
On the Power of Top-Down Branching Heuristics

Matti J ärvisalo∗ and Tommi Junttila †

Helsinki University of Technology (TKK)
Department of Information and Computer Science

PO Box 5400, FI-02015 TKK, Finland
matti.jarvisalo@tkk.fi, tommi.junttila@tkk.fi

Abstract

We study the relative best-case performance of DPLL-based
structure-aware SAT solvers in terms of the power of the un-
derlying proof systems. The systems result from (i) vary-
ing the style of branching and (ii) enforcing dynamic restric-
tions on the decision heuristics. Considering DPLL both with
and without clause learning, we present a relative efficiency
hierarchy for refinements of DPLL resulting from combina-
tions of decision heuristics (top-down restricted, justification
restricted, and unrestricted heuristics) and branching styles
(typical DPLL-style and ATPG-style branching). An an ex-
ample, for DPLL without clause learning, we establish a
strict hierarchy, with the ATPG-style, justification restricted
branching variant as the weakest system.

Introduction
Modern complete satisfiability (SAT) solvers provide an ef-
ficient way of solving various real-world problems as propo-
sitional satisfiability. Typical SAT solvers aimed at solving
such structured problems are based on the conjunctive nor-
mal form (CNF) levelDavis-Putnam-Logemann-Loveland
procedure (DPLL) (Davis and Putnam 1960; Davis, Loge-
mann, and Loveland 1962), and often incorporate clause
learning (Marques-Silva and Sakallah 1999; Beame, Kautz,
and Sabharwal 2004) for boosting the efficiency of search.

A problem with CNF, however, is that as problems are
translated into this low-level format, structure of the mod-
elled problem domain is lost, and thus the SAT solver cannot
make use of this structural knowledge. Indeed, in SAT based
approaches, direct CNF encodings of a problem domain are
rarely used, but rather, more natural representations for ar-
bitrary propositional formulas are used during modelling.
Boolean circuits, see e.g. (Papadimitriou 1995), provide a
natural, structure-preserving representation form for mod-
elling many typical SAT problems—e.g., bounded model
checking of hardware, EDA applications like automated test
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pattern generation (ATPG), and automated planning. Mo-
tivated by this, there is a wide body of work on lifting the
DPLL procedure to work directly on circuits, see (Junttila
and Niemel̈a 2000; Kuehlmann, Ganai, and Paruthi 2001;
Ganai et al. 2002; Thiffault, Bacchus, and Walsh 2004)
for instance. A way for circuit-level solvers to exploit the
structural knowledge is to use it for guiding the branching
rule. One applied heuristic idea is to apply branching in a
top-downfashion, starting from the constraints imposed on
the output gates of the circuit, and to search forjustification
for the currently imposed values (Kuehlmann et al. 2002;
Lu et al. 2003). A modification to the actualstyle of branch-
ing in DPLL-based algorithms, aiming at eagerly justify-
ing the currently unjustified gates, has also been consid-
ered (Kuehlmann, Ganai, and Paruthi 2001).

This work studies the relative best-case performance of
such variations of DPLL-based structure-aware Boolean cir-
cuit level SAT and ATPG solvers in terms ofproof complex-
ity (Beame and Pitassi 1998). In more detail, we study these
solvers through the relative power of their underlying infer-
ence systems (orproof systems) in terms of the shortest ex-
isting proofs in the systems. For two proof systems,S and
S′, we say thatS′ (polynomially) simulatesS if, for all infi-
nite families{Fn} of unsatisfiable CNF formulas, there is a
polynomial that bounds for allFn the length of the shortest
proofs inS′ w.r.t. the length of the shortest proofs inS. If
S′ simulatesS and vice versa, thenS andS′ are (polyno-
mially) equivalent. If S′ cannot simulateS and vice versa,
thenS andS′ areincomparable. From the practical point of
view, if S′ cannot simulateS, we know thatany implemen-
tation of S′ can suffer a substantial decrease in efficiency
compared to implementations ofS. For example, through
a formal characterizationCL of DPLL with clause learning,
Beame, Kautz, and Sabharwal (2004) show thatCL can pro-
vide superpolynomially shorter proofs thanDPLL, and thus
DPLL cannot simulateCL.

We present a relative efficiency hierarchy for variations of
circuit level DPLL (with and without clause learning) result-
ing from combinations of branching heuristics and branch-
ing styles. Motivated by ideas for solver development, we
study the variations (i) DPLL-style top-down restricted, (ii)
DPLL-style justification restricted (Kuehlmann et al. 2002;
Lu et al. 2003), and (iii) ATPG-style justification re-
stricted (Kuehlmann, Ganai, and Paruthi 2001) branching



DPLL. For example, for DPLL without clause learning, we
establish a strict hierarchy, with the ATPG-style branching,
justification restricted DPLL variant being the weakest sys-
tem. Perhaps the most surprising result obtained in this pa-
per is that clause learning DPLL with justification restricted
decisions heuristics cannot even simulate the top-down re-
stricted variantwithout clause learning. Thus, although
the idea of eagerly and locally justifying the values of cur-
rently unjustified constraints is an intuitively appealingone,
it can lead to dramatic losses in the best-case efficiency of a
structure-aware SAT solver even when the powerful search
space pruning technique of clause learning is applied.

Preliminaries
Boolean Circuits and SAT
A Boolean circuit over a finite setG of gates is a set
C of equations of formg := f(g1, . . . , gn), where
g, g1, . . . , gn ∈ G andf : {f, t}n → {f, t} is a Boolean
function, with the additional requirements that (i) each
g ∈ G appears at most once as the left hand side in the
equations inC, and (ii) the underlying directed graph
〈G,E(C) = {〈g′, g〉 ∈ G × G | g := f(. . . , g′, . . .) ∈ C}〉
is acyclic. If 〈g′, g〉 ∈ E(C), theng′ is a child of g andg
is aparentof g′. If g := f(g1, . . . , gn) is in C, theng is an
f -gate (or of typef ), otherwise it is aninput gate. A gate
with no parents is anoutput gate.

A (partial) assignment forC is a (partial) functionτ :
G → {f, t}. An assignmentτ is consistent withC if
τ(g) = f(τ(g1), . . . , τ(gn)) for eachg := f(g1, . . . , gn)
in C. Under a (possibly partial) assignmentτ , (i) a gate
g is assignedif τ(g) is defined, and (ii) an assigned gate
is justified if it is an input gate org := f(g1, . . . , gn) and
∀τ ′ ⊇ τ : τ(g) = f(τ ′(g1), . . . , τ

′(gn)) holds. That is, the
current values of the children of a justified gate are enough
for the gate to evaluate to its value.

A constrained Boolean circuit〈C, τ〉 is a pair 〈C, τ〉,
whereC is a Boolean circuit andτ is a partial assignment for
C. With respect to a〈C, τ〉, each〈g, v〉 ∈ τ is aconstraint,
andg is constrainedto v if 〈g, v〉 ∈ τ . An assignmentτ ′

satisfies〈C, τ〉 if (i) τ ′ is consistent withC, and (ii) τ ′ ⊇ τ .
If some assignment satisfies〈C, τ〉 then〈C, τ〉 is satisfiable
and otherwiseunsatisfiable.

For convenience, we restrict the set of Boolean functions
that can be used as gate types to the following.

• NOT(v) is t iff v is f.

• OR(v1, . . . , vn) is t iff at least one ofv1, . . . , vn is t.

• AND(v1, . . . , vn) is t iff all v1, . . . , vn aret.

Example 1 A constrained Boolean circuit is shown
in Fig. 1. One satisfying assignment for it isτ ′ =
{〈g1, t〉, 〈g2, t〉, 〈g3, f〉, 〈g4, t〉, 〈g5, t〉, 〈g6, f〉, 〈g7, t〉, 〈g8, t〉}.
Under the partial assignment
{〈g1, t〉, 〈g2, t〉, 〈g4, t〉, 〈g8, t〉}, the gates g1, g2, and
g8 are justified while the gateg4 is assigned but unjustified.

We apply the standard “Tseitin translation” to map each
constrained Boolean circuit〈C, τ〉 into an equi-satisfiable
CNF formulacnf(〈C, τ〉). First, introduce a variablẽg for
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C = {g1 := OR(g2, g3)

g2 := AND(g4, g8)

g3 := NOT(g5)

g4 := OR(g6, g7)

g5 := AND(g7, g8)}

τ = {〈g1, t〉}

Figure 1: A constrained Boolean circuit〈C, τ〉.

each gateg in the circuit. Then, describe the functionality of
each gate and the constraints with clauses (Table 1). When
convenient, we view a clause as a finite set of literals and a
CNF formula as a finite set of clauses.

Table 1: The CNF translationcnf(〈C, τ〉)
gate or constraint in〈C, τ〉 clauses incnf(〈C, τ〉)

g := NOT(g1) {¬g̃,¬g̃1}, {g̃, g̃1}

g := OR(g1, . . . , gn) {¬g̃, g̃1, ..., g̃n}, {g̃,¬g̃1}, ..., {g̃,¬g̃n}

g := AND(g1, . . . , gn) {¬g̃, g̃1}, ..., {¬g̃, g̃n}, {g̃,¬g̃1, . . . ,¬g̃n}

〈g, t〉 ∈ τ {g̃}

〈g, f〉 ∈ τ {¬g̃}

Any CNF formulaF = {C1, . . . , Ck} can be seen as a
CNF circuit circ(F ). Take an input gategx for each vari-
able x in F . Now circ(F ) is {gF := AND(gC1

, ..., gCk
)}

∪ {gCi
:= OR(gl1 , ..., glm) | Ci = {l1, ..., lm} ∈ F} ∪

{

g¬x := NOT(gx) | ¬x ∈ ∪k
i=1Ci

}

. Theconstrained CNF
circuit ccirc(F ):=〈circ(F ), {〈gF , t〉}〉 is satisfiable iffF is.

Resolution
The well-known Resolution proof system (RES) is based on
the resolution rule. Let C,D be clauses, andx a Boolean
variable. The resolution rule lets us derive the clauseC ∪D
from the clauses{x} ∪ C and{¬x} ∪ D by resolving on
x. A RES proof (for the unsatisfiability) of a CNF formula
F is a sequence of clausesπ = (C1, C2, . . . , Cm = ∅),
where eachCi, 1 ≤ i ≤ m, is either (i) a clause inF (an
initial clause), or (ii) derived with the resolution rule from
two clausesCj , Ck where1 ≤ j, k < i (a derived clause).
The lengthof π is m, the number of clauses occurring in it.

Many refinements ofResolution, in which the structure of
RES proofs is restricted, have been studied. Here of particu-
lar interest isTree-like Resolution(T-RES) that requires the
refutations to be representable as trees.

Superpolynomial lower bounds on proof length inRES

have been shown for various families of CNF formulas. One
such family is thepigeon-hole principle: m pigeons cannot
sit in n holes so that every pigeon has its own hole ifn < m.
We consider the casem = n+1 encoded as the CNF formula

PHPn+1
n :=

n+1
∧

i=1

(

n
∨

j=1

pi,j

)

∧
n
∧

j=1

n
∧

i=1

n+1
∧

i′=i+1

(¬pi,j∨¬pi′,j),

where eachpi,j is a Boolean variable with the interpretation
“pi,j is t if and only if theith pigeon sits in thejth hole”.

Theorem 1 (Haken (1985))There are no polynomial
lengthRES proofs for the family{PHPn+1

n }.



It is also known thatT-RES is aproper refinement ofRES.

Corollary 1 (Ben-Sasson, Impagliazzo, and Wigderson)
T-RES cannot polynomially simulateRES.

DPLL and Clause Learning
Most modern complete SAT solvers are based onDPLL

(Davis and Putnam 1960; Davis, Logemann, and Loveland
1962). Given a CNF formulaF , DPLL is a depth-first search
procedure building a partial assignment for the variables in
F through (i)branchingand (ii) unit propagation(UP). In
branching, the current assignment is extended with the as-
signment (decision) 〈x, v〉, wherev ∈ {f, t}, for some unas-
signed variablex. Unit propagation refers to applying the
unit clause rule: if there is a clause(l1 ∨ · · · ∨ lk ∨ l) ∈ F
and assignments〈li, f〉 for each1 ≤ i ≤ k, the current par-
tial assignment can be extended with〈l, t〉.

An assignment is extended until (i) some variablex would
be assigned bothf andt (a conflict is reached, withx as the
conflict variable) or (ii) the current assignment satisfiesF
(in which caseDPLL terminates). In case (i), non-clause
learningDPLL solversbacktrackto the last branching de-
cision which has not been backtracked upon, undoing all
assignments made by UP after the particular decision, and
flip the decision.DPLL terminates on an unsatisfiable CNF
formula when there are no untried branches left.

It is well-known thatDPLL andT-RES can polynomially
simulate each other.

Fact 1 DPLL andT-RES are polynomially equivalent.

Clause learningDPLL algorithms differ from non-clause
learning algorithms in what happens when reaching a con-
flict. If a conflict is reached without any branching, the
formulaF is determined unsatisfiable. Otherwise, the con-
flict is analyzedbased on aconflict graph, and alearned
clause(or conflict clause), which describes the “cause” of
the conflict, is added toF . After this the search is contin-
ued typically by applyingnon-chronological backtracking
(or conflict-driven backjumping) for backtracking to an ear-
lier decision level that “caused” the conflict. Conflict-driven
backjumping results in the fact that, as opposed to the ba-
sic backtracking inDPLL, the other branch (opposite value)
of decision variables is not necessary forced systematically
when backtracking. In other words, branching inCL is seen
simply as assigning values to unassigned variables, rather
than as a branching rule in which by branching on a variable
x the current branch is always extended into two branches,
one withx and the other with¬x.

For investigating the efficiency of clause learningDPLL

in proof complexity theoretic terms, we apply the charac-
terization of Beame, Kautz, and Sabharwal (2004), referred
to as theCL proof system. A clause learning proof (orCL

proof) induced by a learning schemeS is constructed by ap-
plying branching, applying unit propagation whenever pos-
sible, and usingS to learn conflict clauses when conflicts
are reached, so that in the end, a conflict can be reached at
decision level zero. While the efficiency gains obtained in
practice by implementing clause learning in DPLL based al-
gorithms are well-established, (Beame, Kautz, and Sabhar-
wal 2004) provides the first formal study on its power:CL

cannot be simulated by any refinement ofRES that cannot
itself simulateRES.

Corollary 2 (Beame, Kautz, and Sabharwal (2004))
DPLL cannot simulateCL.

On the other hand, even with unlimited restarts,CL is at most
as powerful asRES.

Theorem 2 (Beame, Kautz, and Sabharwal (2004))RES

can simulateCL even ifCL is allowed unlimited restarts.

Notice thatCL does not include restarts as such. In the fol-
lowing, we explicitly mention when results hold even when
restarts are allowed.

Circuit Level DPLL and CL. From the viewpoint of
DPLL based search, there is a tight correspondence between
a constrained Boolean circuit〈C, τ〉 and its CNF translation
cnf(〈C, τ〉) in Table 1. The CNF translation has a one-to-one
correspondence between the gates and the CNF variables,
and encodes in a natural way the semantics of the gates; thus
circuit level Boolean constraint propagation (see (Junttila
and Niemel̈a 2000; Kuehlmann, Ganai, and Paruthi 2001;
Ganai et al. 2002; Thiffault, Bacchus, and Walsh 2004)) on
〈C, τ〉 corresponds to unit clause propagation oncnf(〈C, τ〉).
For example, consider the gateg := AND(g1, g2) and its
CNF translation(¬g̃ ∨ g̃1) ∧ (¬g̃ ∨ g̃2) ∧ (g̃ ∨ ¬g̃1 ∨ ¬g̃2).
Now whenever the gateg2 is assigned tof, the gateg can be
propagated tof by the semantics ofAND. On the CNF level,
we can equivalently propagate the variableg̃ to f by apply-
ing the unit clause rule whenever the variableg̃2 is assigned
to f. Due to this correspondence, clause learning can also be
equivalently applied in circuit level SAT solvers for learning
conflict clauses. Therefore, here we consider proof systems
like DPLL andCL to work on circuit level and write, e.g., “a
CL proof of 〈C, τ〉” instead of “aCL proof of cnf(〈C, τ〉)”.

Top-Down Branching DPLL

One often applied heuristic idea is to branch on variables
top-downwith respect to the circuit structure, starting from
the constraints imposed on the output gates of the circuit,
and searching forjustificationfor the currently assigned val-
ues. We characterize the variants of this idea through two
dynamic branching restrictions:

Top-down restriction: Branching is allowed on gateg if g
has a currently assigned parent. These variants ofDPLL

andCL are denoted byDPLLtd andCLtd.

Justification-based restriction: Branching is allowed on
gateg if g has a currently assigned and unjustified par-
ent. These variants ofDPLL andCL areDPLLjf andCLjf .

A modification to the actualstyleof branching in DPLL-
based algorithm, heuristically aiming at justifying the cur-
rent unjustified assignments on gates, has been considered
especially in Boolean circuit level SAT solvers for ATPG.
The underlyingDPLL

atpg
jf system using ATPG-style branch-

ing is a variation of the justification-based restricted branch-
ing DPLLjf . The difference between original DPLL-style
branching and ATPG-style branching is illustrated in Fig. 2
with an OR-gateg := OR(g1, g2, g3). Where original
DPLL-style branching is based on branching on a variable



(Fig. 2 left), in ATPG-style branching (Fig. 2 right) each
branch will have a unique justification for the currently as-
signed value of the parent (g is t in the example).

〈g1, t〉 〈g1, f〉

〈g, t〉

DPLL-style
branching

〈g, t〉

〈g3, t〉〈g1, t〉 〈g2, t〉

ATPG-style
branching

Figure 2: Styles of branching; OR-gateg := OR(g1, g2, g3)

Proof Complexity
In this section we present the main results of this work.
First we study the relative efficiency ofDPLLtd, DPLLjf ,
andDPLL

atpg
jf w.r.t. DPLL. After this, we turn to the case

of clause learning. The results are summarized in Fig. 3. In
the hierarchy, a systemS cannot simulateS′ if there is an
arrow fromS to S′ with a line crossed over. A plain ar-
row from S to S′ means thatS can simulateS′. Arrows
labelled with⋆ are known results from (Beame, Kautz, and
Sabharwal 2004; Järvisalo, Junttila, and Niemelä 2005); the
unlabeled ones are results of this paper. The arrows induced
by the transitivity of negative/positive simulation results are
left out for clarity.

DPLLjf DPLLDPLLtdDPLL
atpg

jf

CLCLtdCLjf

⋆

⋆

⋆

⋆

Figure 3: Summary of results

DPLL vsDPLLtd vsDPLLjf vsDPLL
atpg
jf

The relative efficiency ofDPLLtd andDPLL has been stud-
ied in (J̈arvisalo, Junttila, and Niemelä 2005): whileDPLL

trivially simulatesDPLLtd, DPLLtd cannot simulateDPLL.

Theorem 3 (J̈arvisalo, Junttila, and Niemelä (2005))
DPLLtd cannot polynomially simulateDPLL.

We now consider the pairwise relative efficiency of the
other variations ofDPLL. First, we observe that when re-
stricting to constrained CNF circuits,DPLL, DPLLtd, and
DPLLjf are equivalent.

Lemma 1 For constrained CNF circuits,DPLL, DPLLtd,
andDPLLjf are equivalent.

Proof sketch.Given an arbitrary constrained CNF circuit,
after unit propagation on the output gateDPLL andDPLLtd

can branch on all of the input gates. If there is an input gate
on whichDPLLjf cannot branch on, all of its parents have
already been justified, and hence branching on such gate in
any of the systems would be redundant. 2

To separateDPLLjf andDPLL
atpg
jf , we use a known result

on the efficiency ofclausal tableaux. A clausal tableauT
for a set of clausesF is a tree in which a set of clauses is
associated with each node inT . The original set of clauses

F is associated with the root ofT . Each internal nodev in T ,
with the associated set of clausesFv, has exactlyk children,
and the set of clauses associated with theith childvi is Fv ∪
{(li)}, where aCj = (lj1 ∨ . . . ∨ l

j
k) ∈ Fv definesk and the

literals l
j
1, . . . , l

j
k (Ck is decomposed). A branch (path) in

the tableau is closed if some variable occurs both positively
and negatively in the set of unit clauses associated with the
leaf node of the branch. Any clausal tableau for a set of
clausesF in which all branches in the tableau are closed, is
a clausal tableau proof (for the unsatisfiability) ofF . The
proof systemCT consists of all clausal tableau proofs.

It is known thatCT is not as powerful asT-RES.
Theorem 4 (Arai, Pitassi, and Urquhart (2001)) CT can-
not simulateT-RES.

Now, DPLL
atpg
jf andCT are equivalent in the sense that,

given an arbitrary set of clausesF , the minimal length
proofs forccirc(F ) in DPLL

atpg
jf are polynomially bounded

in the minimal length proofs forF in CT, and vice versa.
Lemma 2 For sets of clauses,DPLL

atpg
jf andCT are equiv-

alent.
Proof sketch. Given an arbitrary set of clausesF , notice
that after unit propagation on the output gate ofccirc(F ),
branching inDPLL

atpg
jf and extending a branch inCT are

effectively equivalent on the clauses inF .
Now assume that unit propagation inDPLL

atpg
jf assigned

a gategl to t. There then is a clauseC = {l1, . . . , lk, l} ∈ F
such that all¬li’s and〈gli , f〉’s are in the branch forCT and
DPLL

atpg
jf , respectively. To simulate unit propagation inCT,

decomposeC to its literals. Due to the opposite literals¬li
in the branch, each branch withli is now closed. 2

Theorem 4 and Fact 1 imply thatCT cannot simulate
DPLL. Thus by Lemma 2, together with the fact that
DPLL andDPLLjf are equivalent on constrained CNF cir-
cuits (Lemma 1), we have the following.
Corollary 3 DPLL

atpg
jf cannot simulateDPLLjf .

To the other direction, however, we have a positive results.
Theorem 5 DPLLjf can simulateDPLL

atpg
jf .

Proof sketch. Assume thatDPLL
atpg
jf branches with ex-

tensions〈g1, v〉, . . . , 〈gk, v〉, where we have a gateg :=
f(g1, . . . , gk) (if f = AND (f = OR) thenv = f (v = t,
respectively)). Simulate this inDPLLjf by branching with
g1 and consecutively ongi from i = 2 to k− 1 in the branch
having〈gj ,¬v〉 for all j < i. Unit propagate to get〈gk, v〉
in the branch having〈gi,¬v〉 for all i < k. 2

We still have to consider whetherDPLLjf can simulate
DPLLtd. This turns out not to be the case. In order to con-
struct a witness for this separation, we modify a construc-
tion from (J̈arvisalo and Junttila 2007). The construction is
based oncirc(PHPn+1

n ). Cook (1976) introduces a polyno-
mial number of clauses which, interpreted as adding gates
to ccirc(PHPn+1

n ), enable polynomial length proofs inRES

for the resulting circuit. As a circuit structure, thisextension
is defined asEXTn :=

⋃n

l=1 EXTl, where

EXTl :=

l
[

i=1

l−1
[

j=1

{el
i,j :=OR(el+1

i,j , o
l
i,j), o

l
i,j :=AND(el+1

i,l , e
l+1

l+1,j)},



and eachen
i,j is the input gategpi,j

associated with the vari-
ablepi,j in PHPn+1

n . By (Cook 1976) we immediately have
a polynomial lengthRES proof π = (C1, . . . , Cm = ∅)
for cnf(ccirc(PHPn+1

n )∪EXTn). In (J̈arvisalo and Junttila
2007), in order to guarantee shortT-RES (and hence short
DPLL) proofs for the construction, an additional structure
(calledE(π), see (J̈arvisalo and Junttila 2007) for details)
is added to the circuit. We apply a slightly modified version
(basically, the direction of thehi AND-gate chain is reversed)
of E(π) to ensure shortDPLLtd proofs as well:

P(π) := ∪m−2

i=1 {hi := AND(gCi
, hi+1)} ∪

∪m−1

i=1 {gCi
:= OR(g1, . . . , gj , ĝj+1, . . . , ĝk) |

Ci = {g̃1, . . . , g̃j ,¬g̃j+1, . . . ,¬g̃k}} ∪

∪m−1

i=1 {ĝ := NOT(g) | ¬g̃ ∈ Ci},

wherehm−1 is the gategCm−1
. The structure ofP(π) is

illustrated in Fig. 4(left).
To get our final constructPPHPn+1

n (see Fig.4(center)
for clarity), we will add to the constructcirc(PHPn+1

n ) ∪
EXTn∪P(π) the gatesy := OR(h1, z) andx := AND(y, z),
wherez is the output gate ofcirc(PHPn+1

n ), and constrain
the output gatex to t. The idea behindPPHPn+1

n is that
P(π) encodesπ in a way that allows polynomial length
DPLLtd proofs forPPHPn+1

n , while the additional structure
on top ofcirc(PHPn+1

n ) ∪ EXTn ∪ P(π) preventsDPLLjf

from having polynomial proofs forPPHPn+1
n .

Theorem 6 DPLLjf cannot simulateDPLLtd.

Proof sketch. DPLLtd has polynomial length proofs for
PPHPn+1

n w.r.t. n. After unit propagation, bothy and z
are t. Then branch onh1. The branch with〈h1, t〉 propa-
gates to〈hi, t〉 for all i < m. At the latest, when assigning
〈hm−1, t〉, unit propagation gives a conflict, sinceP(π) en-
codes the two contradictory unit clauses inπ. Consecutively
from i = 1 to m − 2, branch ongCi

in the branch hav-
ing 〈hk, f〉 for all k ≤ i and 〈gCj

, t〉 for all j < i. The
branch with〈gCj

, t〉 for all j < i and〈gCi
, f〉 propagates to

a conflict, sinceCi has been derived fromCk, Cl ∈ π with
k, l < i and we have〈gCk

, t〉 and〈gCl
, t〉 (for the base case,

for eachC ∈ PHPn+1
n we have〈gC , t〉). The branch with

〈hk, f〉 for all k < m−1 and〈gCi
, t〉 for all i < m−1 prop-

agates to〈gCm−1
, f〉, and again we have a conflict as above.

This concludes the polynomial length proof forDPLLtd.
Now considerDPLLjf . Propagation gives〈y, t〉 and〈z, t〉

from 〈x, t〉, and〈z, t〉 justifies 〈y, t〉. Now we can branch
on the inputs inPHPn+1

n only. Moreover,h1 is redundant
in the sense that it is not constrained and thus cannot con-
tribute to conflicts based on values propagated bottom-up
from the input gates. Thus anyDPLLjf proof of PPHPn+1

n

must effectively include a proof ofccirc(PHPn+1
n ). Since

DPLL simulatesDPLLjf , Theorem 1 and Fact 1 imply that
DPLLjf has no polynomial length proofs forPPHPn+1

n . 2

The upper part of Fig. 3 summarizes the results this far.

On the Relative Efficiency ofCL, CLtd, and CLjf

We now turn to the case of clause learning solvers, and study
the relative efficiency ofCLjf andCLtd w.r.t. CL andDPLL.

Before detailed results, we use the construction of (Järvisalo,
Junttila, and Niemelä 2005) in the proof of Theorem 3 to
explain why a separation ofDPLL andDPLLtd does not di-
rectly imply a separation betweenCL andCLtd.

Example 2 Define a circuit gadget

TDn := {v:=OR(v1, w1)} ∪ {vi:=AND(xi, zi) | 1 ≤ i ≤ n} ∪
{wi:=AND(yi, zi), zi:=OR(vi+1, wi+1) | 1 ≤ i ≤ n}

and letUNSATx := {{¬x1,¬x2}, {¬x1, x2}, {x1,¬x2},
{x1, x2}}. Now take the unsatisfiable constrained circuit

TDUn := 〈TDn ∪ circ(UNSATa) ∪ circ(UNSATb), {〈v, t〉}〉

with the output gates ofcirc(UNSATa) andcirc(UNSATb)
identified withvn+1 and wn+1, respectively, as illustrated
in Fig. 4(right). Since unit propagation sets values to all the
other gates once the input gates are assigned, branching on
the input gates corresponding toa1, a2, b1, b2 gives a linear
sizeDPLL proof for TDUn. One can similarly construct a
small CL proof. For DPLLtd, DPLLjf , and DPLL

atpg
jf , the

minimal proofs are of exponential length; the structure of
TDn forces them to branch onvi or wi for eachi from 1 to
n + 1. This results in an exponential number of branches as
a contradiction can be reached only in thecirc(UNSATa)

andcirc(UNSATb) parts.
However,CLtd andCLjf both have proofs of linear length

w.r.t. n for TDUn. First, consecutively fromi = 1 to n + 1
branch with〈vi, t〉. Next branch with〈a1, t〉. This propa-
gates to a conflict, the clause{¬C1,¬C2,¬a1} is learned
(C1 andC2 are theOR-gates corresponding to the clauses
{¬a1,¬a2} and {¬a1, a2} in UNSATa), the search back-
jumps to the previous decision level, and propagation on the
learned clause gives〈a1, f〉. This in turn produces a conflict,
the unit clause{¬vn+1} is learned, and the search back-
jumps to decision level 0. The same process is repeated for
the right part of the circuit (replacev with w anda with b).
Finally, a conflict with the output constraint is reached at de-
cision level 0 by propagating{¬vn+1} and{¬wn+1} up the
circuit structure. Hence, whileTDUn separatesDPLL from
DPLLtd, DPLLjf , andDPLL

atpg
jf , it does not do the same for

the corresponding clause learning extensions.

Lemma 3 CLjf has no polynomial length proofs for
{PPHPn+1

n }. This holds even if restarts are allowed.

Proof sketch. Through a similar argument as in the
case of DPLLjf in the proof of Theorem 6, anyCLjf

proof of PPHPn+1
n must effectively include a proof of

ccirc(PHPn+1
n ). Hence Theorems 1 and 2 now imply that

CLjf has no polynomial length proofs forPPHPn+1
n . 2

Corollary 4 CLjf cannot simulateDPLLtd. This holds re-
gardless of whether restarts are allowed.

Through a similar argument as in Lemma 1,CL, CLtd, and
CLjf are equivalent for constrained CNF circuits.

Lemma 4 For constrained CNF circuits,CL, CLtd, andCLjf

are equivalent. This holds even if each system is allowed
unlimited restarts.

By Fact 1, Corollary 2, and Lemmas 1 and 4, we arrive at:
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Figure 4: From left to right: high-level views for the constructsP(π), PPHPn+1
n , andTDUn.

Corollary 5 DPLLtd cannot simulateCLjf .

ThusCLjf andDPLLtd are polynomially incomparable.
Theorem 7 CLjf andDPLLtd are incomparable.

Finally, we end up with the relative efficiency hierarchy
shown in Fig. 3. The only remaining open question in the
hierarchy is whetherCLtd can simulateCL.

Related Work
Arai, Pitassi, and Urquhart (2001) present a relative effi-
ciency study of variations of analytic tableaux (Smullyan
1968) based on restrictions on the decomposition strat-
egy for formulas (clausal, generalized clausal, andbinary
tableaux). The effect of adding branching (resulting in
the tableau method KE) to analytic tableaux is studied in
(D’Agostino and Mondadori 1994). Järvisalo, Junttila, and
Niemel̈a (2005) study the effect of a variety of static (in-
cluding input-restricted branching) and dynamic branching
restrictions (includingDPLLtd but excludingDPLLjf ) for
DPLL without clause learning, while Järvisalo and Junt-
tila (2007) study the case of input-restricted branchingCL.
Finally, Hwang and Mitchell (2005) study typical branching
schemes in CSP solving (2-wayandd-way branching).
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