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We study how independent component analysis can be used to create automatically 
syntactic and semantic features based on analyzing words in contexts.  

1. Introduction 

We show that independent component analysis (ICA) (Hyvärinen et al. 2001) 
applied on word context data gives distinct features that reflect syntactic and 
semantic categories.   The analysis gives features or categories that are both 
explicit and can easily  be  interpreted by humans.  This result can be obtained 
without any human supervision or tagged corpora that would have some 
predetermined morphological, syntactic or semantic information.  The results 
include both an emergence of clear distinctive categories or features and a 
distributed representation. This is based on the fact that a word may belong to 
several categories simultaneously in a graded manner.  We wish that our model 
provides additional understanding on potential cognitive mechanisms in natural 
language learning and understanding.  Our approach attempts to show that it is 
possible that   much   of   the   linguistic knowledge is emergent in nature and 
based on specific learning mechanisms.  

2. Independent Component Analysis 

 
In the following, we consider the use of independent component analysis (ICA) 
(Comon 1994, Jutten & Hérault 1991, Hyvärinen et al. 2001) in the extraction 
of linguistic features for expression in due contexts. ICA learns features in an 
unsupervised manner. Several such features can be present in a word, and ICA 
gives the explicit values of each feature for each word. We expect the features 
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to coincide with known syntactic and semantic categories: for instance, we 
expect ICA to be able to find a feature that is shared by words such as “must”, 
“can” and “may”. In earlier studies, independent component analysis has been 
used for document level analysis of texts (see, e.g., Bingham et al. 2001, 
Bingham et al. 2002). 
 
We first give a brief outline of the basic theory of independent component 
analysis (Hyvärinen et al. 2001). In the classic version of the ICA model, each 
observed random variable is represented as a weighted sum of independent 
random variables. The weights in the sum (which can be negative as well as 
positive) can be collected in a matrix, called the mixing matrix. The weights are 
assumed to be different for each observed variable, so that the mixing matrix 
can be inverted, and the values of the independent components can be computed 
as some linear functions of the observed variables. 
 
A classical application for the ICA, blind signal separation (BSS) can be used as 
an example of the basic idea. In BSS, one studies signals that originate from a 
number of separate sources, e.g., discussants in a cocktail party who are 
speaking at the same timea. The signals are mixed in different proportions 
depending on the relative distance of a listener to each sound source. This kind 
of situation is illustrated in Figure 1 in which five listeners have the task of 
separating five signal sources from each other.  
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a The cocktail party should be considered merely as a simple illustration of blind 

source separation. A real cocktail-party problem is much more complicated 
than described here due to such factors as the slow propagation of sound in the 
air, echoes, nonlinearities in the microphones, and noise. 
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Figure 1. An illustration of a blind signal separation situation and the idea of a mixing matrix. Each 
listener receives a unique mixture of signals as a combination of five source signals. 
 
Sources numbered from 1 to 5 refer to the original signals and each listener 
receives a unique combination of the signals. Based on the distance to each 
source, the vector that represents the mix of the five sources for one indicated 
listener in Figure 1 could be [0.11 0.24 0.27 0.22 0.16]. Putting together similar 
vectors for each listener we would gain a mixing matrix that, in general, would 
be unknown in a BSS task.  
 
The goal in ICA is to learn the decomposition in an unsupervised manner, which 
means that we only observe the mixed signals and have no information about 
the mixing coefficients or the contents of the original signals. For the cocktail 
party problem, this would mean that ICA would provide an estimate of each 
original signal as well as of the mixing matrix.  It may sound surprising that one 
could make an estimation of both the original signals and the mixing matrix 
provided only the observed signals. This challenge could be compared with a 
situation in which one is asked the sum of which two integers 63 is. The answer 
could, for instance, be 12+51 or 38+25, or, if negative values are included, there 
would be an infinite number of options. 
 
The “trick” needed for the successful estimation of the original signals and the 
mixing matrix is based on is the simple assumption that the original signals are 
statistically independent. Two variables are independent if information on the 
value of one variable does not give any information on the value of the other. 
This does not need to hold for the observed variables. The independence 
assumption gives ground for finding the estimates the same way as if in 
summing up two integers to get 63 we would know that one of the numbers 
would need to be as closely as possible two times larger than the other. Then 
one could conclude that the sum would be 21+42. Two variables can be 
independent, for example, if they could be outcomes of two events that have 
nothing to do with each other, or random signals originating from two different 
physical processes. In case of two variables, the independence holds if and only 
if the joint probability of the variables is the same as the product of the two 
variables considered separately. This definition extends to any number of 
random variables. Thorough description of the ICA methodology and 
underlying mathematical and statistical principles is given in (Hyvärinen et al. 
2001) 
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3. Analysis of Word Contexts 

We can ask if a mixing structure introduced in the previous section is 
discernable in a higher level of abstraction than in the process of finding the 
original speech signals. For the BSS example presented above, the task was to 
find out what are the original signals and in which proportion each original 
signal is present in the perceived signals. In a more general level, ICA analysis 
has been used to find separate underlying components or variables. For 
linguistic data, the task could be to see whether different underlying categories 
could be found in an unsupervised manner. For instance, one can study if it is 
possible to find syntactic and semantic features based on an analysis of words in 
their contexts. The idea is that maybe words in contexts can be divided into a 
number of roles that they serve.  
 
Contextual information has widely been used in statistical analysis of natural 
language corpora (consider, e.g., Church & Hanks 1990, Schütze 1992, Lund et 
al. 1995, Manning & Schütze 1999).  One useful numerical representation for 
written corpora can be obtained by taking into account the sentential context in 
which the words occur.  First, we represent each word by a vector in an n-
dimensional space, and then code each context as an average of the vectors 
representing the words in that context. In the simplest case, the dimension can 
be taken equal to the number of different words, and each word is represented 
by a vector with one element equal to one and others equal to zero. Then the 
context vector simply gives the frequency of each word in the context. For 
computational reasons, however, the dimension may be reduced by different 
methods.  
 
The ICA model in its basic form assumes that the components are independent, 
which may seem to be a very stringent assumption. However, this assumption 
need not be taken too seriously, because even if the components are not exactly 
independent, ICA algorithms can be interpreted as finding the most independent 
components. Furthermore, it can be shown that ICA estimation can often be 
interpreted as maximization of the sparseness of the components, i.e., the 
components should have only a few entries that are significantly different from 
zero. Sparseness is a very intuitive and useful property that has a long history in 
sensory coding, see, e.g., (Field 1994), so it seems likely that it it would be 
useful in this context as well. 
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For the ICA analyses on the word contexts we applied FastICAa software 
package for Matlab. We formed a context matrix in which the elements 
consisted of the number of occurrences of one word in the immediate context of 
another word, i.e, one word followed by another word with no words between 
them. We used this kind of short context but we are aware that one can use 
contexts of different sizes (consider, e.g., Redington et al. 1998, McDonald 
2000).  
 
We fed the word-context matrix to the FastICA algorithm so that each column 
was considered one data point, and each row one random variable.  The 
dimension of the data was reduced to 10 by principal component analysis 
(PCA). The motivation for this operation can be considered, e.g., from the point 
of view that the ICA method can be divided into three consecutive steps: PCA, 
normalization of variances and ICA-rotation (Hyvärinen et al. 2001). The 
dimensionality reduction using PCA was motivated by computational 
efficiency.  
 
The data used in the experiments consists of collection of e-mails sent to the 
connectionists mailing list. More details of the approach have been given in 
(Honkela et al. 2003, Honkela and Hyvärinen 2004). 
 
The results of the ICA analysis corresponded in most cases very well or at least 
reasonably well with our preliminary intuitions. The system was able to 
automatically create distributed representations as a meaningful collection of 
emergent linguistic features; each independent component was one such feature. 
 
In Figure 2, there are three examples of the analysis resultsa. In considering the 
feature distributions, it is good to keep in mind that the sign of the features is 
arbitrary. This is because of the ambiguity of the sign in the ICA model: one 
could multiply a component by -1 without affecting the model. Figure 2 shows 
how the third component is strong for nouns. For the words “systems” and 
“psychology” an additional component is strong. Namely, in more thorough 
analyses it became apparent that plural nouns shared the same pattern of peaked 

                                                           
a http://www.cis.hut.fi/projects/ica/fastica/ 
a More results can be found in (Honkela et al. 2003) and (Honkela & Hyvärinen 

2004). In this paper we focus on the conceptual and modeling aspects of the 
ICA-based context analysis methodology. 
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third and fifth component. On the other hand, for nouns that refer to disciplines 
it became apparent that both third and fourth component is strong. 
 

 
 
Figure 2. Ten independent components for three words (starting from the left): “system”, “systems” 
and “psychology”. 
 
In this analysis we used ten as the number of ICA features which sets a limit on 
the complexity of the feature encoding. We used this limit in order to 
demonstrate the power and usefulness of the method in a simple manner. A 
higher number of features can be used in order to obtain more detailed feature 
distinctions. 
 
In order to verify the match between ICA-based features and traditional 
linguistic categories systematically, we have conducted analyses in which the 
emergent features are compared with the categories provided in tagged corpora.  
In Figure 3, we show the results of one such analysis for nouns in plural form. 
Among the ICA-based features the one that has the closest match with the 
traditional category is first selected.  In the study, 1000 most common words for 
which the traditional linguistic category was known were considered.  Each of 
the points in the diagram corresponds to a word. The position of a point in the y-
axis indicates the weight of a particular word in the mixing matrix for the 
particular feature.  Among the words we have circled the ones that are known to 
belong to the category of plural nouns. Specifically, the comparison has been 
made using Brown corpusa and the corresponding tag is called NNS. The 
number of those words is 56 among the 1000 most common words. The 
successful match between the ICA-based feature and the traditional category is 
rather apparent because the circled points are located in the upper part of the 
diagram. The majority of the other words have a weight that is close to zero. For 
illustration, one can list the first 20 words that have the highest weight 
beginning from the best matching word: “parts”, “persons”, “places”, 

                                                           
a http://helmer.aksis.uib.no/icame/brown/bcm.html 
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“conditions”, “circumstances”,  “animals”,  “times”, “forms”, “matters”, 
“things”, “words”, “lines”, “houses”, “letters”, “names”, “days”, “states”, 
“officers”, “books” and “works”. 
 

 
Figure 3. A comparison between an ICA-based emergent feature and a traditional linguistic 
category in a tagged corpus. Circled words belong to the plural noun (NNS) category. We can see 
that the words belonging to this particular category are clearly different from most of the other 
words when the mixture weight (y-axis) is considered. 
 

4. Emergent  Representations 

In the following, we discuss the potential of independent component analysis for 
modeling some aspects of language learning and in adaptive conceptual 
modeling. We compare the merits of the ICA method with some earlier results 
gained by using the self-organizing maps (SOM). Earlier, the self-organizing 
map has been used in the analysis of word context data by, e.g., Ritter and 
Kohonen (1989) (artificially generated short sentences), and Honkela et al. 
(1995) (Grimm fairy tales).  The result can be called a self-organizing map of 
words, or a word category map. Areas or local regions on a word category map 
can be considered as implicit categories or classes that have emerged during the 
learning process. The borderlines for the emergent implicit SOM-based 



 8 

categories have to be determined separately. In the ICA analysis one is able to 
find the categories in an automated way.  
 
In the SOM-based word category map each word appears in one location. This 
means, among other things, that one cannot have a map in which several 
characteristics or categories of one word would be represented unless the 
categories overlap and accordingly the corresponding areas of the map overlap. 
On the other hand, the ICA analysis provides a sparse encoding of the words in 
such a way that there can be a collection of features associated with each word. 
ICA can provide an arbitrary number of useful features per each word. The 
features can be syntactic as well as semantic like proposed already by Fillmore 
(1968). One advantage of using ICA is that the features emerge automatically. 
 
One should also remember that the word context analysis based on written texts 
is only partially able to reveal the underlying syntactic and semantic feature 
structures. For instance, it is commonplace that opposites appear in similar 
contexts in texts. For more realistic language learning simulations it is necessary 
to include other kinds of contexts including visual perceptions, actions and 
activities associated with linguistic expressions. 

5. Conclusions 

We have shown how independent component analysis can find explicit features 
that characterize words in an intuitively appealing manner.  There are various 
methods such as self-organizing maps (Kohonen 2001, Ritter & Kohonen 1989) 
and latent semantic analysis (Deerwester et al. 1990) that can be used for 
automatic statistical methods for linguistic analysis. However, independent 
component analysis appears to make possible a qualitatively new kind of results 
that have earlier been obtainable only through hand-made analysis. Moreover, 
the results indicate that autonomous agents would be able to learn linguistic 
feature systems in an unsupervised manner. 
 
The analysis results show how the ICA analysis was able to reveal underlying 
linguistic features based solely on the contextual information. This means that 
no dictionary or thesaurus was used to guide the ICA analysis and the samples 
were not labeled. The results include both an emergence of clear distinctive 
categories or features as well as a distributed representation based on the fact 
that a word may belong to several categories simultaneously. For illustration 
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purposes in the first experiment we kept the number of features low, i.e., ten. 
However, similar approach scales well up to higher numbers of dimensions.  
 
Future research directions include analysis of larger corpora for extracting larger 
number of independent components. On a qualitative level, polysemy will be 
considered as one particularly challenging research topic. Whether the 
component values can be applied as degrees of membership for each word in 
each category is a question of further analysis. The distributed representation 
can be used as a well-motivated low-dimensional encoding for words. The 
limited number of dimensions brings computational efficiency whereas the 
meaningful interpretation of each component provides basis for intelligent 
processing. 
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