
Unsupervised Morpheme Discovery with

Allomorfessor

Sami Virpioja and Oskar Kohonen

Adaptive Informatics Research Centre, Helsinki University of Technology

{sami.virpioja,oskar.kohonen}@tkk.fi

Abstract

We describe Allomorfessor, which extends the unsupervised morpheme segmentation
method Morfessor to account for the linguistic phenomenon of allomorphy, where one
morpheme has several different surface forms. The method discovers common base
forms for allomorphs from an unannotated corpus by finding small modifications, called
mutations, for them. Using Maximum a Posteriori estimation, the model is able to
decide the amount and types of the mutations needed for the particular language. The
method is evaluated in Morpho Challenge 2009.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: I.2.6 Learning; I.2.7 Natural Language Processing

General Terms

Algorithms, Experimentation, Languages

Keywords

Morphology, Morphological Analysis, Unsupervised Learning

1 Introduction

Morphological analysis is crucial to many modern natural language processing applications, espe-
cially when dealing with morphologically rich languages. The enormous number of inflected word
forms may lead to severe problems with data sparsity and computational efficiency. There are sev-
eral successful methods for unsupervised segmentation of word forms into smaller, morpheme-like
units (see, e.g., [7, 4, 2]). However, the phenomenon of allomorphy limits the quality of mor-
pheme analysis achievable by segmentation alone. Allomorphy is defined in linguistics as when
an underlying morpheme-level unit has two or more morph-level surface realizations which only
occur in a complementary distribution: only one of the different allomorphs of a given morpheme
appear may appear in a certain morpho- and phonotactical context. For example, in Finnish, the
singular genitive case is marked with a suffix n, e.g. auto (car) – auton (car’s). Many Finnish
nouns undergo a stem change when producing the genitive: kenkä (shoe) – kengän (shoe’s), pappi
(priest) – papin (priest’s), tapa (habit) – tavan (habit’s). A segmentation based approach models
changed stems as distinct morphemes.

In Morpho Challenge 2008, we introduced an unsupervised model for morpheme segmenta-
tion and allomorphy learning [10]. In [11], some modifications to the model (now referred to as

Allomorfessor Alpha) were suggested. In this paper we describe and evaluate the modified Allo-
morfessor model (referred to as Allomorfessor Baseline). As indicated by the name, the model is
an extension to the Morfessor Baseline model by Creutz and Lagus [3].

There are two main problems in literature on the unsupervised learning of allomorphy: finding
morphologically related words (e.g. [13, 1]), and learning a morphological analyzer (e.g. [14, 5]).
We try to solve the latter, which is more complex and general—as morphologically related words
can be determined from the analyses. In contrast to the work by Yarowsky and Wicentowski
[14], the framework based on Morfessor allows concatenative morphology, rather than only stem-
suffix pairs. In the work by Dasgupta and Ng [5], concatenative morphology is allowed to some
extent, but the approach is not as general and cannot find, e.g., suffixes between stems. Another
difference is related to what information sources are used for finding the allomorphs. In addition
to the orthographic similarity, word frequencies [14] and word contexts [13, 1] have been applied.
We currently use only orthographic similarity.

This paper proceeds as follows: Section 2 presents the framework of the model and the learning
task, both based on Morfessor. Section 3 describes how Allomorfessor models allomorphy by in-
cluding new operations, mutations, to the model. Section 4 defines the model probabilities needed
by the Maximum a Posteriori estimation. Section 5 describes the applied learning algorithm for
the model, and Section 6 how the model can be used to analyze new words. Section 7 includes
the initial results for the Morpho Challenge 2009. Finally, Section 8 concludes the paper.

2 Model Framework

To define our framework for learning morphology, we start with a probabilistic generative model
M for a text corpus. With Maximum a Posteriori (MAP) estimation, we try to select the model
that is the most probable given the training corpus:

MMAP = arg max
M

P (M|corpus) = arg max
M

P (M)P (corpus|M) (1)

P (M) is the Bayesian prior probability for the model and P (corpus|M) is the likelihood of the
training corpus. Compared to Maximum Likelihood estimation, MAP provides a systematic way
of balancing the model complexity and accuracy, and thus helps with the problem of overlearning
(see, e.g., Chapter 3 in [6]). This MAP formulation can alternatively be formulated using a
two-part coding approach of the Minimum Description Length (MDL) principle.

Modeling a corpus with a morphological model is not straightforward. For example, the oc-
currences of the words in a corpus follow power law distributions (Zipf’s law), any realistic model
should abide by that phenomenon. Instead of using an explicit model for the corpus, as in, e.g.,
[8], we separate word-level model MW and morpheme-level model MM , and estimate only the
latter. Word-level model is assumed to be a constant given a word lexicon LW , which contains all
the word forms in the corpus. In addition, we divideMM into two parts: morpheme lexicon LM

and morpheme grammar GM . The former models word-internal syntax and the latter provides the
morphemes that from which the words are constructed. The optimization task is thus:

MMAP = arg max
GM ,LM

P (LW |GM ,LM)P (GM)P (LM). (2)

This is equivalent to the approach used in Morfessor [4], but instead of modeling the original
corpus, we are now modeling a lexicon of the words in the corpus.1

3 Modeling Allomorphy with Mutations

Our morpheme-level model is Morfessor Baseline extended with operations that can make minor
modifications to the surface forms of the morphemes. These operations are called mutations.

1This has been recommended to be done also with Morfessor by setting all the word counts to one. Otherwise,

frequent word forms are often undersegmented.

In many cases, the mutations are empty, i.e., they do not affect the surface form. If all of the
mutations are empty, the model is equivalent to Morfessor Baseline.

When designing the mutation model for allomorphy we strive to: (1) Make wrong analyses
costly by favoring mutations close to the suffix. E.g., the edit distance between blue and glue

is only one, but they are not allomorphs of the same morpheme. (2) Use mutation types general
enough to allow statistical analysis. I.e., similar variations in different words should be modeled
with the same mutation. The mutation type used in Allomorfessor is a special case of the standard
edit distance. We allow only substitution and deletion operations, and make the mutation position
independent. The affected position is found by matching to k:th instance of a target letter, that
is scanned for starting from the end of the virtual prefix (or previous operation). Examples are
shown in Table 1.

To calculate the smallest mutation of this kind between two arbitrary strings we apply the
dynamic programming based algorithm for minimum edit distance (see, e.g., [12]), which can be
modified to return also the edit operations needed. We want the optimal sequence of operations not
containing insertions, so we set the cost of insertions to be larger than what the other operations
may yield for the given string lengths. In this way, we can always find sequences of operations not
containing insertions, if such sequences exist, by discarding candidates with too high costs. It is
trivial to transform the edit operations into the Allomorfessor mutation format.

Table 1: The allowed operations in mutations and some examples in Finnish.
Operation Notation Description
substitution kx|y Change k:th x to y

deletion -kx Remove k:th x

(k is omitted when k = 1)

Source Mutation Target
kenkä (shoe) (k|g) kengä (e.g. kengä+ssä, in shoe)
tanko (pole) (k|g) tango (e.g. tango+t, poles)
ranta (shore) (-a t|n) rann (e.g. rann+oi+lla, on shores)
ihminen (human) (2n|s) ihmisen (human’s)

To verify the suitability of the approach, we examined how well this kind of mutations are able
to find the allomorphic variations in linguistic gold standard segmentations. The tests were per-
formed on English, Finnish and Turkish, based on the gold standards used in Morpho Challenge.2

Statistics were calculated separately for a word lexicon and for a corpus, where the common words
had more weight. The results are in Table 2. The first column shows the number of morphs in
the data. The second column shows how many of the morphs have allomorphs. The third col-
umn shows how many of the allomorphs can be constructed with mutations. We applied similar
restrictions to those that were in our model; in practice, variations in affixes and other short mor-
phemes were excluded from the search. Mutations provide reasonable good coverage for English
and Finnish. E.g., for English, we can find at most 82% of the real allomorphs in the gold standard
segmentation. The percentages for the corpora are lower, as affixes are more common than stems.
For Turkish, where most of the allomorphy seems to be in affixes or other short morphemes, only
2% of the cases with allomorphic variants in a corpus can be found using mutations.

4 Model Probabilities

Next, we give a formal description of the probabilities in Equation 2 for the Allomorfessor Baseline
model. Again, the formulation follows the work by Creutz and Lagus [4], especially the Morfessor
Baseline model.

2See http://www.cis.hut.fi/morphochallenge2009/datasets.shtml.

Table 2: The portion of morphemes with allomorphs and how many of the allomorphic variations
can be modeled with mutations for English, Finnish and Turkish lexicon and corpus.

Morphemes Allomorphs Mutation found
English lexicon 21 173 10 858 (51.3%) 8 912 (82.1%)
Finnish lexicon 68 743 56 653 (82.4%) 36 210 (63.9%)
Turkish lexicon 23 376 646 (2.8%) 102 (15.8%)
English corpus 76 968 382 42 282 837 (54.9%) 14 706 543 (34.8%)
Finnish corpus 73 512 023 61 583 251 (83.8%) 18 751 022 (30.5%)
Turkish corpus 23 288 821 11 978 142 (51.4%) 225 708 (1.9%)

First, every word form wj in the word lexicon is represented by a sequence of morphs µjk and
mutations δjk

P (LW |GM ,LM) =

MW
∏

j=1

nj
∏

k=1

P (µjk)P (δjk|µjk), (3)

where nj is the number of morphs in word j. The probabilities of the morphs and the (conditional)
probabilities of the mutations are estimated from the observed frequencies. I.e., if there is 10000
morph tokens in the word lexicon, and µjk occurs 200 times, its probablity will be P (µjk) =
200/10000 = 0.02.

The probability of the morph lexicon LM is based on the properties of the morphs:

P (LM) = P (size(LM) = M)P (properties(µ1) . . . properties(µM))M ! (4)

If a non-informative prior is used for the probability of the lexicon size M , its effect is minimal and
it can be neglected. The factor M ! is explained by the fact that there are M ! possible orderings of
M items, and the lexicon is the same regardless of the order in which the morphs are discovered.

The properties of the morphs are divided into two parts, usage and form. The usage includes
properties of the morph itself and the properties of its context. Here we include only the frequency
distribution of the morphs. For the probability of the distribution, we use a non-informative,
implicit frequency prior

P (usage(µ1) . . . usage(µM)) = P (freq(µ1) . . . freq(µM)) = 1/

(

N − 1

M − 1

)

, (5)

where N is the sum of the counts of the morphs.
The form of a morph is its representation in the model. Forms of the morphs are assumed to

be independent. They are represented by a string of characters cij :

P (form(µi)) = P (len(µi))

len(µi)
∏

j=1

P (cij), (6)

where cij is the jth character of the morph. The lengths of the morphs are modeled explicitly
using an appropriate probability distribution, such as an exponential (geometric) or a gamma
distribution.

Grammar GM of the model contains the set of mutations ∆. Similarly to the lexicons,

P (GM) = P (size(∆) = Mδ)P (properties(δ1) . . . properties(δMδ
))Mδ!, (7)

and properties can be divided into usage and form. Usage features include the frequencies of the
mutations and their co-occurrences with the suffix morphs (needed in Equation 3). We apply a
condition that each morph has to have at least one co-occurrence with an empty mutation ǫ. In
consequence, the count of the empty mutation nǫ is at most N (number of morph tokens) and at
least M (number of morph types). Applying the the uniform distribution,

P (freq(ǫ)) =
1

N −M + 1
. (8)

The other Mδ−1 mutation types have N −nǫ occurrences in total, as there are as many mutation
tokens as there are morph tokens in the data. We apply the same non-informative prior as in
Equation 5. Finally, we determine the probability of the co-occurrences of mutations and suffix
morphs. For each non-empty mutation δ we divide its occurrences with the M possible morphs.
There are

(

freq(δ)+M−1
M−1

)

possibilities, so a non-informative prior for the co-occurrences is

P (co-freqs(∆,LM)) =
∏

δ∈∆\ǫ

1/

(

freq(δ) +M − 1

M − 1

)

. (9)

Note that after the others are determined, the co-occurrences with the empty mutation are:

co-freq(µ, ǫ) = freq(µ)−
∑

δ∈∆\ǫ

co-freq(µ, δ). (10)

The prior probability for the form of a mutation δi with len(δi) operations is given by:

P (form(δi)) = P (len(δi))

len(δi)
∏

j=1

P (kij)P (opij) (11)

P (opij) =

{

P (del) 1
Σ if opij is a deletion

P (sub) 1
Σ2 if opij is a substitution

(12)

For the weights we use P (del) = P (sub) = 0.5, Σ is the alphabet size, and kij tells which instance
of the target letter of the operation opij is matched. P (len(δi)) and P (kij) can be taken from any
suitable prior distribution.

5 Algorithm for Model Learning

The model is learned by iteratively improving the model posterior P (M|corpus), processing one
word at a time and selecting the analysis of that word that maximizes the probability, as shown
in Algorithm 1. In the algorithm, Aw is a list and we use + to denote the append operation. The
algorithm considers analyzing the word w (1) without splits, (2) with all possible splits of w and
an empty mutation, and (3) with all possible splits and a base form similar to the virtual prefix
and the required mutation. The cases (1) and (2) are the same as in Morfessor Baseline and (3)
is our extension, with details shown in Algorithm 2.

Since each word has 2(len(w)−1) possible analyses without considering mutations, we search
greedily for the best split at any time, reducing the search space to O(len(w)2). When considering
mutations, any word w could potentially be the base form for any other word w∗. Thus, a naive
algorithm would have time complexity O(N2), which is unfeasible for large datasets. Therefore,
we constrain the candidates in heuristic ways, such as limiting the number of analyses to K per
morph and iteration, as can be seen in Algorithm 2. Since finding the baseforms can be done as a
range search, it requires O(K log(N)) time, and thus the time complexity for the whole learning
algorithm is O(NK log(N)).

Algorithm 1 The learning algorithm

while P (M| corpus) increases do

for w ∈ LW in random order do optimize(w,len(w))
end while

function optimize(w,n)
Aw ←

[

w
]

+
[

(w1..i, w(i+1)..n) : i ∈ 1, ..., n− 1
]

+ mutated analyses(w, n)
Apply the analysis a∗w of the first K elements of Aw that maximizes P (M| corpus)
if a∗w involved a split then optimize(w1..i, i); optimize(w(i+1)..n, n− i)

Algorithm 2 mutated analyses(w, n)

for i ∈ 1, ..., n− 1 do

if n >= 4 ∧ len(w(i+1)..n) <= 5 ∧ w(i+1)..n ∈ LM then

if n > 6 then difflen ← 4 else difflen ← 3
baseforms ← {v ∈ LW : v1..(n−difflen) = w1..(n−difflen)}
Calculate mutations δj between each baseformsj and w(i+1)..n

Aw ← Aw +
[

(vj , w(i+1)..n, δj) : vj ∈ baseforms
]

end if

end for

return Aw sorted by i and descending len(vj)

6 Algorithm for Analyzing New Data

After the model has been trained, it can be used to analyze words with a variant of the Viterbi
algorithm, which is a dynamic programming algorithm that finds the most probable state sequences
for Hidden Markov models [9]. In our case, the observation is the sequence of |W | letters that
form the word w, and the hidden states are the morphemes of the word. We need a grid s of
length |W | to fill with the best probability values α(si) and paths. Without mutations, the model
is 0th order Markov model, and the grid is a one dimensional table. The grid position si indicates
that the first i letters are observed. At each time step, we proceed with one letter and insert
the probability α(si) = maxj α(sj)P (µji) and path indicator ψ(si) = arg maxj α(sj)P (µji) to the
grid. We can come to si from any of the positions sj between s1 and si−1: the letters between j
and i form the next morpheme µij . The time complexity is of the algorithm is thus O(|W |2).

The mutations make things a bit more complicated. As they are conditioned on the suffixes,
it is easier to run the algorithm from right to left. The grid has to be two dimensional: for each
si there can be several states (morphemes) with their own costs and paths. The rule for updating
the grid value for si is

α(si, µ̂ij) = max
j∈[i+1,|W |]

{

max
µ∈sj

{

max
δ∈∆

{

α(sj , µ)P (δ|µ)P (µ̂ij)
}}}

, (13)

where µ̂ij is a morpheme that produces the letters between i and j when modified by the mutation
δ. Only those mutations that are observed before µ need to be tested, otherwise P (δ|µ) = 0. For
the morphemes that are not observed before, we use an approximate cost of adding them into the
lexicon. The worst case time complexity for the algorithm is O(MMδ|W |

2). In practice, however,
the number of morphemes and mutations tested in each position is quite limited.

7 Experiments and Evaluation

For Morpho Challenge 2009 Competitions 1 and 2 we trained the model with the Competition 1
data, where all words occurring only once were filtered out3, with the exception of Arabic data
sets, where the number of words was very low to start with. After training the model, we analyzed
all the words in both data sets with the Viterbi algorithm (Section 6). For Competition 3, we
used the Europarl data set for training, without any filtering. After training the model, the final
analysis was calculated with the Viterbi algorithm. The following parameter settings were used:
Morpheme length distribution in Equation 6 was geometric with parameter p = MW /(MW +Mc),
where MW is the number of words and Mc the number of characters in the training corpus. The
number of candidates considered for each virtual morph was K = 20. For the mutation lengths
and kij in Equation 11, we used gamma distribution with scale and shape parameters equal to
one, preferring short mutations.

In Table 3, the performance of the Allomorfessor Baseline (the current algorithm) is compared
to Allomorfessor Alpha (the algorithm presented in Challenge 2008 [10]) and Morfessor Baseline

3The are plenty of “rubbish”, such as misspelled words and foreign names, in the least frequent words.

Table 3: Results from the Morpho Challenge linguistic evaluation (Competition 1) for Arabic
(nv = non-vowelized, vow = vowelized), English, Finnish, German and Turkish. Allomorfessor
Baseline and Morfessor Baseline are trained with the same data sets. Allomorfessor Alpha has no
implementation for Viterbi segmentation, so it is trained on the full data sets.

Language Measure Allomorfessor Allomorfessor Morfessor
Alpha Baseline Baseline

Arabic (nv) precision - 91.62% 91.77%
recall - 6.59% 6.44%
F-measure - 12.30% 12.03%

Arabic (vow) precision - 88.28% 86.87%
recall - 4.37% 4.90%
F-measure - 8.33% 9.28%

English precision 83.31% 68.98% 68.43%
recall 15.84% 56.82% 56.19%
F-measure 26.61% 62.31% 61.71%

Finnish precision 92.64% 86.51% 86.07%
recall 8.65% 19.96% 20.33%
F-measure 15.83% 32.44% 32.88%

German precision 87.82% 77.78% 76.47%
recall 8.54% 28.83% 30.49%
F-measure 15.57% 42.07% 43.60%

Turkish precision 93.16% 85.89% 85.43%
recall 9.56% 19.53% 20.03%
F-measure 17.35% 31.82% 32.45%

[3] in the Competition 1 of Morpho Challenge. The improvement over the previous algorithm is
remarkable. As indicated by the improved recall measures, the algorithm no longer undersegments.
This can also be seen in Figure 1, where the average number of morphemes per word form is shown
for the three algorithms.

Compared to Morfessor, the results are roughly at the same level. For English, Allomorfessor
has both higher recall and higher precision. For all the other tasks, one is higher and the other is
lower. Note that whenever the recall is higher, also the F-measure is higher, as improving the lower
measure (in this case, recall) has more effect on the geometric mean of the measures. Figure 1
shows that on average, Morfessor always segments word forms to smaller parts. This usually leads
to a higher recall. However, for English, Allomorfessor obtains higher recall while segmenting
less than Morfessor, which implies that the majority of the common base forms extracted by
Allomorfessor are correct. Also, Allomorfessor achieved the winning F-measure for English in
Morpho Challenge 2009.

In Competition 2, the algorithms were applied in an information retrieval system for English,
Finnish and German. The results for Allomorfessor and Morfessor Baseline, shown in Table 4, are
roughly on the same level. Notably, Allomorfessor is better for Finnish and Morfessor for English in
contrast to Competition 1; rigorous error analysis would be needed to find an explanation. Overall,
Allomorfessor performed reasonably well in this task, being second in English and Finnish and
third in German.

The number of non-empty mutations found by the algorithm (in the final analysis of all the
word forms) is shown in Table 5. Generally, mutations are not used as much as linguistic analysis
would prefer. One reason is that the model seems to favor storing frequent morphs directly, instead
of deriving them using mutations. The method finds, e.g., the morph pretti instead of deriving it
as pretty (y|i). Therefore mutations are mostly used for morphs that occur only in few different
word forms. When comparing languages, the most striking figures are in the Arabic sets: If the
vowels are excluded (as usual in Arabic script), the model finds no useful mutations. However,
when the vowels are in the text, the model finds 70 mutations, more than for any other tested

Arabic nv Arabic vow English Turkish German Finnish
0

1

2

3

4

Average #segments / word form

Baseline
Allomorfessor
Allomorfessor Alpha

Figure 1: The average amount of morphemes per word indicated by the algorithms. The error
bars show the standard deviations.

Table 4: Results from the Morpho Challenge information retrieval evaluation (Competition 2).
Allomorfessor Baseline versus Morfessor Baseline, trained with the same data sets.

Language Average Precision (%)
Allomorfessor Morfessor

English 0.3852 0.3873

Finnish 0.4601 0.4475
German 0.4388 0.4728

language. This nicely demonstrates the method’s ability to adapt to the particular languages and
data sets. The fact that Arabic morphology is not concatenative, and thus does not fit well into
the Morfessor framework, emphasizes the flexibility of the model.

In Table 6, the mutations found by the algorithm are shown for English and Finnish. As
can be seen, a large part of the mutations correspond to linguistic analysis. The most common
error, especially for Finnish, is having a derived form as the base form. This is because an
unsupervised algorithm has trouble finding the correct base form. However, if the analysed morph
is semantically related to the induced base form, such analyses can be useful in applications. Other
errors include not finding the correct suffix, using a more complex mutation and suffix combination
than necessary, and using a semantically unrelated base form. Mutations are also used commonly
on misspelled word forms.

Table 5: The number of non-empty mutations found by Allomorfessor. Mutation usage is the
number of non-empty mutation tokens divided by the number of morph tokens.

Language Arabic (nv) Arabic (vow) English Finnish German Turkish
Mutation types 0 69 15 66 26 55
Mutation usage 0.0% 4.61% 0.18% 0.44% 0.17% 0.12%

8 Conclusions

We have described the Allomorfessor Baseline method for unsupervised morphological analysis.
It attempts to find the morphemes of the input data by segmenting the words into morphs and
finding modifications that can restore allomorphic variations in stems back to their base forms. In
the Morpho Challenge 2009 evaluations, significant improvements were obtained over the previous
version of the method. The results are now close to those of the Morfessor Baseline method. In

comparison to the methods by the other participants, Allomorfessor performed especially well in
the linguistic evaluation for English (the best result in the task), and in the information retrieval
evaluation for English (second), Finnish (second) and German (third).

References

[1] Marco Baroni, Johannes Matiasek, and Harald Trost. Unsupervised discovery of morpho-
logically related words based on orthographic and semantic similarity. In Proceedings of the
ACL-02 workshop on Morphological and phonological learning, pages 48–57, Morristown, NJ,
USA, 2002. ACL.

[2] Delphine Bernhard. Simple morpheme labelling in unsupervised morpheme analysis. In Ad-
vances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the CLEF,
volume 5152 of Lecture Notes in Computer Science, pages 873–880. Springer Berlin / Heidel-
berg, 2008.

[3] Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceedings of
the Workshop on Morphological and Phonological Learning of ACL’02, pages 21–30, Philadel-
phia, Pennsylvania, USA, 2002.

[4] Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmentation and
morphology learning. ACM Transactions on Speech and Language Processing, 4(1), January
2007.

[5] Sajib Dasgupta and Vincent Ng. High-performance, language-independent morphological seg-
mentation. In In the annual conference of the North American Chapter of the ACL (NAACL-
HLT), 2007.

[6] Carl G. de Marcken. Unsupervised Language Acquisition. PhD thesis, MIT, 1996.

[7] John Goldsmith. Unsupervised learning of the morphology of a natural language. Computa-
tional Linguistics, 27(2):153–189, 2001.

[8] Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Interpolating between types and
tokens by estimating power-law generators. In Advances in Neural Information Processing
Systems (NIPS), page 18, 2006.

[9] G. David Forney, Jr. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, March
1973.

[10] Oskar Kohonen, Sami Virpioja, and Mikaela Klami. Allomorfessor: Towards unsupervised
morpheme analysis. In Working notes for the CLEF 2008 Workshop, Aarhus, Denmark, 2008.

[11] Oskar Kohonen, Sami Virpioja, and Mikaela Klami. Allomorfessor: Towards unsupervised
morpheme analysis. In Evaluating Systems for Multilingual and Multimodal Information
Access – 9th Workshop of the CLEF, Lecture Notes in Computer Science. Springer-Verlag,
2009. To appear.

[12] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

[13] Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using latent
semantic analysis. In Proceedings of the 2nd workshop on Learning language in logic and the
4th conference on Computational natural language learning, pages 67–72, Morristown, NJ,
USA, 2000. ACL.

[14] David Yarowsky and Richard Wicentowski. Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the 38th Meeting of the ACL, pages 207–216, 2000.

Table 6: Mutation types with example usage for English and Finnish.
Mutation Count Examples Notes

English

(-e) 1182 adhering: adhere (-e) ing

(-y) 300 vulnerabilities: vulnerability (-y) ies

temporarily: temporary (-y) ily

(-t) 120 affluence: affluent (-t) ce

bankrupcy: bankrupt (-t) cy word form misspelled

(-a) 66 encyclopedic: encyclopedia (-a) c

hemophilic: hemophilia (-a) c

(-i) 41 publshed: publish (-i) ed word form misspelled

(-s) 35 euripidean: euripides (-s) a () n

diocletian: diocles (-s) tian

(-o) 27 aspirating: aspiration (-o) g suffix ing not found

(-n) 27 proletariat: proletarian (-n) t

restauration: restaurant (-n) ion wrong base form

(-c) 20 paraplegia: paraplegic (-c) a

(t|c) 8 excellencies: excellent (t|c) ies adjective chosen as base form

inconveniencies: in () convenient (t|c) ies adjective chosen as base form

(a|s) 2 ljubljanska: ljubljana (a|s) ka different form of a proper name

(-g) 1 licensintorg: licensing (-g) torg proper name oversegmented

(s|n) 1 sclerosing: sclerosis (s|n) g suffix ing not found

(-h) 1 thorougbred: thorough (-h) bred word form misspelled

(-a -y) 1 bulathkopitiya: bulathkopitya (-a -y) iya different form of a proper name

Finnish

(-n) 7771 ahdingolla: ahdingon (-n) lla genitive chosen as base form

aikojemme: aikojen (-n) mme plural genitive chosen as base form

(-i) 4096 anakronismeille: anakronismi (-i) e () ille ok, but (i|e) preferable

desibelejä: desibeli (-i) ejä ok, but (i|e) preferable

(-a) 2598 diakonissoja: diakonissa (-a) oja ok, but (a|o) preferable

eufemismi: eufemia (-a) smi

(-t) 2507 fagotisti: fagotti (-t) sti

haltuunoton: haltuunotto (-t) n

(-s) 1114 harvennuksen: harvennus (-s) ksen

yliherkkyydet: yliherkkyys (-s) det

(-e) 939 vuosituhantista: vuosituhantiset (-e) a plural chosen as base form

viikattein: viikate (-e) tein

(i|e) 675 videoprojektoreina: video () projektori (i|e) ina

transistoreita: transistori (i|e) ita

(-ä) 532 tulennielijöitä: tulennielijä (-ä) öitä

tulokertymien: tulokertymä (-ä) ien

(a|i) 430 kaavailemia: kaavailema (a|i) a

juurevia: juureva (a|i) a

(n|s) 428 hankkeeseesi: hankkeeseen (n|s) i base form undersegmented

diabeteksesi: diabeteksen (n|s) i base form undersegmented

(a|e) 322 emigranttien: emigranttia (a|e) n partitive as base form

hajuharhojen: haju () harhoja (a|e) n plural partitive as base form

(-k) 311 agnostikoksi: agnostikko (-k) ksi

haaksirikossa: haaksirikko (-k) ssa

(-a -t) 232 murhissa: murhista (-a -t) sa elative as base form

varainhankinnalla: varainhankinta (-a -t) na () lla oversegmented, (t|n) preferable

(-n -i) 183 barrikadeja: barrikadin (-n -i) eja genitive as base form

kursseihen: kursseihin (-n -i) en word form misspelled

(n|i -e) 143 aivotärähdyksiä: aivo () tärähdyksen (n|i -e) ä genitive as base form

hoplofoobisia: hoplofoobisen (n|i -e) a genitive as base form

(-n n|s) 138 aivokurkiaisen: aivokurkiainen (-n n|s) n

mustapukuiset: mustapukuinen (-n n|s) t

(t|d) 97 häädöt: häätö (t|d) t

kursivoidun: kursivoitu (t|d) n

(a|s -t) 83 amppeleissa: amppeleita (a|s -t) sa plural partitive as base form

elintarvikkeissa: elintarvikkeita (a|s -t) sa plural partitive as base form

(ä|t -l) 82 näöltään: näöllä (ä|t -l) ään adessive as base form

(-e -s) 77 esoteerinen: esoteerisen (-e -s) en genitive as base form, linguistic

teksasilainen: teksasilaisen (-e -s) en “inverse” of (-n n|s)

(t|n) 75 abstrahoinnin: abstrahointi (t|n) n

(a|t -l) 75 matkapuhelimeltaan: matka () puhelimella (a|t -l) aan adessive as base form

