations for vertex names: v5 = Trains::ta, v6 = Trains::tb,
v7 = Secs::s0, v8 = Secs::s1, v9 = Secs::s2, v10 = Secs::s3, v11 = Secs::s4

and v12 = Secs::s5. Assume that a graph canonizer produces the canonical
version K(Gs1) = K(Gs2) shown in Fig. 12(c) for these characteristic graphs.

There are two isomorphisms from Gs1 to K(Gs1):

κ1,1 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 1 2 11 12 6 9 5 8 10 14

)
and

κ1,2 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 2 1 12 11 8 10 14 6 9 5

)
.

The two allowed domain permutations compatible with these isomorphisms
are

θs1,1 =
(
θSecs

s1,1
= ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
s1,1

=
( ta tb

ta tb

))
and

θs1,2 =
(
θSecs

s1,2
= ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
s1,2

=
( ta tb

tb ta

))
,

respectively. The canonical representative state for s1 is thus

KS(s1) = θs1,1(s1) = θs1,2(s1) = {U 7→ 〈ta, s4〉+〈tb, s1〉, V 7→ s2 + s5}.

Similarly, there are two isomorphisms from Gs2 to K(Gs2):

κ2,1 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 1 2 11 12 5 8 10 14 6 9

)
and

κ2,2 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 2 1 12 11 14 6 9 5 8 10

)
.

The two allowed domain permutations compatible with these isomorphisms
are

θs2,1 =
(
θSecs

s2,1
= ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
s2,1

=
( ta tb

ta tb

))
and

θs2,2 =
(
θSecs

s2,2
= ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains
s2,2

=
( ta tb

tb ta

))
,
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respectively. The canonical representative state for s2 is thus

KS(s2) = θs2,1(s2) = θs2,2(s2) = {U 7→ 〈ta, s4〉+〈tb, s1〉, V 7→ s2 + s5}

which equals to KS(s1). ♣

Note that the algorithms Alg. 1 and Alg. 3 could be combined as follows.
Given a state, first compute the partition G(s) for it by using a fixed invariant
partition generator G. If G(s) is discrete, then return the state θ̂(s) as the
canonical representative state, where θ̂ is the allowed domain permutation
compatible with G(s). If

(
pT
)
T∈TP

= G(s) is not discrete, build the char-
acteristic graph Gs. Then change the label of each vertex of form T ::v for a
permutable primitive type T from T to T.incell(pT , v), and proceed to line
2 of algorithm Alg. 3.

9 SOME EXPERIMENTAL RESULTS

We have implemented the algorithms proposed in this report in the version
3.1 of the Murϕ tool. In this section we present some experimental results on
the example systems in the Murϕ distribution as well as on some others. The
original Murϕ tool has four representative algorithms, described by the help
page of the tool and in [Ip 1996]. The first one simply applies all the allowed
domain permutations to the state in question and returns the smallest state
obtained as the canonical representative state. The other three algorithms
first build an ordered partition as in this text by using some invariants and
then apply all, 10, or 1, respectively, domain permutations compatible with
the partition to the state and return the smallest state found this way as the
representative state. The algorithm Alg. 1 in this work is basically the last
Murϕ algorithm except that we use more powerful invariants for building
the partition. In more detail, the invariant partition generator in algorithms
Alg. 1 and Alg. 2 is obtained as follows. First, we apply the invariants for
ordered structured types described in Sec. 5.4 on state variables if possible.
Then, for the other state variables, we apply the hash-like invariants described
in Sec. 5.4 until no refinement occurs. In algorithm Alg. 2, the applied
partition refiner is produced by refining with the hash-like invariants.

In addition to the example systems in the Murϕ distribution, we use the
following graph enumeration systems inspired by the proof of Thm. 3.4 in
[Ip 1996]. Figure 13 shows a Murϕ program called graphs5.m. It has the
unordered primitive type (scalar set) called Vertex with the domain of size
5 for the vertices of a graph, and one state variable called edges of type
AssocArray(Vertex,AssocArray(Vertex,Bool)) with the intuition that each
vertex is associated with each vertex and a Boolean value describing whether
there is an edge from the first vertex to the second one. The initial state
is such that all the edges except self-loops are in it. The transition (rule)
“Delete Edge” then removes one (undirected) edge, meaning that the reach-
ability graph of the system consists of all the self-loopless (undirected) graphs
with 5 vertices. Consequently, the (optimal) symmetry reduced reachabil-
ity graph consists of all such graphs up to isomorphism. Changing the rule
“Delete Edge” into
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Ruleset i:Vertex do
Ruleset j:Vertex do
Rule "Delete edge"
edges[i][j]=TRUE ==> edges[i][j] := FALSE;

EndRule;
EndRuleset;
EndRuleset;

results in system called digraphs5.m, enumerating all the directed graphs of
5 vertices.
const
nof_vertices: 5;
type
Vertex: scalarset(nof_vertices);
var
edges: Array[Vertex] of Array[Vertex] of boolean;
Startstate
Begin
for i:Vertex do for j:Vertex do
if(i!=j) then edges[i][j] := true; else edge s[i][j]:=false; end;

end; end;
End;

Ruleset i:Vertex do
Ruleset j:Vertex do
Rule "Delete edge"
edges[i][j]=TRUE ==> edges[i][j] := FALSE; edges[j][i] := FALSE;
EndRule;
EndRuleset;
EndRuleset;

Invariant "dummy"
TRUE

Figure 13: A graph enumeration system

Table 1 shows the data of the experiments, run in an AMD Athlon 1GHz
processor powered PC machine under the Linux operating system. The run-
ning times reported are in seconds. Note that the Murϕ algorithms 1 and 2
as well as algorithm Alg. 3 are canonical representative functions and thus
the state columns for these algorithms give the size of the optimally reduced
reachability graph.

As the Murϕ examples (from adash to n_peterson) show, algorithm Alg. 1
is quite fast and produces almost optimally reduced reachability graphs in
these examples. In some cases it produces considerably smaller number of
states than the original Murϕ algorithm 4, which is due to the use of more
powerful invariants, especially the hash-like invariants described in Sec. 5.4.
Usually it slightly outperforms (in terms of generated states) even the Murϕ
algorithm 3 which has an advantage of trying 10 permutations instead of
just selecting an arbitrary one. Interestingly, the algorithm Alg. 2 produces
optimally reduced reachability graphs for these instances although it is not
a canonical representative algorithm. Furthermore, it is not significantly
slower than algorithm Alg. 1.

In the graph enumeration problems (graphn and digraphn), the algo-
rithms Alg. 1 and 2 perform very well, producing reachability graphs that
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are reasonably close to the optimal ones. Again, especially the algorithm
Alg. 2 produces nearly optimal results in reasonably short time. The Murϕ
algorithms 2–4 do not perform very well because the invariants implemented
in the standard Murϕ tool cannot do anything in these systems. Note that
although the number of states in the reduced reachability graphs can be very
small, the number of times the representative function is called can be much
bigger. For instance, on the problem instance graph8 the algorithm Alg. 2
produces a reachability graph with 12376 states but with 346528 edges (exe-
cuted transitions), meaning that the representative function is actually called
346528 times during the reachability graph generation.

We have also implemented the algorithm Alg. 3 by using the nauty tool
[McKay 1990] as the graph canonizer. The bad experimental results shown
in Table 1 are probably due to the fact that the characteristics graphs of states
are quite large. The graphs can be large to begin with, and in addition, as
nauty is specially optimized for undirected graphs having no edge weights,
we had to add some nodes into the graphs in order to use nauty. As an ex-
ample, the nauty version of the characteristic graph of a state in the eadash
instance has 2768 vertices. Furthermore, the nauty tool is designed for dense
graphs — the graphs are represented as adjacency matrixes. Thus a charac-
teristic graph of a state in the eadash instance takes almost one megabyte of
memory to represent. This considerably slows down the partition refinement
algorithms in nauty. Therefore, even though the search tree for the charac-
teristic graph of a state in nauty is usually very small, it may take a lot of time
to compute it. The results for algorithm Alg. 3 might look different if we had
a graph canonizer designed for directed, edge weighted, and sparse graphs.

10 SOME RELATED WORK

The algorithms in the Murϕ tool were already discussed in the previous sec-
tion. The main difference between Alg. 1 and the Murϕ algorithms is that we
use more powerful invariants, especially the hash-like invariants in Sec. 5.4
are novel. Furthermore, we also handle cyclic primitive types (non-reflexive
ring symmetries in the Murϕ terminology) in a unified way. The two other
algorithm presented in this report are new.

The approach taken in [Sistla et al. 2000] is discussed in Sec. 6.4.
In [Huber et al. 1985; Jensen 1995] a very elementary version of the parti-

tion refinement process is given and applied to checking whether two mark-
ings of a colored Petri net are symmetric. Especially, no other structured
types than of form Multi-Set(T ), where T is an unordered primitive type, are
handled.

Recently, an approach based on computational group theory was pre-
sented in [Lorentsen and Kristensen 2001]. The idea there is that, given
a state s, first compute the stabilizer group Stab(Θ, s) and then check all the
|Θ| / |Stab(Θ, s)| left coset representative permutations of Stab(Θ, s) in Θ
and select the smallest state obtained as the canonical representative state.
When |Stab(Θ, s)| is large, substantial savings can be obtained compared
to the approach in which all permutations in Θ are tested. However, when-
ever |Stab(Θ, s)| is very small, no such large savings are obtained; especially
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system Murϕ Murϕ Murϕ Murϕ
name alg. 1 alg. 2 alg. 3 alg. 4

states time states time states time states time
adash 10466 7 10466 7 10466 7 10471 7

cache3 31433 88 31433 8 31433 5 31433 5
eadash 133426 524 133426 374 133480 423 191088 378
ldash 254743 542 254743 403 254974 423 314194 447

mcslock1 23636 3 23636 3 23645 3 24668 3
mcslock2 540219 57 540219 63 540219 64 542071 61

list6 23410 7 23410 2 23410 2 23446 2
n_peterson 163298 5341 163298 42 163298 42 163298 42
digraphs3 16 1 16 1 16 1 64 1
digraphs4 218 1 218 1 554 1 4096 1
digraphs5 9608 111 9608 116 142113 392 >381000 >1h
graphs5 34 1 34 1 183 1 1024 1
graphs6 156 34 156 23 5408 12 32768 14
graphs7 1044 1963 1044 2008 >105000 >1h >141000 >1h
graphs8 >210 >1h >210 >1h >257000 >1h >335000 >1h

system algorithm algorithm algorithm
name Alg. 1 Alg. 2 Alg. 3

states time states time states time
adash 10466 7 10466 7 10466 9766

cache3 31433 5 31433 5 31433 556
eadash 133439 312 133426 311 >200 >1h
ldash 254755 356 254743 354 >1030 >1h

mcslock1 23644 2 23636 2 23636 33
mcslock2 540220 47 540219 47 540219 735

list6 23410 2 23410 2 23410 62
n_peterson 163298 32 163298 35 163298 420
digraphs3 16 1 16 1 16 1
digraphs4 228 1 218 1 218 1
digraphs5 9832 5 9616 5 9608 54
graphs5 40 1 34 1 34 1
graphs6 243 1 156 1 156 5
graphs7 1683 5 1046 4 1044 63
graphs8 19601 99 12376 67 12346 1556

Table 1: Some experimental results

in systems in which most of the reachable states have no self-symmetries
i.e. |Stab(Θ, s)| = 1, all the permutations are tested in most of the cases.
Note that the states for which |Stab(Θ, s)| is very small are also the states
for which the symmetry reduction method has the largest reduction pos-
sibility: the number |Θ| / |Stab(Θ, s)| of symmetric states that can be ig-
nored is large. An advantage of this algorithm is that, as it gives the sta-
bilizer group Stab(Θ, s), some transitions starting from s can be pruned
away (never executed) because they will lead to symmetric successor states.
However, note that computing the group Stab(Θ, s) is in general as hard
as finding the automorphism group of a graph (a task for which we do not
know any polynomial time algorithm). In [Lorentsen and Kristensen 2001],
the stabilizer group Stab(Θ, s) is basically found iteratively by letting Θ1 =
Stab(Θ, s(x1)), Θ2 = Stab(Θ1, s(x2)), . . . , and Θn = Stab(Θn−1, s(xn)),
where x1, . . . , xn are the state variables. Now Θn = Stab(Θ, s). The back-
tracking algorithm presented in [Butler 1991] is used to compute each of the
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groups Stab(Θi, s(xi+1)). However, we could probably compute the stabi-
lizer group Stab(Θ, s) and the lexicographically smallest state symmetric to
s (i.e. a canonical representative state for s) at the same time by the following
procedure. Assuming the state variables x1, . . . , xn, initialize the left coset
θ0 ∗ Θ0 to be I ∗ Θ, where I is the identity domain permutation. Let θi be
a domain permutation in the coset θi−1 ∗ Θi−1 that has minimal θi(s(xi))
(the domains of types are assumed to be totally ordered). The coset after the
ith round is then θi ∗ Θi, where Θi = Stab(Θi−1, s(xi)). Now θn ∗ Θn is a
canonical labeling coset, where θn(s) is the lexicographically smallest state
symmetric to s and Θn = Stab(Θ, s). Now a variant of the backtracking al-
gorithm presented in [Butler 1991] is not only used to compute each of the
groups Θi = Stab(Θi−1, s(xi)) but also the domain permutation θi in the
coset θi−1 ∗Θi−1 that has minimal θi(s(xi)).

In [Chiola et al. 1991] an algorithm is presented for computing a symbolic
representative marking for each encountered marking in the context of Well-
Formed Nets (WFNs).

11 CONCLUSIONS

In this report we have presented symmetry reduction algorithms under data
type symmetries. The first two algorithms resemble the preprocessing and
search phases, respectively, of common graph isomorphism checking algo-
rithms. The first algorithm, given a state, produces an ordered partition of the
elements of the permutable primitive types, selects one permutation based on
the partition and returns the permuted state as the representative state. The
difference between the existing algorithms in the Murϕ tool [Ip 1996] and
the first algorithm is that more powerful invariants are used to obtain the
ordered partition. The second algorithm improves the first one by selecting
an arbitrary path in the search tree whose root is the partition produced in
the first algorithm and then returns the state permuted with the permutation
associated with the leaf partition as the representative state. The third al-
gorithm presented exploits the characteristic graphs of states, i.e. graphs that
are isomorphic iff the corresponding states are symmetric. The existing graph
isomorphism/canonicalization algorithms are then used to canonicalize the
characteristic graph of a state, resulting in the canonical representative state
for the state. Some experimental results were also presented, showing that
the algorithms are competitive against the previous ones implemented in the
Murϕ tool.
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A PROOFS

Proof of Theorem 3.2

Theorem 3.2 Assume a domain permutation ψ ∈ Ψ that maps a state s1 to
s2 i.e. ψ(s1) = s2. Then

1. Stab(Ψ, s2) = ψ ∗ Stab(Ψ, s1) ∗ ψ−1, where ψ ∗ Stab(Ψ, s1) ∗ ψ−1 =
{ψ ∗ ψ′ ∗ ψ−1 | ψ′ ∈ Stab(Ψ, s1)}, and
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2. the left coset ψ ∗ Stab(Ψ, s1) = {ψ ∗ ψ′ | ψ′ ∈ Stab(Ψ, s1)} is exactly
the set of all domain permutations in Ψ mapping s1 to s2.

Consequently, (i) |Stab(Ψ, s1)| = |Stab(Ψ, s2)|, (ii) there are |Stab(Ψ, s1)|
domain permutations mapping s1 to s2, and (iii) there are |Ψ| / |Stab(Ψ, s1)|
states that are Ψ-symmetric to s1.

Proof. Part 1. If ψ′ ∈ Stab(Ψ, s1), then (ψ ∗ ψ′ ∗ ψ−1)(s2) = (ψ ∗ ψ′)(s1) =
ψ(s1) = s2 implying that ψ ∗ ψ′ ∗ ψ−1 ∈ Stab(Ψ, s2) and Stab(Ψ, s2) ⊇
ψ ∗ Stab(Ψ, s1) ∗ ψ−1. On the other hand, if ψ′′ ∈ Stab(Ψ, s2), then
ψ−1 ∗ ψ′′ ∗ ψ ∈ Stab(Ψ, s1) and ψ′′ ∈ ψ ∗ Stab(Ψ, s1) ∗ ψ−1 implying that
Stab(Ψ, s2) ⊆ ψ ∗ Stab(Ψ, s1) ∗ ψ−1.

Part 2. Each domain permutation in the left coset ψ ∗ Stab(Ψ, s1) maps
s1 to s2 since (ψ ∗ ψ′)(s1) = ψ(s1) = s2 whenever ψ′ ∈ Stab(Ψ, s1). On
the other hand, assume that ψ′′(s1) = s2 for a domain permutation ψ′′ ∈ Ψ.
Thus (ψ−1 ∗ ψ′′)(s1) = ψ−1(s2) = s1 implying that ψ−1 ∗ ψ′′ ∈ Stab(Ψ, s1).
But now ψ ∗ (ψ−1 ∗ ψ′′) = ψ′′ belongs to the left coset ψ ∗ Stab(Ψ, s1). �

Proof of Lemma 5.3

Lemma 5.3 Let θ̂ be an allowed domain permutation compatible with a
partition p. Then for each allowed domain permutation θ it holds that the
allowed domain permutation θ̂ ∗ θ−1 is compatible with the partition θ(p).

Proof. Let θ̂ =
(
θ̂T
)
T∈TP

, p =
(
pT
)
T∈TP

, and pT = [CT
1 , . . . , C

T
cT

].

For a cyclic primitive type T , assume that θ̂T maps a vi ∈ CT
1 to v1,

i.e. θ̂T (vi) = v1. Observe that θ̂T = θ̂T ◦ θT−1 ◦ θT and therefore (θ̂T ◦
θT
−1

)(θT (vi)) = v1. But now θT (vi) is in the first cell for the type T in the
partition θ(p) and thus θ̂∗θ−1 fulfills the compatibility requirement w.r.t. θ(p)
for the type T .

For an unordered primitive type T , assume that for vi, vj ∈ DT it holds
that incell(θT (pT ), vi) < incell(θT (pT ), vj). Thus incell(pT , θT

−1
(vi)) <

incell(pT , θT
−1

(vj)) holds, too. As θ̂ is compatible with p, θ̂T (θT
−1

(vi)) =

vi′ = (θ̂T ◦ θT−1
)(vi) and θ̂T (θT

−1
(vj)) = vj′ = (θ̂T ◦ θT−1

)(vj) such that
i′ < j′, and thus θ̂ ∗ θ−1 fulfills the compatibility requirement w.r.t. θ(p) for
the type T . �

Proof of Corollary 5.4

Corollary 5.4 Assume an invariant partition generator G, and take two sym-
metric states, s1 and s2. Let θ̂1 be an allowed domain permutation compat-
ible with the partition G(s1). Then there is an allowed domain permutation
θ̂2 compatible with the partition G(s2) such that θ̂1(s1) = θ̂2(s2).

Proof. First, there is an allowed domain permutation θ̂2 such that θ̂1(s1) =

θ̂2(s2). This is because s1 and s2 are symmetric and therefore there is an
allowed domain permutation θ such that θ(s1) = s2. Thus the requirement
θ̂1(s1) = θ̂2(s2) is equivalent to θ̂1(s1) = θ̂2(θ(s1)) = (θ̂2 ∗θ)(s1). Obviously,
θ̂2 = θ̂1 ∗ θ−1 is a solution to this. Second, since G is an invariant partition
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generator, G(s2) = G(θ(s1)) = θ(G(s1)). By Lemma 5.3, θ̂2 = θ̂1 ∗ θ−1 is
compatible with G(s2) = θ(G(s1)) because θ̂1 is compatible with G(s1). �

Proof of Lemma 5.7

Lemma 5.7 The composition R1 ?R2 of two partition refiners R1 and R2,
defined by (R1 ?R2)(s, p) = R2(s,R1(s, p)), is a partition refiner.

Proof. Clearly pref = (R1 ?R2)(s, p) = R2(s,R1(s, p)) is a cell order pre-
serving refinement of p since R2(s,R1(s, p)) � R1(s, p) � p. On the other
hand, θ((R1 ? R2)(s, p)) = θ(R2(s,R1(s, p))) = R2(θ(s), θ(R1(s, p))) =
R2(θ(s),R1(θ(s), θ(p))) = (R1 ?R2)(θ(s), θ(p)). �

Proof of Theorem 5.8

Theorem 5.8 For a partition refiner R, the function GR(s) = R(s, p0),
where p0 =

(
pT0 = [DT ]

)
T∈TP

, is an invariant partition generator.

Proof. Observe that θ(p0) = p0 for any allowed domain permutation θ. Thus
GR(θ(s)) = R(θ(s), p0) = R(θ(s), θ(p0)) = θ(R(s, p0)) = θ(GR(s)). �

Proof of Lemma 5.11

Lemma 5.11 If I is a type invariant for a primitive type T in a type T ′ and x
is a state variable of type T ′, then Ix(v, s, p) = I(v, s(x), p) is an invariant for
T .

Proof. For all θ ∈ Θ, Ix(θT (v), θ(s), θ(p)) = I(θT (v), (θ(s))(x), θ(p)) =
I(θT (v), θT

′
(s(x)), θ(p)) = I(v, s(x), p) = Ix(v, s(x), p). �

Proof of Lemma 5.14

Lemma 5.14 The functionRI is a partition refiner.

Proof. The fact that RI(s, p) � p follows directly from the items 2(a) and
2(b) of the definition.

Take any state s, any partition p =
(
pT
)
T∈TP

, and any allowed domain
permutation θ =

(
θT
)
T∈TP

. We must show that θ(R(s, p)) = R(θ(s), θ(p)).
First, consider any primitive type T ′ 6= T . Since the invariant I is for the

type T , (i) the partition for a T ′ in the partition R(s, p) is pT , and (ii) the
partition for a T ′ in the partitionR(θ(s), θ(p)) is θ(pT ).

Now consider the partitions for the type T inR(s, p) and inR(θ(s), θ(p)).
Take any two elements v, v′ ∈ DT . Now it suffices to notice the following:

1. v and v′ belong to the same cell in the partition pT iff θT (v) and θT (v′)
belong to the same cell in the partition θ(pT ),

2. v belongs to an earlier cell than v′ in pT iff θT (v) belongs to an earlier
cell than θT (v′) in θ(pT ),

3. I(v, s, p) = I(v′, s, p) iff I(θT (v), θ(s), θ(p)) = I(θT (v′), θ(s), θ(p)),
and

4. I(v, s, p) < I(v′, s, p) iff I(θT (v), θ(s), θ(p)) < I(θT (v′), θ(s), θ(p)).
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Thus CT
i is the ith cell in the partition for the type T inR(s, p) iff θT (CT

i ) is
the ith cell in the partition for the type T inR(θ(s), θ(p)). �

Proof of Lemma 5.16

Lemma 5.16 The function IT,succ is an invariant.

Proof. Assume that succT (v) belongs to the ith cell in the partition pT . Then
for an allowed domain permutation θ =

(
θT
)
T∈TP

in which θT = succkT for
a 1 ≤ k ≤ |DT |, succkT (succT (v)) = succT (succkT (v)) = succT (θT (v))
belongs to the ith cell in the partition θ(pT ). �

Proof of Lemma 5.18

Lemma 5.18 If θ =
(
θT
)
T∈T is an allowed domain permutation, then

gT (v, T ′, v′, p) = gT (θT (v), T ′, θT
′
(v′), θ(p)).

Proof. By induction on the structure of T ′.
Induction base. Assume an allowed domain permutation θ =

(
θT
)
T∈T .

1. For an ordered primitive type T ′,

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′(θ

T ′(v′))

= hT ′(v
′)

= gT (v, T ′, v′, p)

since θT ′(v′) = v′ for an ordered primitive type T ′.
2. Let T ′ be a cyclic primitive type with DT ′ = {v1, . . . , vn}.

(a) If T 6= T ′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′(incell(θ(pT

′
), θT

′
(v′)))

= hT ′(incell(pT
′
, v′))

= gT (v, T ′, v′, p).

(b) If T = T ′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(k, incell(θ(pT

′
), θT

′
(v′)))

= hT ′,2(k, incell(pT
′
, v′))

= gT (v, T ′, v′, p)

because v′ is the k-successor of v iff θT (v′) is the k-successor of
θT (v).

3. Let T ′ be an unordered primitive type.
(a) If T 6= T ′ or T = T ′ ∧ v 6= v′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(incell(θ(pT

′
), θT

′
(v′)), 0)

= hT ′,2(incell(pT
′
, v′), 0)

= gT (v, T ′, v′, p).

Note that in the case T = T ′, v 6= v′ iff θT (v) 6= θT (v′).
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(b) If T = T ′ and v = v′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(incell(θ(pT

′
), θT

′
(v′)), 1)

= hT ′,2(incell(pT
′
, v′), 1)

= gT (v, T ′, v′, p).

Again, if T = T ′, then v = v′ iff θT (v) = θT (v′).

Induction hypothesis. Assume that the lemma holds for types T1, . . . ,Tn.
Induction step.

– For a list type T ′ = List(T1),

gT (θT (v), T ′, θT
′
(〈v1, . . . , vn〉), θ(p)) =

gT (θT (v), T ′, 〈θT1(v1), . . . , θT1(vn)〉, θ(p)) =
hT ′,n(gT (θT (v), T1, θ

T1(v1), θ(p)), . . . , gT (θT (v), T1, θ
T1(vn), θ(p))) =

hT ′,n(gT (v, T1, v1, p), . . . , gT (v, T1, vn, p)) =
gT (v, T ′, 〈v1, . . . , vn〉, p).

– For a structure type T ′ = Struct(T1, . . . , Tn),

gT (θT (v), T ′, θT
′
(〈v1, . . . , vn〉), θ(p)) =

gT (θT (v), T ′, 〈θT1(v1), . . . , θTn(vn)〉, θ(p)) =
hT ′,n(gT (θT (v), T1, θ

T1(v1), θ(p)), ..., gT (θT (v), Tn, θTn(vn), θ(p))) =
hT ′,n(gT (v, T1, v1, p), . . . , gT (v, Tn, vn, p)) =

gT (v, T ′, 〈v1, . . . , vn〉, p).

– For a set type T ′ = Set(T1),

gT (θT (v), T ′, θT
′
(v′), θ(p)) =

hT ′

 ⊕
v′′∈θT ′ (v′)

gT (θT (v), T1, v
′′, θ(p))

 =

hT ′

 ⊕
θT1 (v′′)∈θT ′ (v′)

gT (θT (v), T1, θ
T1(v′′), θ(p))

 =

hT ′

 ⊕
θT1 (v′′)∈θT ′ (v′)

gT (v, T1, v
′′, p)

 =

hT ′

(⊕
v′′∈v′

gT (v, T1, v
′′, p)

)
=

gT (v, T ′, v′, p)

by using the commutativity and associativity of ⊕, and by noticing that
for all v′ ∈ DSet(T1) and all v′′ ∈ DT1 , v′′ ∈ v′ iff θT1(v′′) ∈ θSet(T1)(v′).

– Assume that T ′ = Multi-Set(T1). Now an element v′′ ∈ DT1 has mul-
tiplicity n in a multi-set v′ ∈ DMulti-Set(T1) iff the element θT1(v′′) has
multiplicity n in the multi-set θT ′(v′). The rest of the proof is similar to
the previous case.
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– Let T ′ = AssocArray(T1, T2). Now for each v′ ∈ DAssocArray(T1,T2), a
pair 〈v1, v2〉 ∈ v′ iff 〈θT1(v1), θT2(v2)〉 ∈ θT ′(v′). The rest of the proof
is similar to the case T ′ = Set(T1).

– For an union type T ′ = Union(T1, . . . , Tn),

gT (θT (v), T ′, θT
′
(〈Ti, v′〉), θ(p)) = gT (θT (v), T ′, 〈Ti, θTi(v′)〉, θ(p))

= hT ′(gT (θT (v), Ti, θ
Ti(v′), θ(p)))

= hT ′(gT (v, Ti, v
′, p))

= gT (v, T ′, 〈Ti, v′〉, p).

�

Proof of Theorem 6.3

Theorem 6.3 For each allowed domain permutation θ, a partition pchild is a
v-child of the root node of the search tree T (s, p) iff the partition θ(pchild) is
a θT (v)-child of the root node of the search tree T (θ(s), θ(p)).

Proof. If p is discrete, then T (s, p) has no children. But now θ(p) is also
discrete and T (θ(s), θ(p)) has no children.

Clearly, pT = [CT
1 , C

T
2 , . . . ] is the first non-discrete partition in p iff

θ(pT ) = [θT (CT
1 ), θT (CT

2 ), . . . ] is the first non-discrete partition in θ(p).
Furthermore, CT

i = {vi,1, vi,2, . . . } is the first non-singleton cell in pT iff
θT (CT

i ) = {θT (vi,1), θT (vi,2), . . . } is the first non-singleton cell in θ(pT ).
Now the root node p of the tree T (s, p) has as its children the nodesR(s, pj),
where for each 1 ≤ j ≤

∣∣CT
i

∣∣ the partition pj is the same as p except that the
partition for T is

pTj = [CT
1 , . . . , C

T
i−1, {vi,j}, CT

i \ {vi,j}, CT
i+1, . . . ].

But the root node θ(p) of the tree T (θ(s), θ(p)) has as its children the nodes
R(θ(s), pj′), where for each 1 ≤ j ≤

∣∣θT (CT
i )
∣∣ =

∣∣CT
i

∣∣ the partition pj′ is
the same as θ(p) except that the partition for T is

pTj′ = [θT (CT1 ), . . . , θT (CTi−1), {θT (vi,j)}, θT (CTi ) \ {θT (vi,j)}, θT (CTi+1), . . . ]

which equals to θ(pTj ). Thus the root node θ(p) of the tree T (θ(s), θ(p)) has
as its children the nodes R(θ(s), θ(pj)) = θ(R(s, pj)), meaning that pchild is
a vi,j -child of T (s, p) iff θ(pchild) is a θT (vi,j)-child of T (θ(s), θ(p)). �

Proof of Lemma 6.8

Lemma 6.8 For any allowed domain permutation θ, ST (s,p) = ST (θ(s),θ(p))

and consequently ST (s) = ST (θ(s))

Proof. For all allowed domain permutations θ, (i) by Cor. 6.5 a partition
pleaf is a leaf node in T (s, p) iff θ(pleaf) is a leaf node in T (θ(s), θ(p)), (ii) θ̂
is compatible with pleaf iff θ̂ ∗ θ−1 is compatible with the partition θ(pleaf) (by
Lemma 5.3 and the fact that pleaf is discrete), and (iii) thus (θ̂ ∗ θ−1)(θ(s)) =
θ̂(s) ∈ ST (θ(s),θ(p)) iff θ̂(s) ∈ ST (s,p). �
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Proof of Lemma 6.9

Lemma 6.9 If a state s is trivial/easy/hard, then θ(s) is also trivial/easy/hard
for any allowed domain permutation θ.

Proof. If a state s is trivial, then the search tree T (s,G(s)) contains only one
node, i.e. G(s) is a discrete partition. But now for any allowed domain per-
mutation θ, it must be that G(θ(s)) = θ(G(s)), which is a discrete partition,
and thus the search tree T (θ(s),G(θ(s))) contains only one node and θ(s) is
also trivial.

Now assume that a state s is easy and take any allowed domain permu-
tation θ. Now the search tree T (θ(s),G(θ(s))) must contain more than one
node: if it contained only one node, θ(s) would be trivial and by the previous
case θ−1(θ(s)) = s would also be trivial, which contradicts the assumption
that s is easy. Take any two leaf nodes, say p1′ and p2′ , in the search tree
T (θ(s),G(θ(s))). By Corollary 6.6, θ−1(p1′) and θ−1(p2′) are leaf nodes in
the search tree T (s,G(s)). Since s is easy, there is a self-symmetry θself-symm

of s such that θself-symm(θ−1(p1′)) = θ−1(p2′). Now θ ∗ θself-symm ∗ θ−1 is a
self-symmetry of θ(s) and (θ ∗ θself-symm ∗ θ−1)(p1′) = θ(θself-symm(θ−1(p1′))) =
θ(θ−1(p2′)) = p2′ . Thus θ(s) is also easy.

If a state s is hard, then the state θ(s) must also be hard for any allowed do-
main permutation θ. For if θ(s) were trivial (easy), then by the previous cases
θ−1(θ(s)) = s would also be trivial (easy), which contradicts the assumption
that s is hard. �

Proof of Theorem 6.10

Theorem 6.10 If a state s is trivial, then Algorithm 1 produces a canonical
representative for it.

Proof. Since s is trivial, the partition G(s) is a discrete partition, there is a
unique allowed domain permutation θ̂ compatible with G(s), and the rep-
resentative state is θ̂(s). For any allowed domain permutation θ, θ(s) is
also trivial, the partition G(θ(s)) = θ(G(s)) is discrete, θ̂ ∗ θ−1 is com-
patible with θ(G(s)) by Lemma 5.3 and the representative state for θ(s) is
(θ̂ ∗ θ−1)(θ(s)) = θ̂(s). �

Proof of Theorem 6.11

Theorem 6.11 If a state s is trivial or easy, then Algorithm 2 produces a
canonical representative for it.

Proof. The case in which s is trivial follows directly from Thm. 6.10. Now
assume that s is easy.

We first have to show that choosing any path in the search tree T (s,G(s))
leads to the same representative state for s. Take any two leaf nodes, say
p1 and p2, in the search tree T (s,G(s)). Since s is easy, there is a self-
symmetry θ mapping p1 to p2, i.e. θ(p1) = p2. If θ̂ is the unique allowed
domain permutation compatible with p1, then θ̂ ∗ θ−1 is the unique allowed
domain permutation compatible with θ(p1) = p2 by Lemma 5.3. But now
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(θ̂ ∗ θ−1)(s) = θ̂(θ−1(s)) = θ̂(s) since θ−1 is a self-symmetry of s because θ
is.

Finally, we have to show that for any allowed domain permutation θ, the
representative state for the easy state θ(s) is the same as the representative
state for s. Take any leaf node p1′ in the search tree T (θ(s),G(θ(s))) and
the unique allowed domain permutation θ̂1′ compatible with p1′ . By Corol-
lary 6.6, θ−1(p′1) is a leaf node in the search tree T (s,G(s)). By Lemma 5.3,
θ̂1′ ∗ (θ−1)−1 = θ̂1′ ∗θ is the unique allowed domain permutation compatible
with θ−1(p′1). But now (θ̂1′ ∗ θ)(s) = θ̂1′(θ(s)) and the representative states
for s and θ(s) coincide. �

Proof of Theorem 8.1

Theorem 8.1 The function KS is a canonical representative function.

Proof. Obviously, for any state s, s and KS(s) are symmetric since KS(s) is
obtained from s by using an allowed domain permutation.

Assume two symmetric states s1 and s2. We now have to prove that
KS(s1) = KS(s2). Take

1. the characteristic graphs Gs1 = 〈V1, . . .〉 and Gs2 = 〈V2, . . .〉 (which are
isomorphic since s1 and s2 are symmetric),

2. their canonical versions K(Gs1) and K(Gs2) (which are equal since Gs1

and Gs2 are isomorphic),
3. any isomorphism κ1 from Gs1 to K(Gs1) and any isomorphism κ2 from
Gs2 to K(Gs2), and

4. the two allowed domain permutations θκ1 =
(
θTκ1

)
T∈TP

and θκ2 =(
θTκ2

)
T∈TP

that are compatible with κ1 and κ2, respectively.

Our goal is to show that θκ1(s1) = θκ2(s2). For this it suffices to show that
θκ2

−1 ∗θκ1 =
(
θTκ2

−1 ◦ θTκ1

)
T∈TP

maps s1 to s2. First, note that κ2
−1 ◦κ1 is an

isomorphism from the characteristic graph Gs1 to Gs2 . By Fact 4.5, there is an
allowed domain permutation θ =

(
θT
)
T∈TP

mapping s1 to s2 such that for all
permutable primitive types T and all v ∈ DT , (κ2

−1 ◦ κ1)(T ::v) = T ::v′ ⇔
θT (v) = v′. It now suffices to show that θκ2

−1 ∗ θκ1 = θ. Also notice that for
any permutable primitive type T , the image κ1({T ::v | v ∈ DT}) of the nodes
in the characteristic graph Gs1 corresponding to the elements of the type must
equal to the image κ2({T ::v | v ∈ DT}) of the nodes in the characteristic
graph Gs2 since the isomorphisms κ1 and κ2 must respect node types. We
now have the following two cases.

1. Let T be a cyclic primitive type with DT = {v1, . . . , vn}. Let v′ ∈ DT

be the element for which κ1(T ::v′) = minv∈DT κ1(T ::v). Similarly,
let v′′ ∈ DT be the element for which κ2(T ::v′′) = minv∈DT κ2(T ::v).
Therefore, θTκ1

(v′) = v1 = θTκ2
(v′′) and θTκ2

−1 ◦ θTκ1
is the one that maps

v′ to v′′. But now also κ1(T ::v′) = κ2(T ::v′′) meaning that (κ2
−1 ◦

κ1)(T ::v′) = T ::v′′ and thus θT must equal to θTκ2

−1 ◦ θTκ1
.

2. Assume that T is an unordered primitive type with DT = {v1, . . . , vn}.
Let v′ ∈ DT be the element having the ith smallest value κ1(T ::v′)
among the vertices of form T ::v in the vertex set set V1. Similarly,
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let v′′ ∈ DT be the element having the ith smallest value κ2(T ::v′′)
among the vertices of form T ::v in the vertex set set V2. Therefore,
θTκ1

(v′) = vi = θTκ2
(v′′) and θTκ2

−1 ◦ θTκ1
maps v′ to v′′. But now also

κ1(T ::v′) = κ2(T ::v′′) and thus (κ2
−1 ◦ κ1)(T ::v′) = T ::v′′.

�
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Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen
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