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Abstract

Vector space models are used in language processing applications for calculating semantic

similarities of words or documents. The vector spaces are generated with feature extraction

methods for text data. However, evaluation of the feature extraction methods may be difficult.

Indirect evaluation in an application is often time-consuming and the results may not

generalize to other applications, whereas direct evaluations that measure the amount of

captured semantic information usually require human evaluators or annotated data sets. We

propose a novel direct evaluation method based on canonical correlation analysis (CCA), the

classical method for finding linear relationship between two data sets. In our setting, the two

sets are parallel text documents in two languages. A good feature extraction method should

provide representations that reflect the semantic content of the documents. Assuming that the

underlying semantic content is independent of the language, we can study feature extraction

methods that capture the content best by measuring dependence between the representations

of a document and its translation. In the case of CCA, the applied measure of dependence

is correlation. The evaluation method is based on unsupervised learning, it is language-

and domain-independent, and it does not require additional resources besides a parallel

corpus. In this paper, we demonstrate the evaluation method on a sentence-aligned parallel

corpus. The method is validated by showing that the obtained results with bag-of-words

representations are intuitive and agree well with the previous findings. Moreover, we examine
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the performance of the proposed evaluation method with indirect evaluation methods in

simple sentence matching tasks, and a quantitative manual evaluation of word translations.

The results of the proposed method correlate well with the results of the indirect and manual

evaluations.

1 Introduction

In many language processing tasks, textual data are transformed into vectorial form

for efficient computation of similarities of words or documents. In the information

retrieval (IR) community (Salton, Wong and Yang 1975), these are called vector space

models. Other applications for vector space models include, for instance, word sense

disambiguation (Schütze 1992), text categorization (Lewis 1992), cross-document

coreferencing (Bagga and Baldwin 1998), and bilingual lexicon acquisition (Sahlgren

and Karlgren 2005).

One of the main challenges in vector space models’ research is the evaluation of

the feature extraction methods that are used for constructing vector representations.

The methods include feature selection, feature weighting, dimensionality reduction,

and normalization. Even if the target application is known, indirect evaluation in the

application setting is rather time-consuming, which makes it difficult to test many

different parameters of feature extraction. A method for quick estimation of the

quality of the produced representations would allow to compare a large number

of parameters, and to select only the best ones for the application evaluation. In

addition, if the application consists of several components, it would be beneficial

to be able to measure the performance of each component separately. However, as

pointed out by Sahlgren (2006a), simple and robust approaches for direct evaluation

of vector representations are missing.

In this paper, we propose a direct evaluation method for vector space models

of documents. The method is based on canonical correlation analysis (CCA). CCA

has been applied to infer semantic representation between multimodal sources

(Vinokourov, Shawe-Taylor and Cristianini 2003; Hardoon, Szedmak and Shawe-

Taylor 2004). The parallel documents in two languages can be seen as two views

of the same underlying semantics (Mihalcea and Simard 2005). If the evaluated

feature extraction methods captured the language-independent semantic intention

that is common to the aligned documents, then the produced features should have a

high dependence. CCA finds the maximally dependent subspaces for the two sets of

features using correlation as the measure of dependence, thus providing an efficient

means of evaluating the feature extraction methods.

We demonstrate the proposed evaluation method by comparing various vector

space models for sentences. There are several reasons for using sentences rather than

words or documents. Word representations cannot be evaluated as such, because

there is no one-to-one correspondence of words in different languages, and CCA

needs a mapping of samples (words) between two data sets. In contrast, sentences

are less ambiguous in meaning, and the assumption of shared semantic intention is

reasonable. In addition, sentences are used as basic units in many natural language
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processing applications, such as machine translation and question answering. A prac-

tical benefit is that large multilingual sentence-aligned corpora are readily available.

Although our experiments concentrate on evaluation of sentence representa-

tions, the proposed evaluation method is useful for many applications that utilize

vector space models, given that there is an aligned corpus available. Unlike evalu-

ations based on human language tests, our method is unsupervised and language-

independent, and can be used with various large data sets. Moreover, it is faster and

provides a more general measure of quality than indirect evaluation in applications.

The rest of the paper is organized as follows. Section 2 explains canonical correl-

ation analysis and reviews earlier work that applies it to language data. Section 3

describes the vector space models of language and reviews earlier work related to

the evaluation of vector space models. The proposed evaluation method is explained

in Section 4, together with some examples on artificial data sets. In Section 5, the

feasibility of the evaluation method is validated with real data from a sentence-

aligned multilingual corpus. In Section 6, we discuss extensions and other possible

uses for the evaluation framework. Finally, we conclude the work in Section 7.

2 Canonical correlation analysis

Canonical correlation analysis, originally proposed by Hotelling (1936), is a classical

linear method for finding relationships between two sets of variables. It finds linear

projections for each set of variables so that the correlation between the projections

is maximized (Borga 1998; Bach and Jordan 2003; Hardoon et al. 2004).

Consider two column vectors of random variables x = [x1, . . . , xDx
]T and y =

[y1, . . . , yDy
]T with zero means. For each variable pair, we want to find linear

transformations into scalars, u1 = aTx and v1 = bTy, so that the correlation between

the scalars is maximized:

ρ1 = max
a,b

corr(u1, v1) = max
a,b

E[aTxyTb]√
E[aTxxTa]E[bTyyTb]

(1)

Correlation ρ1 is the first canonical correlation and u1 and v1 are the first canonical

variates. The subsequent canonical variates, ui and vi, are set to be maximally

correlated as in (1) with the restriction that they are uncorrelated with all the

previous variates, that is, E[uiuj] = E[vivj] = E[uivj] = 0 for all i �= j. In total, there

can be D = min(Dx, Dy) canonical variates and correlations.

2.1 Estimating canonical correlations

In practice, the expectations in (1) are replaced by sample-based estimates computed

from observation matrices X = [x1, . . . , xN] and Y = [y1, . . . , yN], resulting in a

sample canonical correlation

ρ1 = max
a,b

aTCxyb√
aTCxxa

√
bTCyyb

(2)

Here, Cxy = Cyx
T is a between-sets covariance matrix and Cxx and Cyy are within-

sets covariance matrices of the two random variables x and y. Unbiased estimates
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of the covariance matrices can be obtained by

C =

(
Cxx Cxy

Cyx Cyy

)
≈ 1

N − 1

(
X

Y

)(
X

Y

)T

(3)

where C is the full correlation matrix and N is the sample size.

Since the solution of (2) is not affected by the re-scaling of a or b, the choice of

re-scaling is arbitrary, and thus the maximization problem is equal to maximizing

the numerator subject to

aTCxxa = bTCyyb = 1 (4)

As shown by Bach and Jordan (2003), CCA reduces to solving the following

generalized eigenvalue problem:(
0 Cxy

Cyx 0

) (
a

b

)
= ρ

(
Cxx 0

0 Cyy

)(
a

b

)
(5)

which gives Dx + Dy eigenvalues {ρ1,−ρ1, . . . , ρD,−ρD, 0, . . . , 0}, such that ρ1 ≥ ρ2 ≥
· · · ≥ ρD . The eigenvectors A = [a1, . . . , aD]T and B = [b1, . . . , bD]T corresponding to

D non-zero canonical correlations are the basis vectors for the canonical variates

U = [u1, . . . , uD]T = ATX and V = [v1, . . . , vD]T = BTY. Furthermore, the canonical

variates are orthogonal (UUT = VVT = I).

The estimates of canonical correlations depend heavily on the sample size and

the dimensionality of random variables. A standard condition in classical CCA

is N/(Dx + Dy) � 1. If the ratio is small, the sample covariance matrix Cxy may

become ill-conditioned. It leads to a trivial or over-fitted CCA solution with canonical

correlation of exactly one. Furthermore, the sample covariance matrices Cxx and Cyy

may also be singular or near singular, leading to unreliable estimates of their inverses.

One way to solve this issue is to introduce some kind of regularization (Leurgans,

Moyeed and Silverman 1993; De Bie and De Moor 2003; Hardoon et al. 2004) by

introducing smoothing to modify the constraints in (4). The regularized variant is

solved through the same optimization problem, but a small positive value is added

to the diagonal of Cxx and Cyy in the eigenvalue problem.

2.2 Canonical factor loadings

Canonical correlation analysis can be interpreted in terms of canonical factor

loadings. In factor analysis, a loading is defined as a simple correlation between a

variable and a factor. The square of the loading gives the variance of the variable

explained by the factor (Harman 1960; Rummel 1970). Canonical factor loadings

can be analogously defined as correlations between the original variable (xj or yj)

and each canonical variate (ui or vi) in both the data sets:

lx(ij) = corr(ui, xj) ly(ij) = corr(vi, yj) (6)

The loadings measure which variable is involved in which canonical variate and

to what extent. Hence, a variable with a large canonical factor loading should be

given more weight while deriving the interpretation of respective canonical variate.

Moreover, the sum of the squared factor loadings divided by the number of variables
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in the set is the proportion of variance in the set explained by the given canonical

variate. In Section 5.4, we use the factor loadings for manual inspection of the

variates.

2.3 CCA’s connection to mutual information

There is a simple relationship between canonical correlation and mutual information

(MI) for Gaussian random variables (Bach and Jordan 2003). Given two Gaussian

random variables x = [x1, . . . , xDx
]T and y = [y1, . . . , yDy

]T, the MI, I(x; y) can be

written as

I(x; y) = −1

2
ln

( |C|
|Cxx||Cyy|

)
(7)

where |.| denotes the determinant of a matrix.

If Cxx and Cyy are invertible, the product of the eigenvalues is equal to the

ratio of determinants in (7). Consequently, MI can be written in terms of canonical

correlations (Kay 1992):

I(x; y) = −1

2

D∑
i=1

ln(1 − ρi
2) (8)

2.4 Nonlinear extensions to CCA

In many applications, it may not be sufficient to find linear dependence. One way

to capture nonlinear dependence using CCA is to allow nonlinear transformations.

Several authors (Lai and Fyfe 2000; Akaho 2001; Melzer, Reiter and Bischof 2001)

have presented a CCA extension that enables nonlinear transformations using kernel

functions. Kernel canonical correlation analysis (KCCA) has been further studied,

for instance, by Bach and Jordan (2003) and Hardoon et al. (2004). In KCCA, the

correlation matrices are replaced with a kernel function in the dual form. The data

are projected into a feature space of high dimensionality H using kernel functions

K,

K : R
D×N �→ R

H×N, D < H (9)

before computing CCA in the kernel space. Due to the higher dimensionality in the

kernel space, KCCA overfits badly. In consequence, proper regularization is crucial

for non-trivial learning (Bach and Jordan 2003; Hardoon et al. 2004).

2.5 Applying CCA to language data

Canonical correlation analysis and its variations have already been utilized in

many applications of natural language processing. Cross-language IR is one of the

applications in which CCA has been applied to a bilingual corpus. Mate retrieval

is an IR task in which a document in a source language is used as the query and

the corresponding document (‘mate’) in a target language is considered to be the

only relevant document to the query. Vinokourov et al. (2003) use KCCA in mate
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retrieval task for a sentence-aligned English–French corpus in which the documents

are single paragraphs. In their experiments, KCCA performs significantly better than

latent semantic indexing. The work is extended by Li and Shawe-Taylor (2007) by

applying KCCA to a pair of languages from two language families, Japanese and

English, with results that correspond to the results with the English–French corpus.

Hardoon and Shawe-Taylor (2007) compare KCCA with linear kernel and a sparse

CCA extension that uses sparsity constraints for the projection vectors in mate

retrieval tasks for English–French and English–Spanish corpora. When there are

many input features (words) and many enough projections, sparse CCA provides

as good precision as KCCA, while the canonical variates are more interpretable

because of their sparsity.

Another approach using CCA with bilingual corpus is the task to learn bilingual

lexicons from two comparative monolingual corpora (Haghighi et al. 2008). Tripathi,

Klami and Kaski (2008) independently propose a similar approach to infer matching

of objects in two different views. Tripathi, Klami and Virpioja (2010) demonstrate

it by matching sentences in two languages. They also extend the method for KCCA

and obtain statistically significant improvements to the matching accuracy. Minier,

Bodó and Csató (2007) apply KCCA to monolingual text categorization task, in

which Wikipedia-based kernels are used to give word distributional representation

for English documents. In their experiments, linear kernels perform better than

nonlinear kernels.

3 Vector space models for language

Vector space models are a standard way to represent documents or words as vectors

of features. The model provides a solution to the problem of representing symbolic

information (words) in numerical form for computational processing (Salton 1971).

In a vector space, similar items are close to each other and the closeness can be

measured using vector similarity measures.

As an example of vector space models, a set of documents can be represented by

the words they contain. Document j is represented by the vector x̂j containing the

occurrences c(i, j) of words, i = 1, . . . ,M in the document:

x̂j = [c(1, j), c(2, j), . . . , c(M, j)]T (10)

Matrix X̂ that consists of the vector x̂j is called a word-document matrix. In these

kind of representations, the word order information is discarded, and hence these are

called bag-of-words representations (Schütze and Pedersen 1995). Different units of

representation, such as index terms, letters, morphemes, or their sequences (n-grams,

phrases), can be used as well.

Similarly as with the bag-of-words representation of documents, the words

can be represented in terms of the documents in which they occur. Smaller

contexts than documents, such as sentences or fixed-width windows, can also be

used. The word-document matrix, or more generally, the feature-context matrix,

contains the frequencies of the words in the contexts and thus represents first-order

similarity (Rapp 2002). Second-order similarities can be observed by collecting a
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word–word matrix, where the values are co-occurrences of words within some

contexts, or a document–document matrix, where the values define how many

common features are possessed by the documents. The second-order matrices can

be obtained, for example, by computing X̂X̂T for a word–word matrix or X̂TX̂

for a document–document matrix. A word–word matrix for short context windows

often provides paradigmatic associations instead of syntagmatic associations that

are obtained from first-order similarities (Rapp 2002).

3.1 Dimensionality reduction

The dimensionality of a feature-context matrix X̂ ∈ R
M×N may be very high due

to a large number of features M (e.g., words or index terms) or a large number

of contexts N (e.g., documents, sentences, or neighboring words). To reduce the

computational cost of calculating the similarities in the vector space, it is common

to use dimensionality reduction. The methods for reducing the dimensionality can

be divided into two families of approaches: feature selection and feature extraction

(Schütze, Hull and Pedersen 1995; Sebastiani 2002; Alpaydin 2010). Sebastiani (2002)

gives a comprehensive review on different feature selection and extraction methods

for vector space models.

Feature selection. In feature selection, the task is to choose K dimensions out of

the M original dimensions that give as much information as possible. The rest M –K

dimensions are discarded. Feature selection can be done systematically whenever it is

possible to repeatedly evaluate the representation (Alpaydin 2010). In vector spaces

constructed for language data, it is common to apply heuristic preprocessing, such as

stemming, exclusion of too frequent and too rare words, or removal of non-alphabet

characters, although more sophisticated methods have also been applied (Sebastiani

2002).

Feature extraction. In feature extraction, or reparameterization, the task is to find

a new set of K dimensions that are combinations of the original M dimensions. That

is, given a data set X̂ = [x̂1, . . . , x̂N], where x̂i ∈ R
M , and a distance or similarity

function d(·, ·), the task is to define a projection

R : R
M×N �→ R

K×N s.t. d(x̂i, x̂j) ≈ d(R(x̂i),R(x̂j)) (11)

Usually, this is accomplished by finding a linear projection X = RX̂, where R ∈ R
K×M

a projection matrix.

If the distance function d(·, ·) measures the Euclidean distance, the optimal linear

solution for (11) can be found using the singular value decomposition (SVD) of

X̂: X̂ = UDVT, where the orthogonal matrices U and V contain the left and right

singular vectors of X̂ and the diagonal matrix D contains the respective singular

values. The projection of X̂ into the space spanned by the left singular vectors

corresponding to the K largest singular values, X = UKX̂ = DVK
T, gives the best

mean square error solution.

A common application of SVD is to calculate principal component analysis (PCA),

that is, the projection of X̂ into the space spanned by the orthogonal components
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of the largest variance. The use of SVD on text document data, dating back to

Benzécri (1973), is often referred to as latent semantic analysis (LSA) (Deerwester

et al. 1990). SVD, as well as probabilistic methods, such as probabilistic latent

semantic analysis (PLSA) by Hofmann (1999) and latent dirichlet allocation (LDA)

by Blei, Ng and Jordan (2003), exploit second-order statistics and generalize the

data besides reducing the dimensionality. For instance, the latent space found for

documents using LSA often combines the individual terms into more general topics.

The methods can also address the problems of polysemy and synonymy (Deerwester

et al. 1990).

A computationally light, but non-optimal way of reducing dimensionality is to

project the data with random vectors that are nearly orthogonal. If the randomly

selected subspace has a sufficiently high dimension, the distances between the

data points are approximately preserved (Johnson and Lindenstrauss 1984). This

approach has been addressed by several names: random projection (Ritter and

Kohonen 1989), random mapping (Kaski 1998), and random indexing (Kanerva,

Kristoferson and Holst 2000).

3.2 Weighting and normalization

Plain word document co-occurrence data give much weight to frequent words in

the document collection. Different weighting schemes can be utilized to improve

performance by giving weight to terms that represent best the semantic content .

The schemes can be divided into global and local weighting schemes. Global weights

indicate the overall importance of a term in the collection and are applied to each

term in all the documents, whereas local weights are applied to each term in one

document. The final weight is the product of the global and local weights. In the

following, we describe the weighting schemes used in this paper. For a textbook

description, cf., for example, Manning and Schütze (1999) or Manning, Raghavan

and Schütze (2008).

Local weighting. The term frequency (tf) is an indicator of the saliency of a term,

but often the effect of a raw count c(i, j) is too large. Dampening of term frequency

with a logarithm is common, yielding to logarithmic term frequency: log(1 + c(i, j)).

Further alternative is to use binary weights by simply discarding the term frequencies

and using ones for all non-zero entries.

Global weighting. The global weighting schemes used in our experiments are

summarized in Table 1. The most commonly used global weighting scheme, inverse

of the document frequency (idf), assigns a high weight to terms that occur only

in few documents and thus refer to very specific concepts. For term i, idf is the

total number of documents N divided by the number of documents in which the

word i occurs. In order to dampen the effect of the weight, usually logarithmic

idf (log-idf) is applied (Jones 1972), but different functions, such as square root

(sqrt-idf) and identity (lin-idf), can also be applied. Entropy weighting, based on

information theoretic principles, assigns the minimum weight to terms for which the
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Table 1. Five global weightings of words. N is the number of documents in a document

collection, c(i, j) is the term frequency of word i in document j, g(i) =
∑

j c(i, j) is

the global frequency of word i in the whole collection, d(i) = |{j : c(i, j) > 0}| is the

document frequency for word i, and σi
2 is the sample variance for the term frequencies

of word i

Weighting Coefficient for feature i

Logarithmic idf (log-idf) log N
d(i)

Square root idf (sqrt-idf)
√

N
d(i)

Linear idf (lin-idf) N
d(i)

Entropy weighting (entropy) 1 −
∑

j

pij log pij
logN

, where pij = c(i,j)
g(i)

Variance normalization (var1) σ−1
i =

(
1

N−1

∑
j

(
c(i, j) − g(i)

N

)2)− 1
2

distribution over documents is close to uniform and the maximum weight to terms

that are concentrated in a few documents (Dumais 1991). Another method, more

common for non-discrete data, is to normalize the variances of the features to one.

Length normalization. The length of the obtained vectors varies across the docu-

ments. The length depends on both the number of words present in each document

and the applied local and global weightings. The similarities between the documents

are often calculated with cosine similarity measure, which neglects the vector

lengths (Salton and Buckley 1988). If some other distance measure is applied,

the vectors can be explicitly normalized using, for example, L2 or L1 norms.

3.3 Evaluation methods for vector space models

The methods for measuring the quality of vector representations can be categorized

as direct and indirect methods (Sahlgren 2006a). The direct methods compare

the similarities in a vector space with external data, such as association norms or

synonym tests, whereas the indirect methods measure the ability to solve a particular

application task.

3.3.1 Indirect evaluation

Indirect methods have been used commonly for evaluating vector representations.

The creation of a vector space has not been traditionally viewed as a research

problem itself, but an intermediate phase in solving other natural language processing

problems. The vector space has been applied to a task and the performance was

evaluated for the task. Thus, the used evaluation methods may not generalize the

applicability to other tasks.

In the IR community (see, e.g., Manning et al. 2008), the quality of vector

representations is often measured using the IR results for evaluation. In document

retrieval, for example, the evaluation is based on measuring how well the IR system



10 S. Virpioja et al.

is able to rank documents according to the query. The list of correct documents for

each query has been usually prepared manually.

Cross-language evaluations in IR are straightforward extensions to the monolin-

gual IR when parallel corpora are available. If the best matching documents for the

monolingual IR query are known, the corresponding (translation) documents in the

second language are also known. There are multilingual test collections available,

such as data from evaluation conferences TREC,1 CLEF,2 and NTCIR.3

Word sense disambiguation is another problem in which the vector space model

can be utilized (Schütze 1992). Rather than mapping documents to a vector space,

the word tokens in a corpus are mapped to the vector space and the different

meanings of the same word type are disambiguated by clustering the word vectors.

The evaluation of the vector space is conducted by a test set of words with two or

more senses.

Word representations can also be evaluated in the task of part-of-speech tagging.

Honkela, Hyvärinen and Väyrynen (2010) evaluate linguistic features obtained by

independent component analysis based on how they can separate sets of words that

have different part-of-speech tags.

Especially relevant to our approach are the evaluation methods that apply

multilingual vector spaces. Besançon and Rajman (2002) propose an approach

in which documents from bilingual corpus are mapped to two separate monolingual

vector spaces. The matching documents between the languages are found by

comparing the nearest neighbors of each document. The result of the matching

is then utilized as an evaluation measure. Further, bilingual vector spaces have

been created for lexicon extraction. Gaussier et al. (2004) study different methods,

including CCA and PLSA, for creating bilingual lexicon from comparable corpora.

Sahlgren and Karlgren (2005) evaluate their vector space created from a parallel

corpus by comparing the terms in the vector space to bilingual lexica intended

for human use. In their evaluation, for each term in the source language ws, the

target-language term wt given by the system as the closest neighbor is compared to

the translations the lexica give for ws.

3.3.2 Direct evaluation

Direct evaluation methods analyze a vector space by measuring similarities and

dissimilarities between feature vectors and comparing them with external data.

Usually the idea is to study whether the vector space encodes information on specific

semantic relations, such as synonyms, antonyms, sub-, or superconcepts. Thus, many

direct evaluation methods can be considered as evaluation in a semantically oriented

task that does not require any other components than the vector space itself. As

the external data, they often utilize corpora intended for human use, such as lexica,

priming data, association norms, or synonym and antonym tests (Sahlgren 2006a).

1 http://trec.nist.gov/
2 http://www.clef-campaign.org/
3 http://research.nii.ac.jp/ntcir/
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One common aspect to consider are the paradigmatic and syntagmatic associations

(Rapp 2002; Sahlgren 2006b).

The evaluation of vector spaces using the Test for English as a Foreign Language

(TOEFL) was first proposed by Landauer and Dumais (1997). The test consists

of eighty test items, each having a sentence and four alternative words for one of

the words in the sentence. The task is to choose the semantically closest alternative

word with respect to the word in the sentence. The best automatic methods perform

better than non-native speakers of English on TOEFL test (Rapp 2004). The idea

of utilizing language tests has been widely adopted later on. Other tests used for

evaluation purposes include, for instance, the Test of English as a Second Language

(ESL) multiple-choice synonym questions (Turney 2001), and the SAT (Scholastic

Aptitude Test) college entrance exam (Turney 2005). The number of test items in

the language tests range from tens to some hundreds.

In addition to the language tests, thesauri have been also used for evaluating

vector spaces. The sizes of the thesauri range from thousands to tens of thousand

head terms, and thus the coverage is larger than in the language tests. University of

South Florida (USF) free association norms of normed words and their associations

(Nelson, McEvoy and Schreiber 1998) have been used, for example, by Steyvers,

Shiffrin and Nelson (2005). Another association data set is the Edinburgh Associative

Thesaurus (EAT) (Kiss et al. 1973). Moby synonyms and related terms (used, e.g.,

by Curran and Moens 2002; Sahlgren 2006b; Väyrynen, Lindqvist and Honkela

2007) is a thesaurus comprising circa 30,000 head terms and a large synonym

list for each term. Other thesauri are, for instance, the Macquarie Thesaurus of

Australian English (Bernard 1990) and Roget’s Thesaurus (Roget 1911). Likewise,

more structured lexical databases are available, including the currently widely used

WordNet (Fellbaum 1998) and other ontologies of different areas and languages.

Another approach for analyzing the quality of a vector space is to have human

evaluators judge the similarity of the vectors close to each other in the vector space

(Mitchell and Lapata 2008; Zesch and Gurevych 2009). While human judgement

is a very good way of evaluation and can deal with variation within the language

users given a large enough number of evaluators, such extensive use of human labor

is not feasible to arrange in general. One more approach for direct evaluation is to

rely on the studies of meaning representations in humans. For example, Lund and

Burgess (1996) show that the semantic distances between words in a vector space

correlate with human reaction times in a lexical priming study.

3.3.3 Advantages and drawbacks

In indirect evaluation, a vector space is created for a specific application, which is

then used to evaluate the performance of the vector space. The indirect methods

do not usually focus on a specific linguistic phenomenon, such as synonymy, but

deal with any similarity between the vectors. In general, the performance in one

application may not generalize to other applications. Naturally, results of two

indirect evaluations are likely to agree when the respective applications benefit from

the same aspects of the vector similarity.
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On the contrary, direct methods often focus on a specific phenomenon and try to

be independent from any specific application. The results may still not generalize to

the application evaluations: the fact that a vector space contains a particular type of

semantic relation, such as synonymy, does not tell how well it encodes meaning in

general (Sahlgren 2006a). Although our proposed method directly evaluates a vector

space independent of applications, it does not concentrate on a specific linguistic

phenomenon and thus, in this aspect, resembles indirect evaluation methods, without

suffering from their limitations.

The main problem of the indirect methods is that they are often time-consuming

and need additional components or resources besides the vector space. Direct

evaluation methods, including the proposed one, are more straightforward. Some of

the indirect methods also resemble direct evaluations in that they are directly based

on the similarity of items in the vector space. They include the methods that use

bilingual document collections or lexicons (Besançon and Rajman 2002; Gaussier

et al. 2004; Sahlgren and Karlgren 2005), and are also the methods closest to our

proposed approach.

The use of direct evaluation methods suffers from limited evaluation data. Since

vector spaces describe semantic similarity, it is natural to use language tests, such as

TOEFL, as the reference. However, as the tests are designed for humans, the amount

of test data is often small. Thesauri provide larger evaluation sets than the language

tests, but since they are also created manually, the availability for a particular domain

may be limited. Furthermore, for many languages neither thesauri nor language tests

are available. Compared to other direct methods, the proposed evaluation method

has no serious problems of data availability: the only required resource is a parallel

corpus. Parallel corpora are readily available for several languages and domains,

and the amount of suitable data is increasing.

4 CCA-based evaluation of vector representations

In this section, we describe the proposed evaluation method in detail. First, we

describe a model of language generation that explains the general idea behind the

method and the necessary assumptions. Then we consider the details of a practical

evaluation system. Finally, we show two examples with artificial data sets.

4.1 Mathematical foundation

Let p(s) be a probability distribution over documents s in one language. We assume

that there exists a Ds-dimensional semantic space, denoted by Zs, where the meanings

of the documents can be encoded, and process Gs that generates the instances of s

from the instances zs ∈ Zs. Similarly, documents t in another language are generated

from Dt-dimensional zt ∈ Zt using process Gt. Furthermore, we assume that the

semantic spaces for the two languages are subspaces in a global Dz-dimensional

semantic space Z , and zs and zt are linearly dependent on instances of z. That is,

given a meaning z ∈ Z , documents s and t are produced as

s = Gs(zs) = Gs(Wsz) t = Gt(zt) = Gt(Wtz) (12)
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Fig. 1. On the left: Assumed model for generation of documents s and t. Vector z in

the language-independent semantic space Z is projected onto vectors zs and zt in the

language-specific subspaces Zs and Zt. Processes Gs and Gt generate document pairs from

the respective subspaces. On the right: The process of evaluating feature extraction method

F with CCA. The aligned document collections S and T are reduced to matrices X and Y

of feature vectors using F . Then X and Y are projected onto a common vector space using

CCA.

where Ws ∈ R
Ds×Dz and Wt ∈ R

Dt×Dz are rank Ds and rank Dt matrices, respectively.

Assuming that Gs and Gt are independent processes, also s and t are independent

when conditioned on z,

p(s, t | z) = p(s | z)p(t | z) (13)

That is, the only thing that they have in common is their meaning, encoded in z.

See the left part of Figure 1 for a graphical illustration of the assumed process of

generation.

Let us now consider a feature extraction method F for the languages. Given two

data sets of N documents S and T so that each si and ti are samples from p(s | zi)
and p(t | zi), F transforms the documents into matrices X and Y:

X := Fs(S) ∈ R
Dx×N Y := Ft(T) ∈ R

Dy×N (14)

If CCA is applied to X and Y, it will find projection matrices A and B that map X

and Y to a common vector space as U = ATX and V = BTY, respectively, where

U,V ∈ R
min(Dx,Dy)×N . As explained in Section 2, CCA provides orthogonal U and V

for which the row vectors have the highest correlations ρi = uiv
T
i .

Using the assumed model of document generation with the original semantic

document representations Z, we have

UVT = ATFs(Gs(WsZ))Ft(Gt(WtZ))TBj . (15)

Intuitively, any feature from F that does not originate from Z will decrease the

correlations. In case the projections Ws and Wt do not lose any information (i.e.,

Ds = Dt = Dz and the matrices are invertible), we can show that when the feature

extraction method is able to transform the documents back into the semantic spaces

Zs and Zt, it provides the highest possible correlations: Inserting Fs(Gs(zs)) = zs and
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Ft(Gt(zt)) = zt to (15) results in

UVT = ATWsZZTWT
t B (16)

As the matrices Ws and Wt are invertible, we can simply set AT = Ws
−1 and

BT = Wt
−1, which gives UVT = ZZT. Trivially, this leads to ρi = ziz

T
i /ziz

T
i = 1 for

all i. Even if Ws and Wt are not square or full rank matrices, CCA gives the optimal

solution for the corresponding eigenvalue problem. Thus, the evaluation, illustrated

on the right part of Figure 1, should give insight on how well the tested methods

extract features that correspond to the common meaning of the documents.

4.2 Evaluation setup

In the conventional evaluation setup, the learning algorithm – here a feature

extraction method – is evaluated. One data set is needed for training the model

(training set) and another for evaluating it (evaluation set). In our case, however, the

evaluation method includes learning, i.e., calculating CCA. Learning the parameters

of CCA either based on the training set of the feature extraction or the final

evaluation set would enable over-fitting. Therefore, the evaluation set is divided into

two distinct sets: an evaluation training set (evaltrain) and an evaluation test set

(evaltest). The evaltrain set is used for training the parameters of CCA and the

evaltest set as a test set for estimating the final correlations.4

The requirement of the evaluation training set results in a three-stage evaluation

setup as illustrated in Figure 2. At the first stage, the feature extraction method is

trained for both the languages, using the monolingual training data sets S0 and T0.

Both the evaltrain data (S,T) and the evaltest data (S̃, T̃) are run through the feature

extraction to obtain the aligned sets (X,Y) and (X̃, Ỹ).

At the second stage, the evaluation training set is used to calculate CCA as

described in Section 2, resulting in the projection matrices A and B, the projected

data sets U and V, and the correlations ρ = [ρ1, . . . , ρD]. As a regularization, we add

a small positive value ε proportional to the variances of X and Y to the diagonals

of the respective covariance matrices Cxx and Cyy:

Ĉxx = Cxx + ε Sx Ĉyy = Cyy + ε Sy (17)

where Sx is a diagonal matrix with Sx(ii) = σxi
2, Sy is a diagonal matrix with

Sy(ii) = σyi
2, and 0 < ε � 1.

At the third stage we estimate how the learned features and the CCA projections

together generalize to new data. Especially if the number of samples in the evaltrain

set is low, or the dimensionalities of X and Y are high, the sample estimates of

the covariance matrices are not robust. This leads to overlearning of the projection

matrices A and B, regardless of the regularization. To find out how the learned

projections can generalize outside the evaltrain set, we use them to project the

evaltest set into the same common space, and calculate correlations for the resulting

4 Another view, pointed out by one of the reviewers, is that our setup also evaluates the
evaluation method (CCA).
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Fig. 2. Diagram of the evaluation setup. (1) The feature extraction method F is trained on

monolingual corpora and then applied to transform the evaluation data sets into vectorial

form. (2) CCA is trained on the evaluation training data to find the canonical variates U

and V and the respective projection matrices A and B. (3) The evaluation test data are then

projected into the same space, and finally the test set correlations ρ̃ are computed.

matrices. Assuming that X̃ and Ỹ are centered, the test set correlations ρ̃i are

calculated as follows:

ρ̃i =
aT
i X̃ỸTbi√

aT
i X̃X̃Tai

√
bT
i ỸỸTbj

(18)

The vector of the test set correlations, ρ̃, is used to obtain final score for the feature

extraction method. The evaluation measures are discussed in the next subsection.

The covariance matrices Cxx, Cyy , and Cxy , which are needed in computing the

canonical correlations, are non-sparse and thus the memory usage is of magnitude

O(Dx
2 +Dy

2 +DxDy). In consequence, we need to keep the dimensionalities Dx and

Dy low. It is convenient, but not necessary, to use representations that have the same

dimensionality D for both languages. By performing the evaluation for a range of

values for D, one may need to find the optimal dimensionality for the evaluated

feature extraction method given the evaluation measure.

4.3 Evaluation measures

Learning the optimal projections with CCA and using them on the evaltest set gives

us the correlation estimates ρ̃. To make the evaluation more straightforward, we

prefer to have a single value that measures the quality of a representation.
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In the simplest case, we want to compare two vector representations having the

same number of features returned by two feature extraction methods. Since the task

is not to find a subset of the features, we do not consider only the largest correlation

or the sum of few largest correlations. Instead, an intuitive measure is the sum over

all the correlations:

R(X̃, Ỹ) =

D∑
i=1

ρ̃i (19)

For perfectly correlated sets, R = D, and for uncorrelated sets, R = 0.

Canonical correlation analysis restricts the learned evaltrain correlations to be

positive. However, the correlations ρ̃i from the evaltest set can also be negative due

to random variation between the evaltrain and evaltest sets. It is justifiable that

negative correlation coefficients decrease the score: such a coefficient for the test

set indicate that CCA has learned something that does not generalize outside the

evaltrain set. Moreover, forcing ρ̃i to be positive, for example, by taking the absolute

value, would introduce a bias to its expected value.

Theoretically, MI would be a natural choice for an evaluation measure. However,

as a general measure of dependence, MI can be inferred from the correlations only

when the data are normally distributed. Still, even when we know that the data do

not follow a Gaussian distribution, we can use (8) for MI to obtain a ‘Gaussian–MI’

score G(X̃, Ỹ). For uncorrelated sets, G(X̃, Ỹ) = 0. An evident difference to the sum of

correlations is that the Gaussian–MI score will give more weight to the correlations

that have absolute values close to one. In fact, already one ρ̃i that is exactly one

will set the score to infinity. Because of the squared correlation coefficients, negative

values increase the score. However, as high negative values are very improbable, the

effect is small in practice.

If the evaluated feature extraction methods return different number of features,

the comparison of the vector representations is not straightforward. A problem

with both the correlation sum and the Gaussian–MI score is that the scores tend

to increase with the number of dimensions. An option would be to consider, for

instance, the average correlation R(X̃, Ỹ)/D. While the average correlation would

directly penalize for having uncorrelated features, we find it unintuitive that, for

example, the result ρ̃ = [0.9, 0.8] (D = 2) would be worse than ρ̃ = [0.9] (D = 1), as

the representation in the former case surely encodes more semantic information than

in the latter. Moreover, even a dimension that has a very small positive correlation

can be useful if it is weighted according to the strength of the correlation, as shown

by Tripathi et al. (2008). We compare representations with different number of

dimensions, first using an artificial example in Section 4.4 and later when validating

the evaluation results with two sentence matching tasks in Section 5.3.

4.4 Examples

We demonstrate the proposed evaluation method on two artificial data sets. The goal

is to show the effects of noise and dimensionality on the two evaluation measures,

i.e., the sum of correlations and the Gaussian–MI score. In addition, the examples

justify the need for separate test data set in the evaluation setup.
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Fig. 3. Effect of different noise levels for evaluation training data: (a) Correlation sum

R(X,Y), and (b) Gaussian–MI score G(X,Y). Lighter the tone of the curve, higher the noise

level.

Example 1: Examining the effect of noise. Here we show how noise affects the

evaluation scores. Consider the following normally distributed data with additive

noise:

z ∼ N (0, I) (20)

nx ∼ N (0, I) (21)

ny ∼ N (0, I) (22)

x := (1 − α)z + αnx (23)

y := (1 − α)z + αny (24)

If the proportion of noise α = 1, then x and y are independent and the expected

values for the correlation sum and Gaussian–MI scores are zero. If there is no noise

at all (α = 0), then x and y have a perfect linear dependence. Using our regularization

with coefficient ε, this results in expected correlation coefficients 1/(1 + ε). Thus,

R(x, y) =
D

1 + ε
≈ D × (1 − ε) (25)

G(x, y) = −D

2
× ln

ε2 + 2ε

(ε + 1)2
≈ −D

2
× ln(2ε) (26)

R approaches D and G approaches infinity as ε approaches zero.

We used 500 samples of z as development data and 500 samples of z as test data.

The test data was divided into fifty subsets. As we did not do feature extraction,

training data were not needed. The dimensionality D was varied from 0 to 500 and

the level of noise α from 0 to 1. In the evaluation, we applied regularization with

ε = 10−6. We computed the sum of correlations and the Gaussian–MI scores for

evaluation training and test data. In Figures 3 and 4 we use median (second quartile)

and first and third quartiles to indicate the central tendency and variability of the

results on the evaltest data.

The correlations in the evaltrain data are high even with very noisy data (Figure 3).

Especially if D is increased and the number of samples is fixed, the sample
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Fig. 4. Effect of different noise levels for evaluation test data: (a) Correlation sum R(X̃, Ỹ),

and (b) Gaussian–MI score G(X̃, Ỹ). Medians are drawn with solid lines. For consistency,

also the first and third quartiles (dashed lines) are drawn, although these are very close to the

median in these figures.

covariances become poor estimates for real covariances, and CCA overlearns. The

use of the evaltest data for estimating the correlation clearly prevents the problem

(Figure 4). As high correlations are obtained only when the learned projections

generalize to new data, increasing D cannot improve the scores of the noisy data sets.

Example 2: Discovering the intrinsic dimensionality. Next, we consider data in

which the intrinsic dimensionality is lower than those of the observed variables.

The idea is to show that the evaluation method is able to detect the correct

dimensionality given a suitable dimensionality reduction method. Assume that M-

dimensional samples, x and y, are produced from a latent K-dimensional variable

z, where K < M is the intrinsic dimensionality, as follows:

x = (1 − α)Wxz + αnx (27)

y = (1 − α)Wyz + αny (28)

Again, we use normal distributions with zero mean and unit variance for z, nx, and

ny . Let the weights in Wx ∈ R
M×K and Wy ∈ R

M×K be uniformly distributed between

[−0.5 and 0.5]. Without noise, the maximal correlations for the D-dimensional

features are R(x, y) ≈ min(D,K) × (1 − ε) and G(x, y) ≈ − min(D,K)/2 × ln(2ε)

and thus remain constant for D > K .

We compare PCA, which is a standard feature extraction method for the Gaussian

data, and a trivial feature selection method that selects an arbitrary subset of

features in x and y. We used 500 samples of z as a training set (i.e., for calculating

the projections of PCA), another 500 samples as an evaluation training set, and

once more 500 samples as an evaluation test set. Other parameters were α = 0.5,

K = 50, and M = 250. Figure 5 shows the scores for the evaltrain data and Figure 6

for the evaltest data. The results show that PCA (gray line) performs considerably

better than the baseline by just selecting a subset of variables (black line) when the

dimensionality is near to the number of latent dimensions (50). Due to overlearning,
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Fig. 5. Evaluation training set results for data with 50 intrinsic dimensions: (a) Correlation

sum, and (b) Gaussian–MI score. In subset, a random subset of D dimensions of X and Y

are selected. In PCA, the D first principal components are applied.
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Fig. 6. Evaluation test set results for data with 50 intrinsic dimensions: (a) Correlation sum,

and (b) Gaussian–MI score. In subset, a random subset of D dimensions of X and Y are

selected. In PCA, the D first principal components are applied. Medians are drawn with solid

lines and the first and third quartiles with dashed lines.

the correlations for the evaltrain data continue to grow with dimensionality. For

the evaltest data, however, they slowly start to decrease, thus clearly indicating the

correct number of intrinsic dimensions.

5 Experiments

In the experiments, we validate the proposed evaluation method in three different

ways. First, we confirm that the results based on our evaluation are in agreement

with previous findings regarding vector space models for language. Second, we

compare the results of the evaluation method with the results of indirect evaluations

in two sentence-matching tasks. Third, we compare the results against a quantitative

manual evaluation of factor loadings of bilingual features found by CCA.
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Table 2. The number of sentences, word occurrences, and word forms in the

English–Finnish data sets

Word occurrences Word forms

Name Dates Sentences English Finnish English Finnish

Training sets

Day 2003-09-25 1,356 30,550 23,562 4,058 8,116

Month 2003-09 21,358 496,044 382,866 16,172 51,550

Year 2003 100,801 2,344,282 1,816,663 31,124 129,273

Evaluation sets

Evaltrain 2000-09 12,172 304,090 218,903 12,103 34,937

Evaltest 2000-Q4 1,755 17,968 13,991 3,210 4,833

5.1 Data sets

We used the Europarl corpus (version 2) that consists of the proceedings of the

European Parliament meetings in eleven European languages (Koehn 2005). We

applied standard preprocessing for the data that lowercased all letters and separated

punctuation marks from words. The major parts of the experiments were performed

with English–Finnish data, but Danish, German, and Swedish were also used. We

extracted data sets of three different sizes for training feature extractions: one

day of the corpus (2003-09-25), one month (2003-09), and one year (2003). As

an evaluation training set, we applied the sentences that contained five to fifteen

words in both the languages from the month 2000-09. As an evaluation test set,

we used 1,755 sentences extracted by Koehn, Och and Marcu (2003) from the last

quarter of year 2000. The sentences contained five to fifteen words that were same

for each language in the corpus. We divided the test set into ten parts and used

the one-sided right-tailed Wilcoxon signed-rank test with significance level 0.05 to

calculate statistical significances. The number of sentences, word occurrences, and

different word forms are shown in Table 2. For practical reasons, we used the

one-month training set for most of the experiments: It is small enough for fast

calculation of different dimensionality reductions, but large enough to keep the

out-of-vocabulary rates for the data sets used in the evaluation within reasonable

limits.

To find out whether the selected evaltrain data set was large enough for learning

good correlation estimates, we run one feature extraction, SVD for plain cooccur-

rence counts, with different target dimensionalities for different sizes of the set.

Figure 7 shows the estimated scores both from evaltrain and evaltest sets. The

higher the dimensionality, the more data required before the estimates converge.

Moreover, the gap between the evaltrain and evaltest results increases, showing that

the high-dimensional features are less robust for the variation of the data. The full

12,000-sentence data can be considered large enough for reliable CCA results up to

1,000-dimensional representations.
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Fig. 7. Evaluation test and training set results for 100-, 300-, and 1,000-dimensional SVD

features for different sizes of evaltrain set: (a) Correlation sum, and (b) Gaussian–MI score.

Solid lines show the evaltest scores and dotted lines the evaltrain scores. The peaks in the

evaltrain scores occur when the number of samples equals the number of dimensions.

5.2 Validation with known facts

A plausible evaluation method should be able to re-establish previously known facts

concerning vector space models. We therefore consider five hypotheses from the

literature and examine whether our evaluation method confirms them.

(1) Dimensionality reduction: SVD and PCA should perform better than other

dimensionality reduction methods when the target dimensionality is relatively

low (Deerwester et al. 1990; Kaski 1998; Bingham and Mannila 2001).

(2) Weighting: Among different global weighting schemes, entropy weighting and

logarithmic idf should give the best improvements when using SVD (Dumais

1991; Nakov, Popova and Mateev 2001).

(3) Amount of data: More training data should improve results whenever a

reasonable dimensionality reduction method is applied. (Zelikovitz and Hirsh

2001; Yarowsky and Florian 2002).

(4) Phrases as features: Generally, it does not seem to help if observed phrases

(e.g., 2-grams) from the training data are included as features (Lewis 1992;

Scott and Matwin 1999; Caropreso, Matwin and Sebastiani 2001; Sebastiani

2002; Koster and Seutter 2003; Coenen et al. 2007).

(5) Effect of language similarity: Due to morphological and syntactic similarities,

closely related languages should have higher correlations than, for example,

languages that belong to different language families (Besançon and Rajman

2002; Chew and Abdelali 2007; Sadeniemi et al. 2008).

Except for the fourth experiment, in which bag-of-phrases are tested, we used the

basic bag-of-words representations for the sentences. All the word forms, including

punctuation marks, were collected to form the word–sentence matrix X̂, where x̂ij is

the number of times word i occurred in sentence j. Except for the first experiment, the

matrix was weighted according to global and local weightings, and the dimensionality
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Table 3. The evaluated dimensionality reduction methods. X̂ is the original data

matrix and X is the reduced data matrix

Method Explanation

W-RandSet Randomly selected D words X = X̂RD

W-FreqSet The most frequent D words X = X̂FD

W-RandProj Projecting words to D-dimensional nearly orthogonal X = RDX̂

vectors

S-RandSet Inner product with randomly selected D sentences X =
(
X̂RD

)T
X̂

S-LenSet Inner product with the longest D sentences X =
(
X̂LD

)T
X̂

S-RandProj Inner product with all the sentences projected X =
(
RDX̂

)T
X̂

to D-dimensional nearly orthogonal vectors

SVD The first D right singular vectors of the X = VD
T

singular value decomposition X̂ = UDVT

was reduced with SVD. We experimented with a range of dimensionalities D from

10 to 1300.

5.2.1 Dimensionality reduction

We compared seven dimensionality reduction methods that we summarize in Table 3.

Three of them were based on the first-order information (see Section 3). We used

two feature selection methods: taking a random subset of words (W-RandSet) and

taking the words with the highest sentence frequency (W-FreqSet). We also tested

random projection for the words (W-RandProj).

As second-order dimensionality reduction, we used the following four methods.

The first one is a naive approach, which selects a random subset of sentences (S-

RandSet). The next approach is to select sentences that contain the highest number

of word types, because intuitively they provide more information (S-LenSet). We

also used random projection, where the random vectors are now sampled for each

sentence rather than each word (S-RandProj). Finally, we tested SVD.

The left side of Figure 8 shows the correlation sum results. Its right side shows same

results using relative differences to SVD and a logarithmic scale for dimensionality,

making differences more clear. W-FreqSet and SVD clearly outperformed other

methods. SVD was significantly better than W-FreqSet for all dimensionalities except

for D = 10 (significantly worse), D = 900 (significantly worse), and D = 1, 300 (no

statistically significant difference). S-RandProj was usually the best of the other

second-order methods, but the difference to S-LenSet was statistically significant

only for D ∈ {10, 20, 200, 300}.
Figure 9 shows the results for the Gaussian–MI score. The results are similar to the

sum of correlations except that W-FreqSet is closer to SVD and even outperforms it

at D = 100. To illustrate the reason for the conflicting results, Figure 10 gives a closer

look at the distribution of test correlations for W-FreqSet and SVD. While SVD

has on average higher correlations (as indicated by the higher sum), the first few

values ranked from 1 to 13 are higher for W-FreqSet. Since the function − ln(1−ρi
2)
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Fig. 8. Results for different dimension reduction methods: (a) Absolute sum of correlations.

The dashed lines show the first and third quartiles for the results of each method.

(b) Relative change compared to SVD. The reference (SVD) does not have quartile lines,

because the relative differences were calculated separately for each subset and the deviation

is thus included in the results of the compared methods.
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Fig. 9. Results for the different dimension reduction methods: (a) Absolute Gaussian–MI

scores, and (b) relative change compared to SVD. The dashed lines show the first and third

quartiles for the results.

gives much emphasis to values close to one and little to those near to zero, this

explains why W-FreqSet has better Gaussian–MI score than SVD. In the extreme

case if there was a single correlation very close to one and the rest were zeros,

the Gaussian–MI score would still be high. We used only correlation sum for the

remaining experiments to avoid this problem.

To sum up, our evaluation prefers SVD in lower dimensionalities. This is in

agreement with previous studies (Deerwester et al. 1990). Moreover, the order of

other dimensionality reduction methods was intuitive.

5.2.2 Weighting and normalization

In the previous experiment, no feature weighting was applied. In our second

experiment, we use SVD for dimensionality reduction and compare the global
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Fig. 10. Individual test correlations for SVD and W-FreqSet dimensionality reductions

for D = 100. Values of the correlations are shown in descending order.
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Fig. 11. Results for different global weightings: (a) Absolute sum of correlations, and

(b) relative change compared to no weighting. The dashed lines show the first and third

quartiles for the results of each method.

term weightings described in Table 1. Figure 11 shows (a) the sum of correlations

for the weighting methods, and (b) the relative difference to the baseline without

weighting.

Again, the results are in line with the previous findings (Dumais 1991; Nakov

et al. 2001). The logarithmic idf and entropy weightings improved the baseline results

significantly for the lower dimensionalities (D < 200). Up to D = 500, there was no

significant difference, and for D ≥ 1, 000, the weighting decreases the result. We did

not find significant differences between logarithmic idf and entropy weightings as

found by Dumais (1991). The rest of the weightings gave scores significantly below

the baseline. Linear idf was always the worst.

We also tested different local weightings (no, binary, and logarithmic weight)

for the term frequencies and length normalizations (no, L1, and L2 normalization)

with entropy weighting and SVD. The logarithmic term frequency outperformed

plain term frequency significantly for some dimensionalities (D ∈ {20, 50, 100, 1300})
and was never worse, as shown in Figure 12. Using binary values was better than

logarithmic term frequency (and term frequency) only for D = 10. With log-term
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Fig. 12. Results for different local weightings: (a) Absolute sum of correlations, and

(b) relative change compared to no weighting. The dashed lines show the first and third

quartiles for the results of each method.
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Fig. 13. Results for different length normalizations: (a) Absolute sum of correlations, and

(b) relative change compared to no normalization. The dashed lines show the first and third

quartiles for the results of each method.

frequency and entropy weighting, L2 normalization was significantly better than no

length normalization except for D = 500, where the difference was not significant

(Figure 13). L1 was significantly better than L2 for some low dimensionalities (D ∈
{20, 50}). However, it was even worse than no normalization for high dimensionalities

(D ≥ 300). Thus, the most robust setting for SVD seems to be the entropy weighting

as the global weighting, logarithmic term frequency as the local weighting, and L2

normalization of the lengths. We applied this for the rest of the experiments.

5.2.3 Amount of data

As a third experiment, we studied the effect of the size of the training set for

feature extraction methods. Figure 14 shows the absolute correlation sums and

the relative difference to the results with the one-month data set. The one-year
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Fig. 14. Results for different sizes of training data for SVD: (a) Absolute sum of correlations,

and (b) relative change compared to the one-month data set. For the year data set, we used

dimensionality up to 500 only due to high computational requirements.

data set gave significantly better correlation sums than the one-month data set for

D ∈ {20, 100, 200} and significantly worse results only for D = 10. The one-day data

set gave significantly worse results than the larger sets except for D = 20, where the

difference to the one-month set was not significant. Thus, our evaluation method

shows that more training data improve results, which conforms with the findings

of, for instance, Zelikovitz and Hirsh (2001) and Yarowsky and Florian (2002). The

finding is especially pronounced in higher dimensionalities, which has been already

noticed, for example, by Bradford (2008).

5.2.4 Phrases as features

Intuitively, the bag-of-words representation may not always be the optimal rep-

resentation for sentences, because it discards the information on the word order.

A simple extension is to use sequences of multiple words, n-grams, as additional

features. However, previous work on the bag-of-phrases models shows that including

n-grams does not improve the results in tasks, such as text categorization, unless

the n-grams are selected carefully (Lewis 1992; Scott and Matwin 1999; Caropreso

et al. 2001; Sebastiani 2002; Koster and Seutter 2003; Coenen et al. 2007).

We tested the evaluation for representations in which the n-grams up to a

maximum length n that had been observed in the training data at least twice

were included as separate features in addition to all the observed word forms.

Table 4 shows the number of features in the English–Finnish data for n = 2 and

n = 5. Similar to the bag-of-words baseline, we applied SVD, log-term frequency

and entropy weightings, and L2 normalization to get final representations.

Figure 15 shows (a) the correlation sums for bag-of-words and bag-of-phrases with

n = 2 and n = 5, and (b) the relative changes to bag-of-words with logarithmic scale

for dimensionality. Bag-of-words outperformed bag-of-phrases only for very low

dimensionalities (D = 10 for 2-grams and D ∈ {10, 20} for 5-grams). For D ≥ 1, 000,

there was no statistically significant differences. Otherwise, both 2-grams and 5-grams
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Table 4. The amount of n-gram types in the English and Finnish training data. For

n > 1, n-grams occurring only once are discarded

Max. length n English n-grams Finnish n-grams

1 16,172 51,550

2 68,155 89,046

5 180,068 125,563
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Fig. 15. Correlation sums for test data using n-gram features of different lengths:

(a) Absolute sum of correlations, and (b) relative change compared to words.

provided statistically significant improvements for correlation sum. The order of the

two was not clear: sometimes 2-grams were better (D ∈ {20, 500}), sometimes 5-

grams (D ∈ {50, 200}), and sometimes there was no significant difference.

Our method for selecting the phrases was very simple. Thus, the results are in

contrast with the previous studies, in which only sophisticated selection methods,

if any, have provided improvements. One reason may be that the word order

information is more important for the meaning of single sentences than for longer

documents. This would require further study with a different type of data set.

5.2.5 Effect of language similarity

A reasonable hypothesis is that closely related languages will be more correlated

than distant languages (Besançon and Rajman 2002; Chew and Abdelali 2007;

Sadeniemi et al. 2008). The results for the test data using similar bag-of-words

(entropy weighting, L2 normalization, and dimensionality reduction with SVD)

representations for six language pairs are shown in Figure 16. For the highest

dimensionalities (D ≥ 500), the order of the scores follow the closeness of the lan-

guages: (1) Among the language pairs, the most correlated were Danish and Swedish,

two closely related North Germanic languages. (2) The languages in the three least

correlated pairs belonged to different language families: one of the languages was

always Finnish, which is an Uralic language, and the other was English, German,
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Fig. 16. Correlation sums for test data with different language pairs: (a) Absolute sum

of correlations, and (b) relative change compared to Danish–Swedish.

or Swedish, which are all Indo-European and Germanic languages. (3) Finnish was

more correlated with Swedish than any other of the Germanic languages, which

may be due to the close cultural proximity of speakers of the two languages.

5.3 Validation with sentence matching tasks

An indirect way to evaluate the quality of vector representations for bilingual corpus

is to check how well the sentences that are translations of each other can be matched

based on a vector space model. We compared our proposed direct approach to an

indirect approach of using sentence matching for evaluation. The idea is to show

that any vector representation that performs well on our evaluation approach also

performs well on the sentence matching task.

We considered the task of matching in two different settings. In the first setting, we

used the projected sets U and V to find the closest sentence in English for a sentence

in Finnish and checked if it was a correct translation. We also searched for a match in

the other direction and took the average of two accuracies. This task is similar to the

nearest translation test done by Besançon and Rajman (2002). In the second setting,

we found one-to-one alignment of sentences using the Hungarian algorithm (Kuhn

1955), weighting the dimensions of canonical variates with corresponding evaltrain

correlations in a similar manner as done by Tripathi et al. (2010).

We first validated the evaluation scores for 100-dimensional representations

obtained from the previous experiments: the different dimensionality reductions

without weighting, weighted SVD for the one-day, the one-month, and the one-year

data sets, and the two bag-of-phrases representations. The test data were divided

into 100 subsets of seventeen to eighteen sentences, and both the correlations and

matching accuracies were calculated for each set.

Figure 17 shows scatter plots of accuracy in the nearest translation test (top) and

the alignment task (bottom) versus the correlation sum. For the translation task,

Spearman’s rank correlation coefficient between the correlation sums and accuracies

was 0.776 over the subsets and 1.0 over the means. For the alignment task, correlation
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Fig. 17. Translation (top) and alignment (bottom) accuracy versus correlation sum over the

test data subsets. The left side shows individual values for each subset and the right side

shows the mean values for the different representations. The solid lines show the best linear

least squares fit of data points. The dashed horizontal line shows the average baseline result

of a random choice.

was 0.633 over the subsets and 0.888 over the means. We also considered how the

two related tasks, translation and alignment, could predict each other as indirect

evaluations. That is, we compared the translation and alignment accuracy based on

the two tasks. The correlation coefficient was 0.627 over the subsets and 0.888 over

the means. Hence, indirect evaluations based on two very similar tasks could not

predict each other’s performance any better than the proposed direct evaluation.

This shows that our evaluation method is at least as good as evaluation methods

based on a sentence matching task.

Finally, we calculated the results for representations of different dimensionalities.

Figure 18 compares the correlation sums and accuracies of weighted SVD with D ∈
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Fig. 18. Translation and alignment accuracies versus correlation sum. The points are mean

values for 10, 20, 50, 100, 200, and 500 dimensional SVD representations.

{10, 20, 50, 100, 200, 500} using the translation and alignment tasks. The alignment

accuracy grows logarithmically with respect to the correlation sum, indicating that

the components that are correlated only slightly are useful if weighted accordingly.

In contrast, the translation accuracy starts to decrease already after D = 50. Thus,

there seems to be no way to score the representations of different dimensionalities

so that the scores would agree with all application evaluations.

5.4 Validation with manual evaluation of word translations

Our evaluation method based on CCA has an advantage that the canonical variates

are interpretable: For a given canonical variate, we can find which original features,

for example, words, contribute to it by calculating canonical factor loadings (6). As

an example from SVD trained with one-month data, there is a variate that strongly

correlates with English words vote, place, take, tomorrow, and noon and Finnish

words äänestys (vote in English), toimitetaan (takes place), klo (at [time]), huomenna

(tomorrow ), and 12.00 (noon). While these are not direct translations, it is easy to see

that they come from same sentences in each language. This is a desirable behavior

due to the sentence-aligned corpus. We use the correctness of such word translations

to compare different representations. A method performing well according to the

evaluation method should also provide good translations.

We compared the five most positively and negatively correlated original features

for both the languages to see if they refer to the same meaning. For the two sets of

words corresponding to a given canonical variate, we counted the number of correct

translations. Translations were checked in both the directions and the sum of the

correct translations was used in the evaluation. Thus, the maximum score for one

canonical variate is (5 + 5) × 2 = 20. We computed the scores for each canonical

variate and used the sum as an evaluation measure.

We used the one-month data with four different dimensionality reduction methods:

SVD, S-LenSet, W-FreqSet, and W-RandProj with term frequency weighting and

no normalization. In addition, two more settings were tested for SVD: entropy
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Table 5. Evaluation results of different dimensionality reduction methods and different

settings for SVD using the correlation sum and the number of correct translations

Method Correlation sum (rank) Correct translations (rank)

Weighted SVD, year data 41.5 (1.) 810 (1.)

Weighted SVD, month data 38.7 (2.) 787 (2.)

SVD 29.9 (3.) 642 (4.)

W-FreqSet 28.7 (4.) 773 (3.)

S-LenSet 24.3 (5.) 516 (5.)

W-RandProj 12.0 (6.) 421 (6.)

weighting together with L2 normalization for both the one-month and one-year

data. The dimensionality was reduced to 100, which was then the number of

canonical variates to evaluate.

Table 5 shows the correlation sum and the number of correct translations found

for different vector representations. It can be clearly seen that the representations

with high correlation sum also provided large number of correct translation pairs.

Correlation between the two scores was 0.9772. The only difference in the ranks is

for SVD and W-FreqSet. They reached almost the same correlation sum, but the

evaluated factor loadings for W-FreqSet had more correct translations.

6 Discussion

In this work, we experimented with multilingual sentence-aligned data. We found

that the results agreed generally well with those found in the literature, confirming

that the proposed evaluation method is trustworthy. A natural follow-up is to test

the evaluation method with longer pieces of text, and compare the results with

a well-known task in, for example, IR. Especially the effect of the bag-of-phrases

feature (Section 5.2.4), which was found to be more positive than expected, seems

to be worth further study.

The experiment with different language pairs (Section 5.2.5) illustrates that the

more related the language pair, the easier to get high evaluation scores. Due to

more similar syntax and grammar, it is likely that the closely related languages have

many correlated features that are not important for the semantic content. Thus, if

we want to have as little non-semantic correlation as possible, then it may be a

good idea to use two very different languages. However, if the languages are very

different (consider, e.g., Chinese and English), then they are likely to need different

feature extraction methods, making the evaluation setup more complicated.

The question on how the correlations found by the evaluation method should be

combined to a single score is still partially open. If the number of dimensions in the

evaluated representations is the same, the sum of correlations seems to work well.

However, the validation with sentence matching tasks in Section 5.3 showed mixed

results when the number of dimensions was varied. The score correlated well with

the results of sentence alignment when we applied canonical variates weighted with

the corresponding canonical correlations. However, the score did not correlate well
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with the results of more difficult translation task, in which the variates were not

weighted. It seems to be difficult to define a single measure that would work well

with all applications.

The proposed evaluation method uses linear dependence calculation, which is very

robust and fast. However, it may not always find the true dependence. One solution

would be to use kernel CCA to extend the evaluation approach for nonlinear

dependences. However, replacing linear CCA with kernel CCA in the evaluation

has practical issues, which would make the evaluation setup more complicated. For

example, several kernel functions would need to be tested, as the optimal one is

likely to differ between the representations. Also, regularization would need to be

optimized. Moreover, it is difficult to interpret the canonical variates in kernel space.

Another restriction of the evaluation method is that it works for monolingual

feature extraction methods only. If the features were extracted from a bilingual

corpus, high scores would only indicate that the discovered features are similar to

those that CCA can find, rather than the most semantic ones. The evaluation setup

actually encompasses cross-language feature extraction comparable to Vinokourov

et al. (2003) or Zhang et al. (2010). The canonical variates and correlations found

by CCA could be used to, for instance, identify words or phrases that do not

contribute to the correlation in the common vector space and remove them from

the representations.

While probabilistic models, such as cross-lingual PLSA by Zhang, Mei and Zhai

(2010), can be applied to feature extraction similar to CCA, it is less clear if the

models could be applied in an evaluation setup similar to ours. In topic models,

such as PLSA, both the latent topics and observed features (usually words) are

assumed to be multinomially distributed. This restricts the usage of PLSA to the

evaluation of feature selection, that is, which words (or other discrete variables) to

choose, and rules out all vector space models with continuous variables. Another

practical problem with PLSA is the difficulty to decide the number of latent topics,

as well as how to measure the amount of dependence or correlation between the

original features giving the topics. Furthermore, PLSA models need to be inferred

separately for each dimensionality, the results depend on the initialization, and the

learning algorithms do not guarantee finding the global optimum.

The proposed evaluation setup could be extended to different types of correlated

data sets, given that the desired features correspond to the information shared

by the two sets. One possible direction is to consider a situation where the

underlying features are not semantic. For example, if the target application is

genre identification, the features typically include statistics on part-of-speech tags,

word lengths, and punctuations (Finn and Kushmerick 2006). Given a data set

where paired documents were of the same genre but otherwise different in content,

a feature extraction that found genre-related features would get high correlations.

Another direction to extend the evaluation approach is to consider an asymmetric

situation, where the correlated document sets and the applied feature extractions are

of different type. For example, we could use full and summarized texts in the same

language, or texts in professional and layperson language, as long as it is mainly the

semantics that is shared by the data sets. Furthermore, if the first feature extraction
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method is already known to give good semantic features for the respective data

samples, it can be kept as it is, and only the second one is evaluated. There can

also be a situation where the correlated data sets are of different modalities, for

example, images and their descriptions. As the underlying semantic information is

shared between data samples, it should be possible, although very challenging, to

also evaluate feature extractions in this case.

7 Conclusions

We presented a novel idea of using canonical correlation analysis to evaluate the

feature extraction methods that are used to construct vector representations of a

language. The proposed evaluation method is simple, unsupervised, and language-

independent. The only requirement is a bilingual corpus of paired samples, such

as sentences or documents. The methods are evaluated by measuring the amount

of cross-correlation between the extracted features of the paired samples. As the

underlying semantic content of the samples can be assumed to be independent of the

language, high correlations indicate that the evaluated method can capture much of

the semantics. The evaluation approach was validated in various experiments using

a sentence-aligned corpus. The evaluation results for bag-of-words representations

agreed well with previous findings and with general intuition. The evaluation method

was also able to find good vector representations for two different sentence matching

tasks and for a task of finding word translations. These three sets of experiments

showed that the proposed evaluation method provides a direct and reliable way to

compare different vector representations.
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