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ABSTRACT: Computational complexity of the sub-tasks appearing in the
symmetry reduction method for Place/Transition-nets is studied. The first
task of finding the automorphisms (symmetries) of a net is shown to be poly-
nomial time many-one equivalent to the problem of finding the automor-
phisms of a graph. The problem of deciding whether two markings are sym-
metric is shown to be equivalent to the graph isomorphism problem. Surpris-
ingly, this remains to be the case even if the generators for the automorphism
group of the net are known. The problem of constructing the lexicographi-
cally greatest marking symmetric to a given marking (a canonical represen-
tative for the marking) is classified to belong to the lower levels of the poly-
nomial hierarchy, namely to somewhere between FPNP[logn] and FPNP. It is
also discussed how the self-symmetries of a marking can be exploited. Calcu-
lation of such symmetries is classified to be as hard as computing graph auto-
morphism groups. Furthermore, the coverability version of testing marking
symmetricity is shown to be an NP-complete problem. It is shown that un-
fortunately canonical representative markings and the symmetric coverability
problem cannot be combined in a straightforward way.

KEYWORDS: Petri nets, symmetry
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1 INTRODUCTION

Symmetries in a Petri net yield symmetries in its behaviour. This symme-
try can be exploited to alleviate the state-space explosion problem occurring
in the reachability analysis of nets. The symmetry reduction method was
introduced by Huber et al. [1985; 1991] for colored high-level Petri nets.
The method was applied to low-level nets, the formalism of this paper, by
Starke [1991] and further studied in [Schmidt and Starke 1991; Schmidt
1997; 1999; 2000a; 2000b]. The main idea of the method is that the symme-
tries (automorphisms) of a low-level net produce corresponding symmetries
to the state-space of the net. For many verification tasks, such as deadlock
checking, it is sufficient to inspect only one marking in each set of mutu-
ally symmetric markings (orbit). Thus a (potentially exponentially smaller)
quotient reachability graph can be constructed instead of the normal reacha-
bility graph. Schmidt and Starke have presented algorithms for solving many
of the problems involved in the method [Schmidt and Starke 1991; Schmidt
1997; 1999; 2000a; 2000b]. However, the topic of this paper, the compu-
tational complexity issues of the sub-tasks appearing in the method, has not
been addressed before.1

The problem of finding the automorphisms of a net is easily proven to be
as hard as finding the automorphisms of a graph. This is not surprising since
nets can be seen as labelled directed graphs. We show that the problem of de-
ciding whether two markings are symmetric is equivalent (in the polynomial
time many-one reduction sense) to the graph isomorphism problem. Inter-
estingly, this remains to be the case even if the automorphism group of the
net is known. To avoid the pair-wise comparison of markings for symmetry
during the quotient reachability graph generation, a canonical representative
marking for the whole orbit of markings can be generated. This problem is
of course at least as hard as the graph isomorphism problem since solving
it solves the marking symmetry problem, too. In this paper we show that
computing the most obvious canonical representative marking, namely the
lexicographically greatest marking in the orbit, is a problem whose complex-
ity is somewhere between FPNP[logn] and FPNP.

We also introduce the concept of marking-stabilizers (self-symmetries of
markings) which are symmetries of the net that map a marking to itself. We
show that computing the marking-stabilizer group for a marking is as hard
as computing the automorphism group of a graph. We show how marking-
stabilizers improve the generation of quotient reachability graphs by allowing
us to ignore some symmetric transitions. We also demonstrate how marking-
stabilizers can speed up the ”loop over all symmetries”-approach for marking
symmetry.

As the last problem we consider the coverability problem under symme-
tries. It asks, given two markings of a net, whether there is a net automor-
phism such that the first marking covers the second marking when permuted
with the automorphism. An interesting phenomenon happens here: the
problem becomes NP-complete instead of staying as hard as graph isomor-
phism. Furthermore, we show that the symmetric coverability problem does

1For some complexity theoretical results concerning a high-level Petri net formalism, see
[Junttila 1999].
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not, unfortunately, allow itself to be integrated into the canonical represen-
tative marking approach in a straightforward way.

The paper is structured as follows. Section 2 gives the necessary prelimi-
naries and Sec. 3 defines P/T-nets and their symmetries. The complexities of
the fundamental problems of (i) computing net automorphism groups, (ii)
deciding whether two markings are symmetric and (iii) the construction of
canonical representative markings are proven and discussed in Sec. 4. Sec-
tion 5 presents the concept, use and computational complexity of marking-
stabilizers while Sec. 6 deals with the symmetric coverability problem. Fi-
nally, Sec. 7 concludes the paper.

2 PRELIMINARIES

2.1 Computational Complexity Theory

For computational complexity theory in general, see e.g. [Garey and John-
son 1979; Papadimitriou 1995]. Letting A,B ⊆ Σ∗ be languages (deci-
sion problems) over some finite alphabet Σ, we say that A polynomial time
many-one reduces to B, denoted by A ≤p

m B, if there is a polynomial time
computable function R : Σ∗ → Σ∗ such that for all x ∈ Σ∗ it holds that
x ∈ A ⇔ R(x) ∈ B. If both A ≤p

m B and B ≤p
m A hold, we say that A and

B are polynomial time many-one equivalent .In this paper we omit the prefix
“polynomial time” and simply say that A many-one reduces to B or that A
and B are many-one equivalent.

For function problems f, g : Σ∗ → Σ∗, we say that f polynomial time
many-one reduces to g, denoted by f ≤p

m g, if there are polynomial time
computable functions R, S : Σ∗ → Σ∗ such that for all x ∈ Σ∗ it holds
that f(x) = S(g(R(x))). Our reductions are similar to the metric reductions
in [Krentel 1988] as long as we are dealing with complexity classes above
and including P. On the other hand, our reductions may be a bit stronger
than those in [Papadimitriou 1995] since we use polynomial time instead of
logarithmic space. Many-one equivalence for function problems is defined
in the same way as for decision problems.

The usual complexity classes of problems decidable in polynomial time
with deterministic and non-deterministic Turing machines are denoted by P
and NP, respectively. FP (FNP) means the class of function problems com-
putable by (non-)deterministic Turing machines in polynomial time. FPNP

(FPNP[logn]) is the class of function problems computable in polynomial time
by deterministic Turing machines that can access an NP-oracle polynomially
(logarithmically) many times w.r.t. the input size.

2.2 Graph-Theoretical Problems

Since nets can be seen as directed labelled graphs and graph theory is a well-
studied field, we use graph theoretical problems to classify the problems con-
cerning net symmetries.

Definition 2.1 A labelled directed graph is a triple G = 〈V,E, L〉 where V
is a finite set of vertices, E ⊆ V × V is the set of edges and the function L
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assigns each vertex and each edge a label.

A labelled directed graph is undirected if its vertex set is anti-reflexive and
symmetric. Furthermore, it is non-labelled if the range of the labeling func-
tion is a unit set (all labels are the same). A non-labelled undirected graph is
called simply a graph. Two labelled directed graphs, G1 = 〈V1, E1, L1〉 and
G2 = 〈V2, E2, L2〉, are isomorphic iff there is a bijective mapping (isomor-
phism) π : V1 → V2 such that (i) 〈v1, v2〉 ∈ E1 iff 〈π(v1), π(v2)〉 ∈ E2, (ii)
L2(π(v)) = L1(v) for all v ∈ V and (iii) L2(〈π(v1), π(v2)〉) = L1(〈v1, v2〉)
for all 〈v1, v2〉 ∈ E1.

Problem 2.2 GRAPH ISOMORPHISM. Given two labelled directed graphs,
are they isomorphic?

It is easy to see, based on results by Miller [1979], that the graph isomor-
phism problems for (non-labelled, undirected) graphs and labelled directed
graphs are many-one equivalent and therefore we do not distinguish between
them in this work. The graph isomorphism problem is an interesting prob-
lem because, although it clearly belongs to NP, it has not been shown to
belong to P nor to be NP-complete but is one of the main candidates for a
problem to be in between (such problems must exist if P 6= NP as is widely
believed). For more information about the computational complexity of the
graph isomorphism problem, the reader is referred to [Köbler et al. 1993].

A concept closely related to graph isomorphism is that of graph automor-
phisms. An automorphism π of a labelled directed graphG = 〈V,E, L〉 is an
isomorphism from G to itself. The set of all automorphisms of G is denoted
by Aut(G).

Problem 2.3 GRAPH AUTOMORPHISMS. Given a graph G, find Aut(G).

Again, the complexity of the graph automorphism problem is the same for
graphs and labelled directed graphs. GRAPH AUTOMORPHISMS is a func-
tion problem that is polynomial time equivalent to GRAPH ISOMORPHISM,
that is, if either has a polynomial time algorithm, then (and only then) both
have.

For a finite set A, the set of all bijections (permutations) on A is denoted
by Sym(A) and is a group under the function composition operation ◦. Ob-
viously, Aut(G) for a labelled directed graph G = 〈V,E, L〉 is a sub-group
of Sym(V ). In this paper it is assumed that permutation groups (sub-groups
of Sym(A) for a set A) are given by means of their generator sets. We then
know that we can construct, in polynomial time w.r.t. the size of the per-
muted set and the number of generators, a normal form representation of the
group. Furthermore, we can test in polynomial time whether a permutation
belongs to the group [Furst et al. 1980]. For permutation group algorithms,
see e.g. [Butler 1991; Kreher and Stinson 1999].

3 SYMMETRIES OF PLACE/TRANSITION-NETS

The presentation in this section is based on [Starke 1991; Schmidt and Starke
1991; Schmidt 1997; 2000a].
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3.1 P/T-Nets

A Place/Transition-net (or a P/T-net) is a tuple N = 〈P, T, F, V,M0〉, where

1. P is a finite, non-empty set of places,

2. T is a finite, non-empty set of transitions such that P ∩ T = ∅,

3. F ⊆ (P ×T )∪ (T ×P ) is the flow-relation (also called the set of arcs),

4. V : F → N+ maps each arc in F with a multiplicity (we define that
V (〈x, y〉) = 0 if 〈x, y〉 /∈ F ) and

5. M0 : P → N is the initial marking of N .

A marking of N is a function M : P → N and the set of all markings of
N is denoted by M. A marking M can also be denoted by the formal sum∑

p∈P M(p)p. For two markings, M and M ′, M ≤M ′ iff (∀p ∈ P )(M(p) ≤
M ′(p)). A transition t ∈ T is enabled in a marking M if V (〈p, t〉) ≤ M(p)
for all p ∈ P . If t is enabled in M , it may fire and transform M into M ′

defined by M ′(p) = M(p) − V (〈p, t〉) + V (〈t, p〉) for all p ∈ P . This is
denoted by M [t〉 M ′. The reachability graph of N is the labelled transition
system RG(N) = 〈Q,∆,M0〉, where Q ⊆ M and ∆ ⊆ Q × T × Q are
defined inductively by:

1. M0 ∈ Q;

2. if M ∈ Q and M [t〉M1, then M1 ∈ Q and 〈M, t,M1〉 ∈ ∆; and

3. nothing else is in Q or ∆.

A marking M is reachable if it belongs to Q.

3.2 Symmetries of P/T-nets

Symmetries of the netN are automorphisms of the net when seen as labelled
directed graph, i.e., permutations that respect node type, flow relation and arc
annotations.

Definition 3.1 A symmetry (an automorphism) of N is a permutation σ ∈
Sym(P ∪ T ) which

1. respects node type, i.e., σ(P ) = P and σ(T ) = T ;

2. respects the flow relation: 〈x, y〉 ∈ F ⇔ 〈σ(x), σ(y)〉 ∈ F for all x, y ∈
P ∪ T ; and

3. respects the arc multiplicities: V (〈x, y〉) = V (〈σ(x), σ(y)〉) for all
〈x, y〉 ∈ F .

The set of all symmetries of N (the automorphism group of N ) is denoted by
Aut(N) and is a sub-group of Sym(P ∪ T ).
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A symmetry σ of N is extended to operate on the markings of N by letting
the marking σ(M) be the one satisfying (σ(M)) (p) = M(σ−1(p)), or equiv-
alently, (σ(M)) (σ(p)) = M(p). We say that two markings, M and M ′, of N
are symmetric, denoted by M ≡ M ′, if (∃σ ∈ Aut(N))(σ(M) = M ′). The
set of markings symmetric to a marking M is the equivalence class denoted
by [M ] (the orbit of M ). It is these equivalence classes that are exploited in
the symmetry reduction method. Formally, a quotient reachability graph of
N is a labelled transition system 〈Q̃, ∆̃,M ′

0〉, where M ′
0 ∈ [M0] and Q̃ ⊆M,

∆̃ ⊆ Q̃× T × Q̃ are defined inductively by:

1. M ′
0 ∈ Q̃;

2. if M ∈ Q̃ and M [t〉 M1, then M ′
1 ∈ Q̃ and 〈M, t,M ′

1〉 ∈ ∆̃ for a
M ′

1 ∈ [M1]; and

3. nothing else is in Q̃ or ∆̃.

Various properties, such as deadlock freedom, of the net N can be checked
by using a quotient reachability graph of N . For more on these properties
and temporal logic model checking under symmetries, see e.g. [Starke 1991;
Jensen 1995; 1996; Clarke et al. 1996; Emerson and Sistla 1996; Gyuris and
Sistla 1999].

The integration problem in the (inductive) generation of quotient reach-
ability graphs is [Schmidt 1999; 2000b]:

Problem 3.2 Given a set Q̃ of already visited markings and a newly gener-
ated marking M , find out whether there is a marking M ′ ∈ Q̃ such that
M ≡M ′.

There are three basic ways to solve the integration problem [Schmidt 1999;
2000b]:

1. When Aut(N) is known, loop over all symmetries in it and for each σ
of them, check whether σ(M) ∈ Q̃. Of course, for Aut(N) with large
order this is highly infeasible.

2. For each marking M ′ ∈ Q̃, check whether M ′ ≡ M . Symmetry re-
specting hash functions [Schmidt 1999; 2000a; 2000b] can be used to
prune the set of markings of Q̃ that need to be checked.

3. Build a canonical representative marking for M and check whether it
is in Q̃.

Example 3.3 Consider the variant of Genrich’s railroad system net [Genrich
1991] shown in Fig. 1(a). Its reachability graph is shown in Fig. 1(b). The
group Aut(N) is generated by the rotation

σrot =
(
Ua0 Ua1 Ua2 Ua3 Ua4 Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ua1 Ua2 Ua3 Ua4 Ua5 Ua0 Ub1 ··· Ub0 V1 ··· V0 ta1 ··· ta0 tb1 ··· tb0

)
and the swapping of train identities

σswap =
(
Ua0 ··· Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ub0 ··· Ub5 Ua0 ··· Ua5 V0 ··· V5 tb0 ··· tb5 ta0 ··· ta5

)
.

3 SYMMETRIES OF PLACE/TRANSITION-NETS 5



Now the initial markingM0 = Ua0+Ub3+V1+V4 is symmetric to the marking
M = Ua4+Ub1+V2+V5 as σswap(σrot(M0)) = σswap(Ua1+Ub4+V2+V5) = M .
The orbit of M0 consists of markings M0, Ua1 + Ub4 + V2 + V5, Ua2 + Ub5 +
V0 + V3, Ua3 +Ub0 + V1 + V4, Ua4 +Ub1 + V2 + V5 and Ua5 +Ub2 + V0 + V3.
Figure 1(c) shows two quotient reachability graphs of the net where the upper
one is minimal in the sense that it contains only one marking per orbit. ♣

Ua0

Ua3

Ub0

Ub1

Ub2

Ub3

Ub4

Ub5

V3 V2

V4 V1

ta0

ta2ta3

ta5

tb0

tb1

tb2tb3

tb4

tb5

Ua1

ta1

Ua2Ua4

ta4

Ua5

V0V5 ta0 tb3

tb3

Ua1+Ub3+V4+V5

Ua0+Ub3+V1+V4

tb0ta3

ta1 ta2

ta4
tb1

Ua3+Ub0+V1+V4

Ua4+Ub1+V2+V5

Ua1+Ub5+V2+V3 Ua2+Ub0+V3+V4

(a) The net. (c) Two quotient reachability graphs.

ta0

tb3 ta0

tb3

ta1

ta2

tb4

tb5

tb0

tb1

tb2ta5

ta4

ta3

tb4 ta1

ta2

tb5

tb0

tb1 ta4

ta3

tb2

ta5

Ua2+Ub5+V0+V3

Ua1+Ub4+V2+V5

Ua1+Ub3+V4+V5

Ua2+Ub4+V0+V5 Ua1+Ub5+V2+V3

Ua4+Ub0,V1+V2

Ua3+Ub0+V1+V4

Ua3+Ub1+V4+V5

Ua4+Ub1+V2+V5

Ua4+Ub2+V0+V5

Ua5+Ub3+V0+V1

Ua0+Ub4+V1+V2

Ua5+Ub1+V2+V3

Ua5+Ub2+V0+V3

Ua0+Ub2+V3+V4Ua3+Ub5+V0+V1 Ua2+Ub0+V3+V4

Ua0+Ub3+V1+V4

(b) The reachability graph.

Figure 1: A net for a railroad system.

4 COMPLEXITY OF SUB-PROBLEMS

4.1 Computing Net Automorphisms

The first problem is to find the automorphism group of a net.

Problem 4.1 NET AUTOMORPHISMS. Given a net N , compute Aut(N).

Since nets are directed labelled graphs, it is easy to show that NET AUTO-
MORPHISMS is equivalent to the GRAPH AUTOMORPHISMS problem.

Theorem 4.2 NET AUTOMORPHISMS is many-one equivalent to GRAPH
AUTOMORPHISMS.

4 COMPLEXITY OF SUB-PROBLEMS 6



Proof. We first reduce from GRAPH AUTOMORPHISM to NET AUTOMOR-
PHISMS. Given a directed graph G = 〈V,E〉, we construct the net N =
〈P, T, F, V,M0〉 such that P = V , T = E, F = {〈v, 〈v, v′〉〉 | 〈v, v′〉 ∈ E} ∪
{〈〈v, v′〉, v′〉 | 〈v, v′〉 ∈ E} and V (f) = 1 for all f ∈ F . The initial marking
is irrelevant. It follows directly from the definitions that the group Aut(N)
restricted to the set P of places is Aut(G). To reduce the other way round,
just interpret the net as a directed labelled graph. Edges are labelled with
the corresponding multiplicities while the nodes corresponding to places are
labelled with “P” and those to transitions with “T”, for instance, to separate
them. Clearly the automorphism group the graph is the automorphism group
of the net. �

4.2 Testing Marking Symmetricity

Let us next consider the problem of deciding whether two markings of a net
N are symmetric. We consider two cases: the one in which the automor-
phism group of N is not known and the other in which it is.

Problem 4.3 UNINFORMED MARKING SYMMETRY (UMS). Given a net
N and two markings of N , are the markings symmetric?

Problem 4.4 INFORMED MARKING SYMMETRY (IMS). Given a net N ,
the group Aut(N) and two markings of N , are the markings symmetric?

Clearly IMS ≤p
m UMS. We now show in two parts that both IMS and UMS

are many-one equivalent to GRAPH ISOMORPHISM.

Lemma 4.5 UMS ≤p
m GRAPH ISOMORPHISM.

Proof. Let N = 〈P, T, F, V,M0〉. For a marking M of N , we interpret the
marked net N as a labelled directed graph GM = 〈VM , EM , LM〉, where

1. VM = P ∪ T ,

2. 〈x, y〉 ∈ EM iff 〈x, y〉 ∈ F ,

3. LM(p) = M(p) for each p ∈ P and LM(t) = “T” for all t ∈ T , and

4. LM(f) = V (f) for each f ∈ F .

It is obvious from the definition of GM that two markings, M and M ′, are
symmetric if and only if GM and GM ′ are isomorphic. �

Lemma 4.6 GRAPH ISOMORPHISM ≤p
m IMS.

Proof. Suppose that we are given two (non-labelled) directed graphs, G =
〈V,E〉 andG′ = 〈V,E ′〉, with the same set of vertices (if they have a different
number of vertices, they cannot be isomorphic and we can output a simple
non-symmetric net and two different markings for it; if they have different

4 COMPLEXITY OF SUB-PROBLEMS 7



1

2 3

p1 p2 p3

p1,1 p1,2 p1,3 p2,1 p2,2 p2,3 p3,1 p3,2 p3,3

(a) A graph G. (b) The net and marking for G.

Figure 2: Reduction from a graph to net.

sets of vertices, any renaming of the vertices will do). We build the net N̂ =

〈P̂ , T̂ , F̂ , V̂ , M̂0〉 as follows.

P̂ = {p̂v | v ∈ V } ∪ {p̂v,v′ | v, v′ ∈ V }
T̂ =

{
t̂v,〈v,v′〉 | v, v′ ∈ V

}
∪
{
t̂〈v,v′〉,v′ | v, v′ ∈ V

}
F̂ =

{
〈p̂v, t̂v,〈v,v′〉〉 | v, v′ ∈ V

}
∪
{
〈t̂v,〈v,v′〉, p̂v,v′〉 | v, v′ ∈ V

}
∪{

〈p̂v,v′ , t̂〈v,v′〉,v′〉 | v, v′ ∈ V
}
∪
{
〈t̂〈v,v′〉,v′ , p̂v′〉 | v, v′ ∈ V

}
V̂ (f̂) = 1 for all f̂ ∈ F̂

The initial marking M̂0 is irrelevant, set it to be the empty marking.
For the graph G, we construct the corresponding marking M̂G of N̂ de-

fined by

M̂G(p̂) =


0 if p̂ = p̂v for some v ∈ V
1 if p̂ = p̂v,v′ and 〈v, v′〉 ∈ E
0 if p̂ = p̂v,v′ and 〈v, v′〉 /∈ E

and similarly M̂G′ for the graph G′. The idea of the construction is that
the places of the form p̂v,v′ are used to represent the adjacency matrix of
the graph under consideration. Figure 2(b) illustrates the construction by
showing the net N̂ and the corresponding marking for the graph in Fig. 2(a).

The automorphisms of N̂ are exactly those that are generated by the group
homomorphism h : Sym(V ) → Sym(P̂ ∪ T̂ ) such that h(π)(p̂v) = p̂π(v),
h(π)(p̂v,v′) = p̂π(v),π(v′), h(π)(t̂v,〈v,v′〉) = t̂π(v),〈π(v),π(v′)〉 and h(π)(t̂〈v,v′〉,v′) =

t̂〈π(v),π(v′)〉,π(v′). That is, Aut(N̂) = h(Sym(V )). As Sym(V ) can be repre-
sented by two generators, the rotation π1 =

( v1 v2 v3 ··· v|V |−1 v|V |
v2 v3 v4 ··· v|V | v1

)
and the

swapping of the first two elements π2 =
( v1 v2 v3 ··· v|V |
v2 v1 v3 ··· v|V |

)
, the generators for

Aut(N̂) are h(π1) and h(π2). Now it is easy to see that MG and MG′ are sym-
metric iff G and G′ are isomorphic since Aut(N̂) corresponds to the group
of all permutations on the vertex set V naturally extended to the adjacency
matrix of a graph with the vertex set V . �

We have thus obtained

GRAPH ISOMORPHISM ≤p
m IMS ≤p

m UMS ≤p
m GRAPH ISOMORPHISM

and as a consequence have the following.
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Theorem 4.7 IMS and UMS are both many-one equivalent to GRAPH ISO-
MORPHISM.

Therefore, from the complexity theoretical point of view, pre-calculation of
the automorphism group of a net does not provide any help for solving the
problem of whether two markings are symmetric. However, in practice it is
probably reasonable to compute the automorphism group of the net since it
yields useful information. For instance, it may reveal that the net has no non-
trivial automorphisms and thus the symmetry reduction method is of no use.
Furthermore, knowing the automorphism group can assist in the choice of
the integration algorithm since the performances of different algorithms de-
pend on the order of the automorphism group (see [Schmidt 1999; 2000b]).

4.3 Canonical Representative Markings

An alternative for checking whether a symmetric marking has already been
visited during the quotient reachability graph generation is to transform a
newly generated marking into a representative marking.

Definition 4.8 For a net N and for a marking M of N , a function repr :
M→M is a representative function if repr(M) ≡M for all M ∈M. repr is
canonical if repr(M ′) = M implies repr(M ′′) = M for all M ′′ ≡M ′.

It is easy to see that having a canonical representative function would
solve the marking symmetry problem because we could simply generate the
canonical representative markings for the two markings in question and then
check whether the representative markings are the same. Therefore, calcu-
lating a canonical representative marking is at least as hard as answering to
the graph isomorphism problem. Fortunately the correctness of the symme-
try reduction method does not depend crucially on the canonicity of repr.
Therefore repr can be a heuristic algorithm that just tries to map the orbit
[M ] into a set repr([M ]) as small as possible (see [Schmidt 1999; 2000b] for
such an algorithm).

Assume however that we would like to have a canonical representative
function repr. For this purpose we have to define which marking in an orbit
is the canonical one. Perhaps the most obvious choice is to choose the lexi-
cographically greatest (or smallest) marking in the orbit. In the following we
study the complexity of finding such canonical markings.

For a netN , we implicitly assume an arbitrary total order<P on its places.
We therefore have a lexicographical ordering for markings ofN (also denoted
by <P ) defined for all markings M,M ′ of N by

M <P M
′ ⇔ (∃p ∈ P )

(
M ′(p) > M(p) and (∀p′ <P p)(M

′(p′) = M(p′))
)

The following problem is now defined:

Problem 4.9 LEX-GREATEST MARKING. Given a netN , its automorphism
group Aut(N) and a marking M , find the lexicographically greatest marking
symmetric to M .

To classify the problem, we employ the problem CLIQUE SIZE asking the
size of the largest clique in an undirected graph.
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Lemma 4.10 CLIQUE SIZE ≤p
m LEX-GREATEST MARKING.

Proof. We use a construction resembling the one by Babai and Luks [1983,
Section 3.1]. Given a non-labelled undirected graph G = 〈V,E〉, con-
struct the net N̂ and marking M̂G for G as in the proof of Lemma 4.6.
Now, assume an arbitrary total order <V on the set V of vertices. Define
UL(v) = {p̂v′,v′′ | v′, v′′ <V v} (the set of places corresponding to the edges
between vertices that precede v, or, the upper left square down to v in the
adjacency matrix of G). Define the total order on places of N to be such
that the first |V |2 places are the places of the form p̂v,v′ , ordered in a way that
the places in UL(v) are before those in UL(v′) for all v <V v′. Now the
lex-greatest marking symmetric to M̂G reveals the size of the largest clique in
G. �

Since CLIQUE SIZE is known to be FPNP[logn]-complete [Krentel 1988; Pa-
padimitriou 1995], we have the following.

Theorem 4.11 LEX-GREATEST MARKING is FPNP[logn]-hard.

In order to prove an upper bound for the LEX-GREATEST MARKING
problem, we consider its decision version.

Problem 4.12 LEX-GREATER MARKING. Given a net N , Aut(N) and two
markings M and M ′, does there exist a marking M ′′ that (i) is lexicographi-
cally greater than or equals to M ′ and (ii) is symmetric to M?

Lemma 4.13 LEX-GREATER MARKING is NP-complete.

Proof. The problem is in NP because we can (i) guess a permutation σ ofN ,
(ii) verify that σ is an automorphism ofN , (iii) calculate σ(M) and (iv) check
whether M ′ = σ(M) or M ′ <P σ(M), all in non-deterministic polynomial
time.2 LEX-GREATER MARKING is NP-hard because of the following. Take
the construction in the proof of Lemma 4.10 to be the net. Suppose that we
can say whether there is a marking that (i) is lexicographically greater than
or equals to the marking in which the first k2 places are marked and others
are not and (ii) is symmetric to the marking M̂G corresponding to a graph G.
We can then tell whether the graph G has clique of size k or more, which is
an NP-complete problem. �

Based on this we can prove the following.

Theorem 4.14 LEX-GREATEST MARKING is in FPNP.

Proof. Let m = maxp∈P{M(p)} be the maximum number of tokens in the
marking M . Then the representation of M is at least dlogkme symbols long
for some fixed k (the size of the Turing machine alphabet used) while the
representation of the net N is at least of size O(|P |). We now can find and

2Note that we do not really need to consult the given group Aut(N) but can check
whether the guessed permutation is an automorphism of N in deterministic polynomial
time directly by using N .
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fix the number of tokens of the first place in the lex-greatest symmetric mark-
ing by a binary search that calls at most dlogkme times the LEX-GREATER
MARKING oracle. After that, we can fix the number of the tokens in the sec-
ond place similarly, and so on. Thus, we can find the lex-greatest symmetric
marking with dlogkme · |P |, a polynomial amount w.r.t. dlogkme+O(|P |),
calls to an NP oracle. �

It is currently open whether LEX-GREATEST MARKING is FPNP[logn]- or
FPNP-complete.

Remark 4.15 The complexity LEX-GREATEST MARKING stays the same
even if we do not know the automorphism group of the net.

A note should be made that our choice for a canonical representative was
probably not the most easily computable: according to Blass and Gurevich
[1984], the lexicographically smallest element in an equivalence class can
be in general harder to compute than an arbitrary canonical representative.
However, as noted earlier, in our case computing any kind of canonical rep-
resentative marking is at least as hard as answering to the graph isomorphism
problem.

5 MARKING-STABILIZERS

For many markings it may be the case that some automorphisms map the
marking to itself. We now demonstrate how such marking-stabilizers can
be exploited and study what is the complexity of calculating them (cf. “self-
symmetries” of Jensen [1995; 1996] and “state symmetry” in [Emerson and
Sistla 1996; Gyuris and Sistla 1999]).

Definition 5.1 The stabilizer of a marking M is

Stab(M) = {σ ∈ Aut(N) | σ(M) = M} .

Clearly Stab(M) is a sub-group of Aut(N). The algorithm of Schmidt
[2000a] can be used to compute marking-stabilizers.

One way to exploit marking-stabilizers is based on the following observa-
tion:

Lemma 5.2 If M [t〉M1, then M [σ(t)〉 σ(M1) for all σ ∈ Stab(M).

Proof. Directly by the fact that M [t〉M1 ⇔ σ(M) [σ(t)〉 σ(M1) holds for
all σ ∈ Aut(N) and σ(M) = M for a σ ∈ Stab(M) ⊆ Aut(N). �

Note that if we know the group Stab(M), then it is easy to check, given
two transitions t and t′, whether there is a σ ∈ Stab(M) such that σ(t) = t′.
Assume that we are visiting a marking M during the quotient reachability
graph generation. Now we have to check the enabledness of and fire only one
transition per transition orbit under Stab(M) instead of all the transitions. If
a transition in an orbit is enabled, then (and only then) all the transitions in
it are, too. Furthermore, we know that all the transitions in the orbit will lead
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to mutually symmetric markings. We thus do not have to apply the marking
symmetry test (or the canonization procedure) to each successor marking but
to only one in the orbit.

Marking-stabilizers can also improve the “loop over all symmetries”-ap-
proach for the integration problem (recall Sec. 3). Consider a left coset
σ Stab(M), where σ ∈ Aut(N). Now for each σ′ ∈ σ Stab(M), σ′(M) =
σ(M). Thus it suffices to inspect only one symmetry per each left coset.
Since Stab(M) is a sub-group of Aut(N), Aut(N) is divided into |Aut(N)|

| Stab(M)|
mutually disjoint left cosets. These facts were also noticed by Jensen [1995,
page 92].

5.1 Complexity of Calculating Marking-Stabilizers

We formalize the following problem.

Problem 5.3 MARKING-STABILIZER. Given a net N and a marking M of
N , compute Stab(M).

Theorem 5.4 MARKING-STABILIZER and GRAPH AUTOMORPHISMS are
many-one equivalent.

Proof. We use the construction of Lemma 4.5 to reduce from MARKING-
STABILIZER to GRAPH AUTOMORPHISMS. The automorphism group of
GM clearly corresponds to the stabilizer of the given marking M .

To reduce from GRAPH AUTOMORPHISMS to MARKING-STABILIZER,
use the net N̂ of Lemma 4.6. Now the stabilizer of the marking M̂G for the
given directed graph G is equivalent to Aut(G) when restricted to places of
form p̂v. �

Remark 5.5 The complexity of MARKING-STABILIZER remains the same
even if we know the automorphism group of the net N .

5.2 Canonical Representative Markings and Marking-Stabilizers

There is a connection between marking-stabilizers and canonical represen-
tative markings. Let repr be a canonical representative function for a net
N .

Definition 5.6 A left coset σ Stab(M), where σ ∈ Sym(P ∪ T ) such that
σ(M) = repr(M), is called a canonical labeling coset of M .

Canonical labeling cosets are desirable since they give both the canonical
representative of a marking and also the stabilizer of the representative. Con-
sequently, computing such cosets is a function problem at least as hard as
GRAPH AUTOMORPHISMS.

A similar concept is used in the graph automorphism tool NAUTY tool by
McKay [1990] which computes the automorphism group and the canonical
form of a graph at the same time. See also [Babai and Luks 1983] for a string
canonization algorithm.
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6 SYMMETRIC COVERABILITY

We say that a marking M covers a marking M ′ if M ′ ≤ M . In order to
build a coverability graph [Finkel 1990] of a net, we extend markings to be
functions of form M : P → (N ∪ {ω}), where ω is a symbol not in N and
for all x ∈ N ∪ {ω}, x ≤ ω. The coverability graph construction can be
combined with the symmetry reduction method, see [Petrucci 1990]. We
use the following definitions of Schmidt [2000a]:

Definition 6.1 A marking M symmetrically covers a marking M ′, denoted
by M ′ 5M , if there is a σ ∈ Aut(N) such that M ′ ≤ σ(M).

Problem 6.2 SYMMETRIC COVERABILITY. Given a net N and two of its
markings, M and M ′, does M symmetrically cover M ′?

Schmidt [2000a] has extended his algorithm to solve the symmetric cover-
ability problem.

Interestingly, the complexity of SYMMETRIC COVERABILITY jumps from
graph isomorphism to NP-completeness, a phenomenon resembling that
happening when we move from graph isomorphism to sub-graph isomor-
phism [Garey and Johnson 1979].

Theorem 6.3 SYMMETRIC COVERABILITY is NP-complete.

Proof. Obviously SYMMETRIC COVERABILITY is in NP. We show NP-
hardness by reduction from the NP-complete problem CLIQUE asking if a
graph G = 〈V,E〉 has a clique of size k or more. Construct the net N̂ and
the marking M̂G for G as in the proof of Lemma 4.6. Let M̂ ′

G be a marking
of N̂ in which all the places of form p̂v,v′ , where v, v′ ∈ V ′ ⊆ V such that
|V ′| = k, have one token and the other places are empty. Now clearly M̂G

symmetrically covers M̂ ′
G iff G has a clique of size k or more. �

Remark 6.4 Again, the complexity of SYMMETRIC COVERABILITY does
not depend on whether we know the automorphism group of the net in ques-
tion. Furthermore, it does not depend on the extension of markings with the
ω symbol.

6.1 Canonical Representative Markings and Symmetric Coverability

A way to solve the symmetric coverability problem would be to build a canon-
ical representative function that solves the coverability problem at the same
time:

Definition 6.5 A canonical representative function repr is suitable for sym-
metric coverability if repr(M ′) ≤ repr(M)⇔M ′ 5M for all M,M ′ ∈M.

Unfortunately, suitable representative functions do not always exist, as is
shown in the next example and theorem.
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Example 6.6 The function that chooses the lexicographically greatest mark-
ing in an orbit is not a suitable canonical representative function. For a
counter-example, consider the net in Fig. 3 and assume the total order

pi <P pj ⇔ i < j

between the places. Now the marking M = 2p0 + 2p1 + 0p2 is its own
representative repr(M), while for M ′ = 0p0 + 1p1 + 2p2 the representative
is repr(M ′) = 2p0 + 0p1 + 1p2. Now M symmetrically covers M ′ since
σ(M) = 0p0 + 2p1 + 2p2 ≥ M ′, where σ maps each pi to pi+1 mod 3. But
repr(M ′) ≤ repr(M) does not hold. ♣

p1p2

p0

Figure 3: A net.

Theorem 6.7 There exist nets for which suitable canonical representative
functions do not exist.

Proof. Assume that such functions exist for all nets. Consider again the
net N in Fig. 3. Take the marking M = 2p0 + 2p1 + 0p2 of N and any
of its representatives, say repr(M) = M . Consider two other markings,
M1 = 2p0 + 1p1 + 0p2 and M2 = 1p0 + 2p1 + 0p2. Clearly M symmet-
rically covers both M1 and M2. In order to repr to be suitable for symmetric
coverability, it must be that repr(M1) = M1 and repr(M2) = M2 (other
representatives lead to a situation in which place p2 has one or more to-
kens and thus repr(M) would not cover them). Now consider the marking
M ′ = 2p0+1p1+1p2 which symmetrically covers both markingsM1 andM2.
To repr to be suitable, it must be that repr(M ′) = M ′ since other represen-
tatives do not cover repr(M1). But now repr(M ′) does not cover repr(M2).
Thus the initial assumption must be wrong and suitable canonical represen-
tative functions do not exist for all nets. �

7 CONCLUSIONS

In this paper we have addressed the computational complexity issues con-
cerning the symmetry reduction method for Place/Transition-nets. Comput-
ing the automorphism group of a net was shown to be a task as hard as com-
puting the automorphism group a graph. Although no polynomial time algo-
rithm is known (or is expected to be found) for the task, it is not considered
to be very hard in practice. The main problem in the symmetry reduction
method, detecting whether two markings are symmetric, was proven to be
equivalent to the GRAPH ISOMORPHISM problem under many-one reduc-
tions. Interestingly, this result does not depend on whether we know the
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automorphism group of the net in question or not. Building lexicographi-
cally greatest (smallest) canonical representative markings was shown to be a
function problem lying somewhere between FPNP[logn] and FPNP.

We have also discussed the use of marking-stabilizers of a marking (net’s
automorphisms that leave the marking intact) to improve the method. Com-
puting the group of marking-stabilizers of a marking was classified to be
equivalent to the GRAPH AUTOMORPHISMS problem.

As our last problem we have studied the symmetric coverability problem
which combines the symmetry reduction method with the coverability graph
approach. An interesting phenomenon occurred there: the symmetric cover-
ability problem turned out to be an NP-complete problem instead of staying
as hard as GRAPH ISOMORPHISM. Furthermore, we also found out that
there exist nets for which the symmetric coverability problem and the canon-
ical representative marking approach do not mix well.
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