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ABSTRACT: Finding ways in which communities of experts can benefit from
each other is a question shared by the machine learning community and
social sciences alike. Considerable research in machine learning methods
has shown that communities of experts can provide consistently better clas-
sifications and decisions than single experts in various tasks and domains.
Our aim is to extend the perspective on communities of experts to cover the
wider context of socio-cognitive research. In particular, we discuss the socio-
cognitive research on the formation and use of expertise in relation to the
modeling of concept formation, integration and use in human and artificial
agents. We present three case studies related to problem solving and decision
making in environmental policy, medical care, and consumer research. We
present a methodological framework for the computational modeling of the
phenomena described above. A specific emphasis is on unsupervised statis-
tical machine learning of heterogeneous conceptual spaces in multi-agent
systems and on the application of such conceptual expert knowledge.

KEYWORDS: Expertise, computational modeling, machine learning, im-
plicit knowledge, subjectivity, intersubjectivity, social simulation, Bayesian
methods, self-organizing map
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1 INTRODUCTION

In cognitive science, artificial intelligence and machine learning research,
it has been commonplace to concentrate on understanding and modeling
the expertise of a single agent. In this report, we discuss some aspects of
the expertise of an individual and describe why it is important to consider
also the social level. We follow a socio-cognitive approach, i.e., an approach
in which socio-cognitive processes are taken to be a complex and dynamic
combination of coupled individual cognitive processes. These couplings give
rise to the social level of abstraction.

We provide a summary of our earlier research related to this field and
outline an analytical and methodological framework for the socio-cognitive
modeling of communities of experts. In section 2, we report earlier research
related to the ways of understanding and modeling individual expertise. We
make a distinction between explicit and implicit knowledge of an expert.
Methodologically, we provide a broad overview including discussion on rule-
based representation, artificial neural networks, and Bayesian modeling. Re-
lated to the complexity of the underlying phenomena, we discuss the relation
between holism and reductionism from an epistemological point of view. In
section 3, we expand the view to the social level, concentrating on the notion
of distributed expertise and ensemble learning. In section 4, we provide three
different empirical perspectives on expertise. The three domains are natural
resource use, health care, and consumer behavior. In these, we problematize
the relation between “lay” and “expert” knowledge.

In section 5, we first describe how the subjective conceptual understand-
ing underlying an expert’s knowledge can be modeled without assuming an
innate existence of a conceptual system. Next, we discuss how an intersubjec-
tivity between subjective conceptual systems can be reached as an adaptive
process. Finally, we outline three distinct ways in which conceptual structure
can be integrated in processes of expert communication with the aim of solv-
ing problems. These three strategies are, in order of increasing complexity, a)
clarifying naming conventions, b) visualizing differences in conceptual den-
sity, and c) providing augmenting data that mediates between the different
conceptual systems.

Based on our analytical and methodological framework, it seems that
which kind of strategy of conceptual integration that is most suitable in a
specific collaborative process between experts depends on the nature of the
confronted problems. It is important to note that the processes of concep-
tual interaction and integration that we describe in this report are not level-
dependent, i.e., they remain the same irrespectively of whether they occur
at, or across, the levels of individual, group or unit.

This report describes the area of modeling expertise in a multi- and in-
terdisciplinary manner bringing together results from cognitive science, so-
ciology, artificial and computational intelligence (esp. statistical machine
learning research), and science and technology studies. We are in the pro-
cess of developing the analytical and methodological framework into a useful
theoretically viable tool for the analysis and facilitation of expert collabora-
tion.
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2 UNDERSTANDING AND MODELING INDIVIDUAL EXPERTISE

Next, we consider different computational models that have been used to
represent individual expertise. In particular, we make a distinction between
explicit representations (such as rule systems) and implicit representations
(such as artificial neural networks). In addition to presenting various compu-
tational methods in this field, we relate these methods with empirical finding
in the human sciences.

2.1 Individual expertise represented as rules

In the 1980’s it was commonplace to view expertise as a collection of explicit
rules. A wide variety of expert systems were built in order to codify the knowl-
edge of the experts of some specific domain (consider ,e.g., [2, 99]. Typically,
such an expert system consists of 1) a knowledge base encoded in some for-
malism, closely related to predicate logic, and 2) a reasoning mechanism to
device inferencing that is based on the rules of the knowledge base. The
reasoning mechanism is implemented as an inference engine. The rules
in an expert system are usually production (if-then) rules. The reasoning
mechanism can be based on forward chaining or backward chaining strate-
gies. Prolog as a commonly used logic programming language [102] applies
backward chaining which made it popular as an implementation platform
for expert systems [71]. The underlying resolution mechanism [61] is im-
plemented using Horn clauses. A Horn clause is a propositional clause (a
disjunction of literals) with at most one positive literal. This kind of Horn
clause, i.e.,

¬p ∨ ¬q ∨ · · · ∨ ¬t ∨ u

can be written equivalently in the form of an implication, i.e.,

(p ∧ q ∧ · · · ∧ t) ⇒ u

The experiences from a large number of expert system development projects
also highlighted some problems in representing expertise in the form of ex-
plicit rules. The first class of problems is quantitative. In many domains, the
number of rules needed to represent the body of knowledge is large. The
amount of work needed for the knowledge acquisition process for a typical
domain could be several person years. For the experts that were interviewed
to collect the expertise, it was also often difficult to express they knowledge
in the form of explicit rules. Moreover, the rules provided by different ex-
perts could contradict with each other which is closer to the second class, i.e.
qualitative problems. For instance, rules do not suit well for the represen-
tation of imprecise information. As an early solution, certainty values were
associated with each rule. This was not a theoretically grounded approach
and it has since been replaced by the use of Bayesian reasoning techniques.
Bayesian inference uses an estimate of the degree of belief in a hypothesis be-
fore evidence has been observed and based on observed evidence, calculates
an estimate of the degree of belief in the hypothesis. As a model of expertise,
the Bayesian model is interesting as it allows to present the initial set of be-
liefs and a systematic update of the beliefs based on experience. Bayes’ rule
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adjusts probabilities given new evidence as follows:

P (H|E) =
P (E|H) P (H)

P (E)

In this well known equation, H represents a specific hypothesis. P (H) is the
prior probability of H before new evidence (E) became available. P (E|H)
is the conditional probability of seeing the evidence E if the hypothesis H
happens to be true. P (H|E) is the posterior probability of H given E. P (E)
is the marginal probability of E. In other words, P (E) is the a priori probabil-
ity of witnessing the new evidence E under all possible hypotheses. It can be
calculated as the sum of the product of all probabilities of any complete set of
mutually exclusive hypotheses and corresponding conditional probabilities:

P (E) =
∑

P (E|Hi)P (Hi).

In the Bayesian framework, accumulating expertise can be viewed as a pro-
cess of collecting an increasing number of rules with associated conditional
probabilities. The framework can be used to model expertise at different lev-
els of explicitness. Next, the explicitness-implicitness question is considered
in some detail.

2.2 Implicit expertise of an individual

Empirical research on human knowing and experience has clearly shown
that expertise is based on skills and knowledge that are difficult to represent
explicitly in linguistic form. The term “tacit knowledge” is often used to refer
to knowledge that is difficult to be transferred from one person to another by
means of writing down or verbalizing it [78, 75]. Dijksterhuis et al. have
recently shown that unconscious or intuitive decision making gives system-
atically better results than reliance on explicit or rational thinking in solving
complex problems [19]. Evans points out that people reason in a probabilistic
manner [23]. Moreover, reasoning is highly contextualized by relevant prior
knowledge and belief. In the dual process theories of reasoning, a division
is made between a heuristic system and an analytical system. The heuristic
system has evolved early, it is shared with animals, it is rapid and parallel, it
has high capacity and it is pragmatic [23]. These important aspects of knowl-
edge and reasoning are set aside if they are only considered at the level of
the analytical system that has evolved late and that provides those kinds of
thinking tools that are necessary for, e.g., logical reasoning.

Considering the analytical level and explicit representation is not enough
as knowledge is based on the underlying experiential domain. Gigerenzer
describes this phenomenon in a very clear manner in his book “Gut Feel-
ings - The Intelligence of the Unconscious” [32]. The section “Why good
intuitions shouldn’t be logical” is devoted to analyzing the classical reason-
ing task outlined by Tversky and Kahnemann to show how people tend to
violate logical reasoning. In the task, people are asked which of the following
alternatives is more probable: (A) Linda is a bank teller, or (B) Linda is a
bank teller and active in feminist movement. The question is posed after ex-
plaining that Linda is 31 years old, outspoken, and very bright. As a student of
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philosophy she was deeply concerned with issues of discrimination and social
justice and participated in antinuclear demonstrations. According to Tversky
and Kahnemann’s argumentation, the fact that people often choose B even
though the choice A is right from the point of view of logic. A conjunction
of two events cannot be more probable than only one of them. Gigerenzer
criticizes this view to be content-blind because the content and the goals of
thinking are ignored. He states that intelligence has to operate in an uncer-
tain world, not in the artificial certainty of a logical system. In the Linda
case, Gigerenzer showed that the majority of people understood the mean-
ing of “probable” and “and” through their non-mathematical interpretation
[32]. For instance, “probable” was interpreted as “conceivable”, “plausible”,
“reasonable”, and “typical”. Moreover, it is clear that as a natural language
expression the structure “(X and Y) or X” is easily understood as “(X and Y)
or (X and not-Y’)”. The omission of “not-X” is an omission of an otherwise
repeated structure which is a common phenomenon in language. From the
point of view of expertise, the message is that problem solving in a case like
the one described above is based on a model of the underlying phenomenon
and an assessment of the intended task at hand.

In general, it seems that an individual’s rationality is an adaptive tool that
does not follow (only) the principles of symbolic logic or probability theory
as such, but includes various “cognitive survival strategies”, such as a collec-
tion of heuristics as pointed out by Gigerenzer and his colleagues [33]. For
instance, the recognition heuristic states that “If one of two objects is rec-
ognized and the other is not, then infer that the recognized object has the
higher value with respect to the criterion.” [33, 35] In the academic world,
this kind of criterion can be used in decision making, e.g., in the following
way. If one has found six articles related to some topic and one has time to
read only one or two of them, the person is more likely to read, regardless of
their individual quality, the articles coming from institutions like Cambridge,
Harvard, or MIT, rather than Da Nang, Lappeenranta, or Tshwane.

2.3 Methods for implicit representation

The difference between explicit and implicit knowledge is usually defined by
referring to language. If knowledge is represented as interpretable linguistic
expressions, it is considered to be explicit, otherwise implicit. Computational
intelligence methods such as neural networks and statistical machine learn-
ing have provided models of implicit (unconscious, intuitive) understand-
ing. This link has occasionally been stated separately (see, e.g., [8]). These
methods make it possible to model fine-grained many-to-many probabilistic
relationships in knowledge and reasoning.

A feedforward multilayer perceptron can be seen to device a many-to-
many mapping between two sets of variables. A multilayer perceptron is
an artificial neural network model that maps sets of input data onto a set
of output. It uses three or more layers of nodes with nonlinear activation
functions. From the point of view of the present discussion, it is essential that
every node in some layer is connected with every node in the following layer.
This connectivity ensures that the network is able to perform as an arbitrary
pattern classifier [68], a universal function approximator [45], or to be equiv-
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alent in power to a universal Turing machine [96]. Learning in a multilayer
perceptron can take place with the backpropagation of errors algorithm. In
this algorithm, connection weights wji between the nodes are changed based
on the amount of error in the output compared to the expected result:

∆wji(n) = −η
∂E(n)

∂vj(n)
yi(n)

In this equation, yi is the output of the previous neuron and is the learning
rate.

In such a network, the intermediate representation is implicit, even when
the input and output layers contain variables with linguistic/explicit inter-
pretation. The degree of implicitness grows, for instance, if the input layer
contains variables that do not have (high-level) linguistic interpretation at
a relevant level of abstraction. Of course, any representation based on dis-
tinct variables can be given a symbolic description (“the level of blue in the
pixel in the row 121, column 73”). The term relevant level of abstraction
can further be exemplified with recorded music. A digital recording of music
consists of a huge number of individual bits but expressing each of these bits
as a separately named entity does not make sense from the point of view of
the musical level. A neural network model could be trained, for example,
to serve as an expert of classical music in the sense that through an expo-
sure to thousands of samples, the system would be able to recognize different
composers with reasonably high accuracy. This recognition or classification
skill would reside in the complex weight patterns of the neural classifier with
limited means for making the reasons for each classification result explicit.
Herbert Simon has expressed a related thought as follows: “The smartest peo-
ple in the world do not generally look very intelligent when you give them a
problem that is outside the domain of their vast experience.”

Hyötyniemi has coined the term “neocybernetics” that builds on the idea
of second-order cybernetics, as originally coined by von Foerster, as cyber-
netics of observing systems [27, 28]. Within neocybernetics, Hyötyniemi de-
fines the basis for conceptual categories as follows: “The chunks (symbolic
or subsymbolic memory elements) are patterns constructed of sparse-coded
features, or ’relevant attractors’ among data; inference is pattern matching
in the data space.” [48] He continues by stating, in general terms, that the
process of shift from novice to expert can be explained in a numeric frame-
work better than in a symbolic one. We agree with this statement, and in this
report we provide a preliminary version of an analytical and methodological
framework for representing and processing expert knowledge.

2.4 The issue of complexity

Weaver approached the concept of complexity by making a distinction be-
tween disorganized complexity and organized complexity [106]. According
to Weaver, disorganized complexity results from the interactions between a
very large number of parts in a particular system. Even though the interac-
tions in this case would be more or less random, the properties of the system
as a whole can be understood by using probability and statistical methods.
Weaver used the number of balls on a billiards table as an illustrative exam-
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ple. The classical dynamics is well suited for analyzing the motion of a single
ball. With increased difficulty, one can also analyze the motion of two or
even of three balls on a billiard table. Referring to the analogy of analyzing
gases, Weaver then asked to consider a large billiard table with millions of
balls rolling over its surface, colliding with one another and with the side
rails. In such a case, the methods of statistical mechanics are applicable
[106].

From our point of view, a more interesting case among the two discussed
above is the organized complexity, which incorporates non-random or corre-
lated interaction between the parts of a system. In organized complexity, a
coordinated system manifests emergent properties not dictated by individual
parts.

A central question here is what is the relationship between holism and
reductionism. We will consider this relationship from an epistemological
point of view. Holism then refers to the idea that all the properties of a given
system cannot be explained by its component parts alone1. The system as
a whole is needed in the explanation of how the parts behave. Reduction-
ism, as an opposite to holism, says that a complex system can be explained
by reduction to its fundamental parts. It seems that both extremes are prob-
lematic. If holism is taken to the extreme, it would mean that we would
need to analyze the connections between all elements at all levels of abstrac-
tion. On the other hand, a fully reductionist approach does not seem to be
fruitful either. As an intermediate view, Simon has introduced the concept of
near-decomposability [97]. As a property that seems to be shared by all multi-
celled organisms, near-decomposability refers to hierarchies of components,
such that, at any level of the hierarchy, the rates of interaction within com-
ponents at that level are much higher than the rates of interaction between
different components [97]. From the evolutionary point of view, under the
usual conditions of mutation and/or crossover and natural selection, nearly
decomposable systems will increase in fitness, and therefore reproduce, faster
than systems without this property.

An analogical structure to Simon’s concept of near-decomposability can
be discerned in many areas of science, technology and their methodologies.
In clustering methods, the objective is to find collections of objects which are
similar with each other and dissimilar to the objects belonging to other clus-
ters. In software engineering, it is commonplace to use modular structures
in which the data flow between the modules is restricted. In formal linguis-
tics, compositionality is considered to be an important characteristic with the
recognition that exceptions exist. As a related theme, natural language pars-
ing is often conducted using context-free grammar formalisms even though
context sensitivity is needed in many cases due to long distance dependen-
cies. It is important to recognize that the “truth” lies somewhere between the
two extremes as suggested by Simon’s term near-decomposability.

2.5 Bayesian framework

From the methodological point of view, it may be useful to review some
aspects related to Bayesian modeling. The main idea of this subsection is

1Ontologically, the question would rather be about determination than explanation.
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to consider how complexity of representing knowledge is handled within a
framework that is widely used in science. Let us first remind ourselves of the
basics of the Naive Bayes method2. A naive Bayes classifier is a probabilistic
classifier based on applying Bayes’ theorem (discussed earlier in this report).
Strong independence assumptions are in use which refers to the assumption
that the presence (or absence) of a particular feature of a class is unrelated
to the presence (or absence) of any other feature. Based on this assumption,
the Naive Bayes approach can be called reductionist when considered from
the point of view of the discussion above. In concrete terms, the Naive Bayes
classifier is based on the following conditional model in which class variable
C is conditional on several feature variables, F1 . . . Fn.

p(C|F1, . . . , Fn)

Using Bayes’ theorem, one can write this into the following form.

p(C|F1, . . . , Fn) =
p(C) p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
.

The denominator does not depend on C and the values of the features Fi

are given, so that the denominator is effectively constant. The numerator is
equivalent to the joint probability model.

p(C, F1, . . . , Fn)

Using repeated applications of the definition of conditional probability, his
can be rewritten as follows.

p(C, F1, . . . , Fn)
= p(C) p(F1, . . . , Fn|C)
= p(C) p(F1|C) p(F2, . . . , Fn|C, F1)
= p(C) p(F1|C) p(F2|C, F1) p(F3, . . . , Fn|C, F1, F2)
= p(C) p(F1|C) p(F2|C, F1) p(F3|C, F1, F2) p(F4, . . . , Fn|C, F1, F2, F3)
= p(C) p(F1|C) p(F2|C, F1) . . . p(Fn|C, F1, F2, F3, . . . , Fn−1) . . .

The complexity of this representation shows the effect of the “holistic” view
in the values of the features may depend on each other. Now if we assume
“reductionistically” that each feature Fi is conditionally independent of every
other feature Fj for j 6= i, the mathematical representation becomes much
simpler.

p(Fi|C, Fj) = p(Fi|C)

The joint model can then be expressed as follows.

p(C, F1, . . . , Fn) = p(C) p(F1|C) p(F2|C) p(F3|C) · · · = p(C)
n∏

i=1

p(Fi|C).

In general, the independence assumption of the Naive Bayes method may
be too restrictive in many real world situations. Simulation-based Monte
Carlo techniques are often used in connection with Bayesian methods to
overcome some of these problems (see, e.g., [90, 104]).

2The mathematical presentation of the method follows to a large
degree the Wikipedia article “Naive Bayes classifier” at http :
//en.wikipedia.org/wiki/Naive_Bayes_classifier, downloaded 4th of November,
2009.
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2.6 No free lunch theorem and inductive bias

There are some inherent restrictions related to the processes of generalization
in learning. Already Hume [47] pointed out that the direct experience is the
basis of knowledge.

There is no object, which implies the existence of any other
if we consider these objects in themselves, and never look be-
yond the ideas which we form of them. Such an inference would
amount to knowledge, and would imply the absolute contradic-
tion and impossibility of conceiving any thing different. But as
all distinct ideas are separable, it is evident there can be no im-
possibility of that kind. When we pass from a present impression
to the idea of any object, we might possibly have separated the
idea from the impression, and have substituted any other idea in
its room.

It is therefore by EXPERIENCE only, that we can infer the
existence of one object from that of another. The nature of expe-
rience is this.

From the point of view of forming conceptions of the world, the following
passage is particularly interesting [47].

Even after the observation of the frequent or constant con-
junction of objects, we have no reason to draw any inference
concerning any object beyond those of which we have had expe-
rience.

In the context of machine learning, in particular supervised learning, this
thinking is famously formulated in the so called "No free lunch" theorem
[108] (see also [109]). Wolpert shows that even if we know the classification
error rate obtained by two algorithms a1 and a2 for a particular data set d1, if
we then take another, unknown data set d2 which has no overlap with d1, we
still know nothing about which of the algorithms will be better. This holds
regardless of the learning algorithms, and Wolpert shows that in particular it
holds when a1 is the algorithm favored by cross-validation and algorithm a2

is the opposite, the one performing worst in cross-validation. Another way to
express the gist of this work is to say that averaged over all possible problems,
any two algorithms are equally good.

A computational learning problem can be often viewed as a search for a
good model from a space of candidate models. What makes learning algo-
rithms different, is their so-called inductive bias. One way to explain induc-
tive bias is to say that it is the policy using which the algorithm searches the
space of possible models. Two algorithms with a different inductive bias will
arrive in different areas of the search space with different probabilities. This
means that if one algorithm is superior with certain kinds of data sets, the
other algorithm must be superior with some other kinds of data sets: aver-
aged over all possible data sets the algorithms are equally good.

In practice, most algorithms only evaluate a small subset of all possible
candidate solutions. However, since often the search spaces are such that
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good and even optimal solutions are found scattered all over the search space,
it is likely that after examining a quite small set of candidate solutions a rather
good solution will be found by any algorithm. Restricting the search space of
candidate models using prior information regarding, for example, the domain
of application can be viewed as a useful approach.

For our purposes, the computational issues discussed above (as well as
Hume’s observations) seem to point out that the experience of a phenomenon
is important. When the number of observations related to a phenomenon is
high, there is less need for extensive generalizations. This may be considered
to be in line with the idea that the formation of human expertise takes sev-
eral years to develop. Furthermore, this development of expertise requires
enough direct exposure to the phenomenon at hand.

3 UNDERSTANDING AND MODELING EXPERTISE IN NETWORKS OF INDI-
VIDUALS

The social level of expertise refers to competencies that arise from social in-
teraction, knowledge sharing, and collective problem solving ([36]. Cogni-
tion and intelligent activity are not only individual processes but ones which
rely on socio-culturally developed cognitive tools. These include physical
and conceptual artifacts as well as socially distributed and shared processes of
intelligent activity embedded in complex social and cultural environments
[36]. Expertise at the social level is constituted in interaction between indi-
viduals, communities, and larger networks supported by cognitive artifacts.

At the socio-cultural level, humans create and share conceptual artifacts
such as symbols, words and texts. These are used as mediators between dif-
ferent minds. In communicating and sharing knowledge, individuals have to
make a transformation between their internal representation into an explicit
representation to be communicated and vice versa, as Vygotsky pointed out
already in the 1930s. The internalization and externalization processes take
place as a continuous activity. In externalization, the internal view is exter-
nalized as explicit and shared representations.

In their book, Castellani and Hafferty provide a careful account of scien-
tific work at the intersection of complexity science and sociology. They con-
sider, among other things, such areas as computational sociology, sociocyber-
netics, and social network analysis. Citing, e.g., Buckley [11] and Luhmann
[70], the authors state that studying society is the same as studying complex-
ity. Methodologically, they list a number of subdisciplines and concepts of
relevance for this area including systems science, cybernetics, dynamic sys-
tems theory, artificial intelligence, neural networking, self-organization, au-
topoiesis, agent-based modeling, genetic algorithms, and artificial life3.

3.1 Distributed expertise and ensemble learning

In distributed AI and multi-agent system research the idea of using multiple
experts to solve a problem in collaboration is common. The use of a com-

3A diagram illustrating these areas and their relationships is available at http :
//www.personal.kent.edu/˜bcastel3/complex_map.html
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munity of experts may be motivated by the fact that various agents master
different parts of the domain in question or they apply different approaches
(methods, parameterizations, initializations) the performance of which can-
not be determined beforehand in different cases (see [93] for more informa-
tion on multiagent systems).

A methodologically sophisticated approach in this area is ensemble learn-
ing. Ensemble methods have been applied in various forms and under var-
ious names to classification, regression and time series prediction. A non-
exhaustive list of approaches for combining different models into a single
model includes bagging, boosting, committees, mixture of experts, multi-
agent systems for prediction, and classifier ensembles (see [38] for further
references). The classical mixture of experts model generates classifier ex-
perts [52]. Their outputs are combined through a generalized linear rule. In
general, ensemble learning is the process by which multiple models, such as
classifiers or experts, are strategically generated and combined to solve a par-
ticular computational intelligence problem [79]. Dietterich mentions statis-
tical, computational and representational reasons for using ensemble based
systems [18]. There may not be adequate data available to properly represent
the data distribution (statistical reason). There are many alternative models
that can be used to solve the given problem (computational reason). Some-
times the chosen model does not include a sufficiently rich representation to
facilitate adequate problem solving (representational reason). For instance,
in a classification problem, the chosen model cannot properly represent the
sought decision boundary. Using an ensemble of models, instead of choosing
just one, and combining their outputs can reduce the risk of an unfortunate
selection of a particularly poorly performing model [79]. In order for the
problem solving process to be effective, the individual experts must exhibit
some level of diversity.

3.2 Social simulation

Social simulation aims at exploring and understanding of social processes
by means of computer simulation. Social simulation methods can be used
to to support the objective of building a bridge between the qualitative and
descriptive approaches used in the social sciences and the quantitative and
formal approaches used in the natural sciences. Collections of agents and
their interactions are simulated as complex non-linear systems, which are
difficult to study in closed form with classical mathematical equation-based
models. Social simulation research builds on the distributed AI and multi-
agent system research with a specific interest of linking the two areas.

The research area of simulating social phenomena is growing steadily (see,
e.g., [103]) but we do not aim at giving a comprehensive overview in this
report. Rather, we next present and discuss two examples of recent research
that is related to our topic.

Schwenk and Reimer have built a social simulation model to study the
processes of social influence [92] that partly builds on the research on heuris-
tics [33]. They examined the interaction of decision strategies and features of
the communication network. Schwenk and Reimer’s simulation model was
contextualized by a scenario which they adapted from Lazega [65]. In this
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scenario, a group of lawyers who are partners in a law firm gather in a meeting
in order to decide about topics concerning the firm, for instance, the branch
of business in which the firm should further expand [92]. In the simulation
model, the lawyers were represented by a set of 21 agents, each having a cer-
tain preference for a branch of business into which the firm should expand.
In more detail, each agent li was associated with both a value di of a decision
variable D, which contains the discrete decision alternatives, and a value w i
of an individual status variable W . A directed graph G, described a network
of directed communication channels cji between the agents L. Each agent li
is assigned a decision procedure f out of a set of decision procedures F . This
function f consisted of a contact rule rc and a decision rule rd and maps
an agent’s actual decision state djn onto its subsequent state djn+1. the dy-
namic evolution of the model was then based on the iterated and sequential
call of this decision rule f .[92] The result of the simulation was such that
the impact of the agents’ decision strategies on the dynamics as well as the
outcomes of the influence process depended on features of their social en-
vironment. This behavior particularly clear when the agents contacted all
of the neighbors with whom they were connected [92]. From our point of
view, an interesting extension of this work would be to combine the influence
process modeling with some more specific consideration of the conceptual
models of the agents.

Nishizaki, Katagiri and Oyama have developed an agent-based simula-
tion model in which artificial adaptive agents have mechanisms of decision
making and learning based on neural networks and genetic algorithms [74].
They compare the results of their simulation analysis with the ones of a math-
ematical model related to the potential occurrence of strikes in a labor mar-
ket. One result stemming from the simulation model was that individuals
behaved cooperatively and that the prisoners’ dilemma could be escaped.
The earlier model was based on rationality (individual utility maximization),
whereas the agents in the social simulation behaved adaptively. Agents made
decisions by trial and error, and they learned from experiences to make better
decisions. [74]

3.3 Bayesian view on distributed expertise

In the Bayesian framework, the Bayes Optimal Classifier is an ensemble of
all hypotheses in the hypothesis space. It can be expressed with the following
equation4

y = argmaxcj∈C

∑
hi∈H

P (cj|hi)P (T |hi)P (hi)

In this equation, y is the predicted class, C is the set of all possible classes, H
is the hypothesis space, and T is the training data. There are several reasons
why this formulation as such is of mainly theoretical value. Many interesting
hypothesis spaces are too large for the model. It is also non-trivial to compute
an unbiased estimate of the probability of the training set given a hypothe-
sis (P (T |hi). Finally, estimating the prior probability for each hypothesis,

4The mathematical presentation of this methods follows the Wikipedia article “Ensem-
ble learning”, http : //en.wikipedia.org/wiki/Ensemble_learning , downloaded 4th of
November, 2009.
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P (hi), is rarely feasible. In order to make the approach feasible, one solution
is create an approximation of the above formula making simplifying assump-
tions. Rather than sampling all hypotheses, one approach is to use some
Monte Carlo sampling technique such as Gibbs sampling. The relationship
between the optimal solution and an approximation can be viewed from the
point of view of dealing with the underlying complexity. In realistic contexts,
the optimal solution is too complex (“holistic”) and simplifying assumptions
are needed to make the approach more tractable.

Within the Bayesian framework, there are also more specific approaches
to consider the social level of expertise. For instance, Zhang has considered
evolutionary learning at the population level [111]. According to him, indi-
vidual animals/species increase or decrease their future probability of action
choices based on the consequence of the currently selected action. Under
Bayesianism, evidence is evaluated based on likelihood functions so that ac-
tion probability is modified from a priori to a posteriori according to the Bayes
rule. Viewed as hypothesis testing, an evolutionary/selectionist framework
attributes evidence exclusively to the selected, focal hypothesis, whereas a
Bayesian framework distributes across all hypotheses the support from a piece
of evidence [111]. Zhang shows that when individuals modify their action
choices based on the selectionists’ approach, the learning population at the
ensemble level evolves according to a Bayesian-like dynamics [111].

4 EMPIRICAL PERSPECTIVES ON EXPERTISE

In the following, we present three empirical contexts in which communica-
tion across knowledge boundaries or different forms of expertise takes place.
All contexts challenge the traditional notion of expertise.

4.1 Natural resource users as experts

Experts, especially scientists and engineers, have always played a prominent
role when taking policy action [16, 84]. Typically, a distinction has been
made between experts in possession of systematic knowledge, and lay persons
possessing only contextual knowledge [84]. During the 1950s and 1960s, it
was inconceivable that decision making could travel any other direction than
top-down [16]. Non-experts were seen as basing their contextual views on
values and thus as incapable of understanding knowledge or of using it in a
meaningful way [84]. As an academic movement, this way of thinking began
to erode towards the end of the 1960s, being more or less superseded by the
late 1970s [16]. Part of the erosion of the divide between lay and expert
knowledge was the criticism from the perspective of social constructivism,
that this positivistic stance fails to account for all the aspects of social life that
go into the building of the scientific practice in the first place [16, 50]. Over
and above this major twist, the criticism has taken a number of specific forms.
For instance, Collins and Evans advocate the extension of technical expertise
to include also uncertified, experience-based expertise [16]. Mitchell et al.
propose that the technical expert be seen as an honest broker between various
conflicting demands [72].
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Figure 1: An illustration of different sources of knowing i.e., direct experi-
ence, written information, and numerical information.

Irwin argues that scientific and contextual knowledge need not necessarily
conflict, since contextual knowledge may be constructed in scientific terms
and since scientific knowledge can be seen as one kind of contextual knowl-
edge [50]. According to Harrison et al., local knowledge can be more effi-
cient in local contexts since it is specific to and historically embedded in this
context [37]. Ravetz and others in the post-normal science camp argue that
researchers need to accept other quality criteria than the scientific ones as
legitimate in policy and decision making processes [82]. Post-normal science
refers to the scientific inquiry when facts are uncertain, values are in dispute,
stakes are high, and decisions are urgent. The debate over global warming
can be seen as such an issue with other similar, long-term questions in which
the scientific community possesses limited amount of information in relation
to the importance of the questions at hand [30].

Others, however, criticize the view that scientific and contextual knowl-
edge can, in the last instance, be made compatible. This can be exemplified
within the context of natural resource users and managers, such as sheep
farmers [110] or herders [46]. In his famous study of the ways in which sci-
entists and sheep farmers deal with radioactive pollution in North Cumbria
pastures, Wynne highlights the ways in which the scientific perspective of
the radiologists and the practice-based perspective of the farmers differed not
only with regard to what counts as knowledge in the first place (prediction
and control vs. adaptability and flexibility in the context of action), but also,
as inextricably linked to this, with regard to what is to be viewed as desirable
from the point of view of both practical adequacy and morality (i.e. the latter
as opposed to the former) [110]. Otherwise put, these two kinds of knowledge
practices form bundles in which fact and value are inextricably intertwined,
and there is no easy way of translating the one into the other. Recent re-
search from the field of natural resource management seems to corroborate
this view (see, e.g., [51, 46]). Studying the processes by which various kinds
of not necessarily compatible expert perspectives are contextually generated
thus yields the view that expertise is a phenomenon non-reducible to techni-
cal expertise, however broadly defined; that there needs to be a sensitivity to
the ways in which public issues are framed and given meaning so that one
kind of knowledge commitment is not allowed to hegemonize policy and de-
cision making; and that there needs to be a sensitivity to the way in which all
kinds of expertise are interwoven with deep issues of identity and belonging
[110, 54, 55, 46]. The methodological framework constructed in this report
is especially important for capturing, in a form easily understood by “tradi-
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Figure 2: The MedIEQ project, funded by the EU Commission under the
Public Health programme, has been conducting research related to the in-
terface between layperson and expert knowledge in medicine. The main
objective of the project was to develop methods and tools to help in ensur-
ing the quality of health web sites (see http : //www.medieq.org/ for more
information.

tional” experts, the kind of expertise formed through centuries of close and
committed (inter)action in and with complex ecosystems.

4.2 Patients as experts

The divide between experts and lay persons has been studied also within
the context of the relationships between doctors and patients [15, 29, 22].
The study by Epstein tells the story of how AIDS patients in the US have
managed to slowly establish themselves as credible participants in the con-
struction of biomedical knowledge, as capable of providing insight and expe-
rience of their own condition [22]. Part of this has been learning to speak the
language of biomedicine [22]. It is thus an exemplification of a successful
attempt at creating a “new form of (somatic) subjectivity through collective
activity” [87]. Experiences of this kind show the growing need to understand
more closely the different types of expertise, and the types of collective con-
ceptual processes and information sharing that can in principle take place, if
the circumstances are favorable. Other examples can be found in the patient
collectives that have formed around breast cancer and Lyme disease [22].

In the medical domain, the experts can thus be seen to have both differ-
ent input knowledge bases (data sets, feature spaces and top-down influences)
and different capabilities for action. The knowledge base of the doctor ob-
viously is heavily affected by the medical education and research. A general
practitioner’s concept space is rather evenly distributed in the medical do-
main, whereas the conceptual space of a specialist doctor contains finer con-
ceptual distinctions in a specific domain. The patient’s data, especially in the
case of a chronic illness or condition, is concentrated on personal experience
and information that is most relevant to this particular case, gathered through
the kind of active learning that is based on attentional guidance. Given the
current medical resources in the internet, the active patient may over time
become a very specialized expert also regarding medical research about the
condition. The different experts may also have different, complementary ca-
pabilities for action. One (the doctor) is able to issue drug treatment, medical
tests or surgery. The other (the patient) can start changes in life habits regard-
ing exercise, nutrition, sleep or other everyday practices. Based on sharing

20 4 EMPIRICAL PERSPECTIVES ON EXPERTISE



expertise, the patient can also begin to collect further experiential data, pay-
ing attention to certain kinds of symptoms and phenomena, and monitor the
daily effects of drugs and treatments for well-being. This is in essence what
happened in the US examples described above. Unfortunately, however, not
all circumstances are of this favorable kind. Bowker and Star [7] and Berg
and Bowker [3] discuss the incompatibility between the medical categories
and standards used by doctors and the experiences of patients. Discussing
hormone replacement therapies in the UK, Roberts shows how menopausal
women facing traditional medical expertise “struggle to articulate alternative
knowledge claims or to pose potentially undermining questions” [87]. In
many cases women walk away from clinical encounters with prescriptions for
drugs they did not at all desire [87]. The knowledge gathered by both ex-
perts may be instrumental in deciding the best actions for each expert. If the
knowledge sharing is successful, this may lead to better decisions for both.
The methodological framework constructed in this report is of relevance in
all communication between medical personnel and patients, but we con-
sider it to be of especially high importance in circumstances characterized
by Epstein as less favorable [22]. In particular, it can be used to capture the
expertise of patients that have been characterized by Elbaz as “lay lay”, i.e.,
as patient who actively participate in their own care but who have made the
decision not to learn to speak the language of biomedicine [21, 22].

4.3 Consumers as experts

During the past few decades there has been a clear shift in consumer and
innovation research from the viewpoint of the recipient of technology (the
Edisonian technological and economic determinism) towards that of an ac-
tive consumer. In this line of thinking, the consumers are no longer seen as
mere recipients of technology, but even so, it is still customary to approach
them via groups of elite consumers. The pioneers of technology (e.g., lead
users, pro-am consumers, users as producers, or innovative consumers) are
typically pictured as resourceful young men (see Fig. 1). In the early 21st
century, this elitist viewpoint has been countered by a social-movement one:
the masses make the movement. A new distribution technology (Web 2.0)
and a new kind of willingness to follow the wisdom of the masses are at
the core of Consumer 2.0, Wikinomics and Democratizing of Innovations
([39, 85]).

The distinction above between experts’ and laypersons’ expertise refigures
in the context of innovation research, where the view of a sharp difference be-
tween core (professional lead users) and periphery (consumers) has recently
been questioned also within the context of a general critique of diffusionism
[4]. Diffusionism can be described as the belief that changes are produced
by diffusion rather than by independent invention and that certain places
are permanent centers of innovations. Diffusionism is a large and complex
doctrine that has influenced many disciplines and countless arguments over
150 years [4]. Blaut questions the view according to which the core (profes-
sional lead users) is typically contrasted with the periphery (consumers). The
terms used to denote this distinction are numerous: inventiveness vs. imita-
tiveness, rationality vs. irrationality, intellect vs. emotion, abstract thought
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Figure 3: The movie Star Wreck: In the Pirkinning is an example of user
generated content. It is a full-length science fiction parody that took several
years to make by five people in a two-room flat with a small budget and the
support of a few hundred fans and dozens of acquaintances. The film is
available online for free download and viewing under a Creative Commons
license (see http : //www.starwreck.com/ for more information. Even
though no professional movie makers were involved, the movie has been
estimated to be one of the most viewed movies ever produced in Finland.

vs. concrete thought, discipline vs. spontaneity, adult vs. child, and sane vs.
insane [4]. In contrast to this view, we suggest that the difference between
early adopters and late-comers is related to the fact that lead users have differ-
ent elements of practices (skills, material objects, ideas and time resources)
as compared to latecomers. There seems to exist social roles (and people)
which act as practice junctions where elements (skills, ideas and objects) and
practices cluster in a most dense way.

Today, ideas and material objects travel faster than ever (and our culture
gives less and less universal cues how to behave correctly). Possibly it is
through practice junctions that new products and practices get circulated.
Lead users integrate differently practices, and as a result different practice
constellations, e.g., TV dinners, emerge. Practice constellations are not only
simple responses to existing needs [77]. They might have hidden transform-
ing potential. It is especially new practices (elements and their combinations)
that carry the seeds of emerging challenges and change. Possibly systems of
practices are open to radical re-orientations only in their early stages (e.g., the
use of the Internet in the mid 90’s). For instance, the first digital item (and re-
lated practices) in a household may have been the kick-start for a whole new
ecological system, where old species of analog technology become slowly re-
placed by other digital things, forming a community of interoperable goods
and practices (e.g., digital photography [95]).

Bowden and Corkindale have demonstrated that occasionally it is experts
and heavy users that are the most conservative when it comes to adopting
new practices and adapting to radical innovations [6]. In general, however,
it seems that it is often young people, information workers and those with
much capital (cultural, economic) who are kinds of settlements for various
new practices to attach. These people’s life consists of number of small de-
cisions which varies from one day to another. To overcome the complexity
of stimuli those being in dense junctions (practice squeeze) have to nego-
tiate and renegotiate their temporal order. This could result in feelings of
inadequacy and hurriedness. An opposite social position is that of missing
and lacking practices, inactivity and possibly feelings of loneliness. Seen this
way individualism, adhocracy and feelings of hurriedness or loneliness do
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not arise from individual psychologies or aspirations but rather from different
social positions in an array of daily practices. On the other hand, it is periph-
eral players who are more likely to adopt riskier innovations, because they
have less at stake [88, 69]. In general, in complicated technology a proper
lifestyle is critical for domestication [5, 20, 17].

Kotro has conducted research on hobbyist knowing, i.e. on how an essen-
tial part of product developers’ knowledge stemmed from their free time hob-
bies [60]. The developers of sports measurement devices obtained grounded
and embodied knowledge through their activities in scuba diving, mountain
climbing, etc. [60]. What then makes being old (or young) so special in prac-
tice terms? Why do rich people seem to be more radical in one context and
more conservative in another context? A hypothesis, based on views above,
is that the difference between early adopters and late-comers is not related
to psychological attributes but to the attributes of networks of practices and
practitioners. First, lead users have different elements of practices (skills, ma-
terial objects, ideas and time resources) compared to late comers. Second,
lead users integrate practices differently, and as a result different practice
constellations emerge. Third, as a result of successful integrations the very
elements of practices get transformed (cultivation, learning) [77]. When dis-
cussing consumer expertise, we focus on concepts as part of the composite
of practice understood as bundles of ideas, skills and objects. What is experi-
enced and conceptualized as a need is at least partly an outcome of a learning
process. We also argue that the methodological framework that we develop is
of relevance for all three empirical contexts highlighted in this section. The
same conditions for concept formation, integration and use across traditional
boundaries of expertise apply to all of them, as does the need for processes of
translation.

5 CONCEPTUAL VIEW ON EXPERT COMMUNITIES

In the following, we provide a theoretical and methodological framework
for modeling concept formation and conceptual integration in expert com-
munities. We also present some illustrative examples of the computational
implementation.

5.1 Self-organizing conceptual spaces

Gärdenfors distinguishes between three cognitive levels of representation
[31]. The most abstract level is the symbolic level, at which the information
is represented in terms of symbols that can be manipulated without taking
into account their meaning. The least abstract level is the subconceptual
representation. Concepts are explicitly modeled at the mediating level of the
conceptual representation.

A conceptual space is built upon geometrical structures based on a num-
ber of quality dimensions. Concepts are not independent of each other but
can be structured into domains, e.g., concepts for colors in one domain, spa-
tial concepts in the other domain. Fig. 4 shows an example of a conceptual
space consisting of two quality dimensions, and two different ways (A and B)
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of dividing the space into concepts. A conceptual category c is seen as a con-
vex region in a n-dimensional conceptual space Ci. The concepts are learned
from a limited number of examples x and by generalizing from them. The
similarity λ of two objects can be defined as a distance between their repre-
sentation points in the conceptual space (λ : C × C ⇒ R). The similarity
measure can then be used for e.g. categorization5. A perceived item belongs
to the category whose prototype is the nearest to the mapping of the item
in conceptual space. In general, the theory of conceptual spaces proposes a
medium to get from the continuous space of sensory information to a higher
conceptual level, where concepts could be associated to discrete symbols.
This mapping is a dynamic process. Gärdenfors [31] has proposed that for
example multi-dimensional scaling (MDS) and self-organizing maps (SOM)
[59] can be used to model this mapping process. The simplest connection
between the SOM and conceptual spaces is to consider each prototype or
model vector m in a SOM as an emerged conceptual category c. We can
recall that the standard update rule of the SOM algorithm is as shown in Eq.
1 below. The learning phase, i.e. the iterative processing of the inputs x(t)
leads into an adaptation of the model vectors into an organized map. The
function hci(t) has a central role as it acts as a neighborhood function. In
other words, hci is a smoothing kernel defined over the lattice of points [59].

mi(t + 1) = mi(t) + hci(t)[x(t)−mi(t)]

Research on conceptual modeling using the SOM includes the works by
Ritter and Kohonen, Honkela et al., Lagus et al. and Raitio et al. [86, 42, 62,
81]. These results are discussed next in some detail. Related research has also
been conducted, e.g., to study the initial conceptions of philosophy students
[89] and the relation between the religiousness and counterintuitiveness of
statements [80].

With a simple grammar, Ritter and Kohonen artificially generated syntac-
tically correct and meaningful short phrases which were used as the input to
the SOM [86]. The result was a map in which nouns, verbs and adverbs were
clearly discernible. In this article, Kohonen discusses, among other things,
the relationship between evolutionary and individual basis of concepts. He
reminds us that at the time when the genetic predisposition of linguistic el-
ements was suggested, there was no mechanism known that would have ex-
plained the origin of abstractions in neural information processing other than
evolution. Kohonen further states that the “neural network” models are able
to derive internal representations of categories from the mutual relations and
roles of the primary signal or data elements themselves. This kind of emer-
gence was demonstrated with two simple experiments based on the use of the
SOM [86]. Regardless of the evidence that shows that linguistic abstractions
can be learned with such models, there are researchers such as Chomsky who
hypothesize that children have an innate knowledge of the basic grammatical
structure [14]. It is further claimed that this structure would be common to
all human languages. This innate knowledge is usually referred to as “univer-
sal grammar”. Chomsky focuses on syntactic phenomena in language and, as

5It is to be noted that the concept of similary is closely related to the concept of analogy,
e.g., in the research of Hofstadter [40].
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such, the debate could be seen as mostly irrelevant from the point of view of
modeling expertise – unless expertise in producing well formed expressions
is in question. However, there are also prominent researchers such as Fodor
whose position can be described as extreme or radical concept nativism. Ac-
cording to this view, virtually all lexical concepts are innate [24, 26]. This
view has been analyzed critically by many, among whom Laurence and Mar-
golis can be mentioned as a good example [64]. From the point of view of
our argumentation, Fodor’s radical concept nativism would mean that the
conceptual grounding of expertise is straightforward and the differences in
expertise would rather exist at the level of propositional knowledge. We re-
ject this view as overly simplistic as it seems to overlook a large amount of
empirical evidence. The problems related to polysemy or ambiguity can be
mentioned as one example [1].

Honkela, Pulkki and Kohonen continued the work by Ritter and Kohonen
by refining the method and by experimenting with segments of text from a
natural corpus as an input for the self-organizing map [42]. The input for the
map was the English translation of Grimm fairy tales. In the resulting map, in
which 150 most frequent words of the tales were included, the verbs formed
an area of their own in the top of the map whereas the nouns could be found
in the opposite corner. The modal verbs were in one area. More seman-
tically oriented ordering could also be found. For instance, the inanimate
and animate nouns formed separate clusters. An important consideration is
that in the experiments the input for the SOM did not contain any predeter-
mined classifications. The results indicate that the text input as such, with
the statistical properties of the contextual relations, is sufficient for automatic
creation of meaningful implicit categories. The learning process gives rise
to emergent categories. This kind of example stands in sharp contrast with
the poverty of the stimulus argument often mentioned by the proponents
of linguistic nativism. Argumentation like the one provided by Gold, who
showed that any formal language which has hierarchical structure capable
of infinite recursion is unlearnable from positive evidence alone [34], is not
convincing because natural language does not exhibit infinite recursion. Ac-
tually, Karlsson has been able to show in a convincing manner that there are
certain limits to the recursiveness of natural languages, in particular concern-
ing center embedding [56]. Moreover, it has been shown that unsupervised
systems that learn syntactic structures can be successfully deviced (see, e.g.,
[98]). (For detailed information on unsupervised learning, see [76].)

Lagus, Airola and Creutz analyzed the use of Finnish verbs to uncover
possible conceptual spaces, and to study semantic similarities of verbs in ac-
tual language use. They examined the kinds of semantic or conceptual order-
ing qualities that appear to affect the distribution of features in the immediate
context of a verb. With the unsupervised analysis based on the self-organizing
map, the authors were able to find emergent categories like manipulative
actions in human relationships, start of action (with focus on will or inten-
tion), communication (especially with positive emotional information), and
aggressive or destructive use of power. This result further strengthens the ar-
gumentation presented above as no predefined categories were in use, i.e.,
only statistical co(n)textual information was present in the input.

Fodor and Lepore have presented an argument that connectionist theory
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Figure 4: Illustration of differing conceptual densities of two agents having a
2-dimensional quality domain. Points mark the locations of the prototypes of
concepts. Lines divide the concepts according to Voronoi tessellation. Both
agents can discriminate an equal number of concepts, but abilities of the
agent B are more focused on the left half of the quality dimension 1, whereas
agent A represents the whole space with rather equal precision.

of mind cannot give a satisfactory account of different individuals being in the
same mental state [25]. They claim that the identity of content follows from
the identity of networks, but this condition will never be satisfied in practice.
Raitio et al. have challenged this position by developing a methodology for
comparing the similarity of representations in connectionist networks, and
for examining the possibilities of exploiting it for comparing emergent repre-
sentations in unsupervised learning networks [81]. This kind of comparison
between different but with some respect essentially similar networks, points
towards the consideration of subjective conceptual spaces and intersubjec-
tive mappings between the subjective spaces. These themes will be covered
next.

5.2 Subjective conceptual spaces

Two persons may have very different conceptual density related to a topic
under consideration. For instance, in Fig. 2 person A has a rather evenly
distributed conceptual division of the space, whereas person B has a more
fine-grained conceptual division on the left side of the conceptual space, but
has lower precision on the right side of the space.

When language games are included in the simulation model, it resulted in
a simple language emerging in a population of communicating autonomous
agents [66]. In the population, each agent first learned a conceptual model
of the world, in solitary interaction with perceptual data from the world. As a
result, each agent obtained a somewhat different conceptual representation
(a schematic illustration of the kinds of differences that can arise is shown
in Fig. 2). Later, common names for the previously learned concepts were
learned in communication with another agent.

5.3 Intersubjectivity in conceptual spaces

If some agents speak the same language, many of the symbols and the asso-
ciated concepts in their vocabularies are the same. A subjective conceptual
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space emerges through an individual self-organization process. The input for
the agents consists of perceptions of the environment, and expressions com-
municated by other agents. The subjectivity of the conceptual space of an
individual is a matter of degree. The conceptual spaces of two individual
agents may be more or less different. The convergence of conceptual spaces
stem from two sources: similarities between the individual experiences (as
direct perceptions of the environment) and communication situations (mu-
tual communication or exposure to the same linguistic/cultural influences
such as upbringing and education, and artifacts such as newspapers, books,
etc.). In a similar manner, the divergence among conceptual spaces of agents
is caused by differences in the personal experiences/perceptions and differ-
ences in the exposure to linguistic/cultural influences and artifacts.

The basic approach how autonomous agents could learn to communicate
and form an internal model of the environment applying the self-organizing
map algorithm was introduced, in a simple form, in [41]. The model has
been later substantially refined in [43, 66, 44].

5.4 Modeling conceptually heterogeneous experts

When a community of conceptually heterogeneous human experts collabo-
rate in order to solve challenging problems, for instance, in the environmen-
tal, health or consumer domains, they are likely to encounter a number of
knowledge-related challenges [9]. Some of these challenges stem from dif-
ferences in the conceptual systems of the individual experts. These kinds of
situations call for means of highlighting the conceptual differences and re-
solving the resulting communication blocks. We present three strategies for
this. These three strategies are, in order of increasing complexity, a) clarifying
naming conventions, b) visualizing differences in conceptual density, and c)
providing augmenting data that mediates between the different conceptual
systems.

The computational models mentioned in Section 3 describe different
principled ways in which artificial communities of experts can come to ex-
ist, and how their outputs can be combined.

In this section, we will look at the modeling of experts from a point of view
that sheds light on the challenges of human problem solving that have their
origin in conceptual differences. In particular, we will consider this issue
from the point of view of the conceptual spaces framework described earlier.

Communication across borders of expertise in collaborative problem solv-
ing efforts can, in principle, be achieved in two ways: (1) by bringing forth a
combination of the opinions of the experts by, e.g., voting, or (2) by a more
involved sharing or integration of expertise and experience at the conceptual
level. A particular form of sharing expertise is sharing prototypes. This refers
to a process in which an expert communicates prototypical cases to the other
expert. In the methodological context of the self-organizing map and other
prototype-based conceptual models, prototype sharing means transmitting a
collection of model vectors mi.

Let us consider the features (essentially quality dimensions, see [31]) that
span the conceptual space, data set (experience) used by an individual expert
in learning the structure of its conceptual space, and the naming of concepts.
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These three elements give rise to a typology of conceptual differences among
experts. In the following, we present these different categories as well as the
basic approaches for dealing with problems related to each category.

a) In the simplest case, the quality dimension space and data set are
(nearly) equivalent for both agents. Only concept naming differs among dif-
ferent agents. An agent has an individual mapping function that maps each
symbol to the conceptual space of the agent. In a classical simulation of this
kind, a number of robots with cameras learned to name visual objects in a
similar manner (see [101] and [107] as a philosophical background). An ac-
tive research in language games and language evolution has since emerged
(see e.g. [105, 66, 44]). Chen has presented a specific solution to the vocabu-
lary problem among humans based on clustering [13]. Irwin’s view that con-
textual knowledge may ultimately be constructed in scientific terms might
be rooted in the view that differences in perspective are mainly a matter of
concept naming [50]. This view might also figure in the background of much
traditional or standard thinking in the domains of medicine and innovation.

b) As a step towards increased complexity, one may consider the situation
in which the feature space is equivalent, but data set per expert varies. One
expert has denser data from one part of the concept space, the other for an-
other part (see Fig. 2). An obvious approach for efficient decision making
is to use the expertise of those agents whose conceptual mapping is densest
with regard to the problem at hand. However, in many cases, problem solv-
ing requires combination of many elements e.g. as solutions of subproblems.
In those cases, each element can be dealt with by the expert with the densest
conceptual mapping regarding a particular subproblem. Collins and Evans’
advocation of the extension of technical expertise to include also uncerti-
fied, experience-based expertise might be rooted in the view that there exists
a multitude of dense data sets, some of which are officially credentialized
while others are not [16]. This view might also be behind calls for taking
the views and experiences of patients more seriously, as well as behind re-
cent calls to integrate the perspective of the user at an earlier stage in the
innovation process than is often the case (e.g., [49]).

c) Finally, consider the most challenging case where neither the quality
dimension space nor the data set are the same for both agents. Fig. 1 depicts
a simple case in which the quality dimension spaces are different, therefore
offering different viewpoints of the same data sample to the agents. In this
case, a process of data augmenting can take place: if a subset of data samples
known to both can be found (for example, boundary objects known across
disciplines, or in terms of medicine, a particular patient’s case), each agent
can bring forth their particular knowledge (i.e., values of quality dimensions
known only to them) regarding that case. Furthermore, in addition to col-
laborating in solving the present problem, both agents also have the oppor-
tunity to learn from each other: to augment their own representation with
the new data offered by the other expert. Obtaining augmented informa-
tion regarding several data samples will lead to the emergence of new, albeit
rudimentary quality dimensions, and allow easier communication in future
encounters. As an example, mutual data augmentation can take place be-
tween doctors of different specialization, doctors and patients, or between
doctors and nurses, who consider simultaneously the same patient case. In
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optimal circumstances, this may eventually lead to better expertise of both.
However, this requires that the doctor also trusts the patient, and is willing
to learn and store the experiential data communicated by the patient. Es-
sentially the same preconditions for and constraints to the process of data
augmenting apply in the contexts of environmental policy and innovation.

6 CONCLUSIONS AND DISCUSSION

In this report, we have outlined an analytical and methodological framework
for the socio-cognitive modeling of communities of experts. We have adopted
a socio-cognitive approach, i.e., an approach in which socio-cognitive pro-
cesses are taken to be a complex and dynamic combination of coupled in-
dividual cognitive processes, which then give rise to the social level of ab-
straction. In Section 2, we provided a broad overview including discussion
on rule-based representation, artificial neural networks, and Bayesian model-
ing. In section 3, we expanded the view to the social level, concentrating on
the notion of distributed expertise and ensemble learning. In section 4, we
provided three different empirical perspectives on expertise, and focused on
the problematic relation between between “lay” and “expert” knowledge. In
all three empirical contexts this kind of data was profoundly grounded in real
world experience: in the case of the Cumbrian sheep farmers, deep knowl-
edge of the ecosystem obtained by centuries of interaction with it; in the case
of patients, their own bodily experiences of what circumstances affect their
condition in which way; in the case of innovations, experiences regarding
mountains and deep sea regions.

Finally, in Section 5 we outlined three distinct ways in which conceptual
structure can be integrated in processes of expert communication with the
aim of solving problems. These three strategies are, in order of increasing
complexity, a) clarifying naming conventions, b) visualizing differences in
conceptual density, and c) providing augmenting data that mediates between
the different conceptual systems. Based on this analytical and methodologi-
cal framework, it seems that which kind of strategy of conceptual integration
that is most suitable in a specific collaborative process between experts de-
pends on the nature of the confronted problems. For example, a more well
defined problem can be approached with the second (b) of these strategies,
while a more ill defined problem requires strategies along the lines of (c).
However, problem structures need to be seen as a continuum from a well
defined to indefinite. Moreover, one needs to distinguish between different
dimensions of a problem definition [63, 58].

The observation by Star and Griesemer on the significance of so-called
boundary objects [100] provides an interesting point of access to these issues.
A boundary object may provide a means for co-ordinating communication
and action in situations in which the experts have different perspectives on
some problem. From the point of view of the main theses of this report, we
suggest that the nature and use of a boundary object be analyzed in more
detail. Addressing these issues is part of our future work.

It is also important to note that the processes of conceptual interaction and
integration that we describe in this report are not level dependent, i.e., they
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remain the same irrespectively of whether they occur at, or across, the levels
of individual, group or unit. A central implication for real world situations
across levels is that favorable circumstances for efficient problem solving in
multi-expert situations include a process in which the participants become
conscious of each others’ type and domain of expertise. In particular, each
expert needs to trust the data offered by the other experts. Previous research
on, e.g., social capital [73] has shown that in order to reach such conditions,
mutual respect and trust among the experts, and sufficient and open commu-
nication are needed.

Summarizing, by referring to conceptual spaces theory and the imple-
mentation of it using self-organizing neural networks we have provided an
analytical and methodological framework for conceptual grounding of dif-
ferent kinds of expertise. The methodological framework presented in this
report makes it possible to become conscious of important aspects of the
expertise of other experts that otherwise easily gets marginalized out of the
negotiation processes described in the three empirical contexts, as evidenced
across all three domains (e.g., [60, 87, 110]. Most importantly, the method-
ology renders visible this other kind of expertise in a form that is more easily
accessible to traditional experts. Thus, by enabling the identification and
possibly prediction of conceptual overlaps and differences between various
expert perspectives this analytical and methodological framework of model-
ing expert communities can significantly help reduce the cognitive barriers
(for this and other kinds of barriers, see [10]) in expert communication in
real life negotiation situations across epistemic boundaries.
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On Two-Way Grouping by One-Way Topic Models. May 2009.

TKK-ICS-R16 Antti E. J. Hyvärinen

Approaches to Grid-Based SAT Solving. June 2009.

TKK-ICS-R17 Tuomas Launiainen

Model checking PSL safety properties. August 2009.

TKK-ICS-R18 Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.
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