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ABSTRACT

Using words as vocabulary units for tasks like speech recog-
nition is infeasible for many morphologically rich languages,
including Finnish. Thus, subword units are commonly used
for language modeling. This work presents a novel algorithm
for creating a subword vocabulary, based on the unigram like-
lihood of a text corpus. The method is evaluated with entropy
measure and a Finnish LVCSR task. Unigram entropy of the
text corpus is shown to be a good indicator for the quality
of higher order n-gram models, also resulting in high speech
recognition accuracy.

Index Terms— Large Vocabulary Continuous Speech
Recognition, Vocabulary Selection, Subword Modeling

1. INTRODUCTION

Morphologically rich languages pose special challenges for
natural language processing tasks such as speech recogni-
tion and machine translation [1]. Because of morphological
processes like agglutination, compounding and inflection,
the amount of different word forms may be huge and cause
problems for traditional word-based language modeling ap-
proach. A common solution is to use a vocabulary consisting
of subwords instead of words. Subword-based approaches are
widely applied in automatic speech recognition for languages
such as Finnish, Estonian, Turkish, Hungarian, Thai, Czech,
and Slovenian. For a comprehensive survey of different
methods, see [2]. The subword vocabularies selected using
unsupervised machine learning methods have been shown to
perform well [3, 4], so neither a morphological analyzer nor
an annotated training corpus is required. One common unsu-
pervised method is Morfessor [5], which is used as a baseline
method in this work.

Modern speech recognizers aimed for large vocabulary
tasks typically utilize n-grams for language modeling. To
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avoid data sparseness issues and achieve good n-gram esti-
mates, the vocabulary size and units should be selected care-
fully. Also out-of-vocabulary (OOV) rate has to be consid-
ered. For a morphologically rich language, using words as
vocabulary units leads either to a high OOV rate if the vo-
cabulary is too small, or difficulties in estimating the n-gram
probabilities if the vocabulary is too large. By using a sub-
word vocabulary, it is possible to achieve virtually unlim-
ited word vocabulary by using subwords as building blocks.
Recognition rates for words not in the training data has been
analyzed in [2, 6]. For analysis of recognition rates for word
and subword-based speech recognition, see for example [7].

There are many possible ways to select a subword vo-
cabulary. Morphologically motivated units like statistical
morphs have proven to be a good choice. By definition, mor-
phemes are the smallest meaning-bearing units of a language
and morphs are their realizations in text or speech. Differ-
ent algorithms for morphological segmentations have been
evaluated in Morpho Challenge competitions [8] that have
included speech recognition tasks [3]. For comparing the
prediction ability of different subword vocabularies, a use-
ful measure is the cross-entropy of an n-gram model trained
for the subword units. In this work, we study whether the
unigram likelihood would be a suitable criterion for learn-
ing a subword vocabulary that would produce an accurate
high-order n-gram model for a LVCSR task. We introduce
an unsupervised segmentation method,G1G, that explicitly
optimizes unigram likelihood for given vocabulary size. We
also compare the unigram entropy and morphological correct-
ness of the subwords as the criteria for achieving a high-order
model with low entropy.

2. GREEDY ALGORITHM FOR SUBWORD
VOCABULARY LEARNING

The goal of the suggested new algorithm is to create a sub-
word vocabulary that gives a high unigram likelihood for the
training corpus. This criterion is difficult to optimize directly
for a limited vocabulary size, but theG1G (Greedy 1-Grams)
algorithm that we present, provides a good approximation.



Our approach is to start with a large amount of candidate sub-
words and gradually constrain the subword vocabulary and
refine word segmentations to reject subwords that are least
significant for the likelihood.

The algorithm takes as input a list of words and their fre-
quencies. The subword vocabularyV consists of subwords
and a probability for each subword, forming a unigram dis-
tribution over the vocabulary.G1G algorithm may be under-
stood from a Markov model perspective to subword segmen-
tation, as explained in Subsection 2.1. The algorithm consists
of separate initialization and pruning phases which are ex-
plained in more detail in Subsections 2.2 and 2.3.

2.1. Markov models and subword segmentation

Generating words with unigram distributed subword vocab-
ulary may be viewed as a zero-order (memoryless) Markov
process. Standard Viterbi and Forward-backward algorithms
may then be used for training and segmentation [9, 10]. This
extends the standard notion of Markov models slightly, as a
word may be generated by a different number of subwords
(observations). Figure 1 shows an example how Finnish word
“talossa” could be segmented as a sequence of letters, sub-
words, or as a single observation. The most likely segmenta-
tion returned by Viterbi would in this case be “talo + ssa”.
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Fig. 1. Segmentation paths for word “talossa” using a sub-
word model. The numbers are log-likelihoods of the units.

The vocabulary may be stored in a letter-trie-like data
structure to allow fast subword lookups starting from each
character position.

2.2. Initialization

Proper initialization is very important for the algorithm,be-
cause no new subwords will be introduced after that.

1. Train a letter n-gram model from the training corpus. Step
4 decreases the differences between different discounting
methods. The letter n-gram is fast to train from a fre-
quency weighted word list.

2. Select the initial pool of subwordsV = {si}, for example
all substrings from the most common words in the training
data up to a reasonable maximum length.

3. Calculate a log-probabilitylpi for each subwordsi using
the letter n-gram model. For example, if the subwordsi

is a four-letter string “abcd”:

lpi(abcd) = lp(a) + lp(b|a) + lp(c|ab) + lp(d|abc) (1)

Normalize the probabilities to sum to one.

4. Using the subword probabilities, iterate Forward-backward
algorithm over the training corpus until convergence. In
practice, around5 iterations is enough. Update the prob-
abilities for all subwords.

5. Segment all words in the training data using the Viterbi
algorithm and update the probabilities. Discard all unused
subwords.

6. Iterate Viterbi segmentation. After each iteration increase
cutoff value, remove subwords with frequency below the
cutoff value and update the probabilities. Stop when a
suitable maximum cutoff value is reached.

2.3. Vocabulary pruning

The actual pruning is done with a more refined pruning strat-
egy. The segmentation may be done either using the Viterbi
or Forward-backward algorithm. In our case there was no sig-
nificant difference between the results and thus Viterbi seg-
mentation was used. For a corpus in some other language,
Forward-Backward could be a better choice. Iterate:

1. Resegment all words and store pointers from subwords to
words.

2. Select a list of candidate subwords for removal, for exam-
ple the least frequent subwords in the vocabulary.

3. For each candidate subword, estimate the cost of remov-
ing it by resegmenting the words without it.

4. Sort the list of candidate subwords in descending order by
the value of estimated likelihood change.

5. Perform each of the removals one-by-one if the change in
likelihood exceeds a threshold value or alternatively just
without a threshold. After each removal, force each word
segmented using this subword to resegment and update
subword frequencies accordingly.

3. EXPERIMENTS

3.1. Experimental setup

The text corpus used in all further experiments is the Finnish
CSC Kielipankki corpus [11]. It contains text from Finnish
newspapers, magazines and books. The corpus contains in to-
tal 144 million word tokens and4.1 million word types. The
corpus was preprocessed by removing punctuation and other
special characters and numbers were expanded to their writ-
ten form. The order of the sentences was randomized and the



sentences divided into training, development and evaluation
sets. Training set consists of139 million word tokens. It is
used for training the subword vocabularies and n-gram mod-
els. Development set consists of190000 words tokens and
meant for optimizing discount parameters of n-gram models.
The evaluation set consists of3.9 million word tokens and is
used in evaluating the entropy of the n-gram models.

The speech recognition task is based on the Finnish
Speechdat database1, which consists of4000 speakers recorded
over fixed telephone line (8 khz). 55 hours from3696 speak-
ers were used for training. For both development and test sets
150 separate speakers were allocated with about2.2 hours of
speech in each set. The task is relatively hard because of wide
range of speakers and at times low sound quality.

The speech recognition system is a large vocabulary
speech recognizer, which utilizes Hidden Markov Models for
acoustic modeling and n-grams for language modeling. The
HMM is based on context-dependent triphones with1783
tied HMM states. State emission PDFs are diagonal Gaussian
mixture models trained to variable lengths using maximum
likelihood training with a global MLLR linear transform. The
total number of Gaussian was85758. No speaker adaptation
was utilized in these experiments. To be able to use subword
units and allow long-context n-grams, there are special issues
to consider in the decoder implementation [12]. Letter-to-
phoneme mapping for Finnish is quite straightforward and
using triphone models solves most of the issues.

3.2. Subword vocabularies

3.2.1. G1G

The initial pool of subwords was selected by taking all sub-
strings up to length of15 from the500k most common words
in the training data. The initial number of subwords was
4.8 million. A letter 8-gram model was trained using the
SRILM toolkit. Each of the strings was then assigned an ini-
tial unigram score using the letter n-gram model. From this
point on 1M most common words were used as the train-
ing data, as the remainder had negligible effect on the re-
sult. Forward-backward algorithm was iterated5 times. After
this we changed to Viterbi segmentation, removing all unused
subwords. The vocabulary size dropped to493k subwords.
Viterbi segmentation was then iterated20 times while increas-
ing a cutoff value in steps of2.5 to a maximum of50. This
further reduced the vocabulary size to177k subwords.

Pruning was done as follows: in each iteration, a list of
candidate removals of size 25k was created and sorted using
the estimate of their impact on the likelihood. Before reaching
vocabulary size of100k, 2500 subwords were removed per
iteration. For vocabulary sizes50–100k, 1000 subwords were
removed per iteration and for vocabulary sizes10–50k, 500
subwords were removed per iteration.

1http://www.speechdat.fi

Table 1 illustrates the development of subword vocabu-
lary size and unigram log-likelihood after subsequent steps
in G1G training. The meaning of each step is explained in
Section 2 and the used parameters in this subsection. The last
steps show the points in iteration where the size reached100k,
50k, 25k and10k.

Table 1. G1G training statistics (LL = log-likelihood).
Step Vocabulary size LL ( 109)
Initialization 4.8M -1.79
Forward-backward (5 iter) 4.8M -1.39
First Viterbi segmentation 493k -1.39
Cutoff 50 177k -1.42
Iteration 32 100k -1.45
Iteration 81 50k -1.51
Iteration 131 25k -1.57
Iteration 161 10k -1.64

3.2.2. Morfessor

Morfessor vocabularies were created with the Morfessor
Baseline [13] script. Unweighted lists of common words
were given as input to the algorithm. Longer word list results
in a larger vocabulary and vice versa. To obtain the results
of this paper, we took50k-–600k most common words in the
training corpus.

For longer word lists with word frequencies, Morfessor
algorithm segments very few words. The underlying reason
for the undersegmentation is that Morfessor is based on the
MDL two-part criterion, having a cost for the vocabulary and
the data. The cost for the vocabulary must be on a meaningful
level compared to the data cost. It is possible to guide the
algorithm to segment more by setting a larger weight for the
lexicon cost. Lexicon-weighted Morfessor has been evaluated
with respect to morphological F-measure in [14], but no prior
evaluation for language modeling and LVCSR exists.

The lexicon-weighted Morfessor segmentations were cre-
ated using a frequency weighted list of500k most common
words in the training corpus. Word list of1M words was
noticed to result in a slight performance degradation. The
lexicon size was controlled by varying the weighting term be-
tween corpus and lexicon codelengths. In these experiments
the lexicon-weight was varied between50–400.

3.3. F-measure for morphological segmentation

The methods were evaluated in terms of morphological F-
measure using the BPR evaluation and gold standard segmen-
tations described in [15]. F-measure is defined as the har-
monic mean of precision (P) and recall (R) for the placement
of morph boundaries:

P = H/(H + I); R = H/(H + D), (2)



whereH is the number of correct boundary positions,I is the
number of incorrect boundary positions, andD is the num-
ber of missing boundary positions when compared to the gold
standard segmentation.

The results for vocabulary sizes of35k are shown in Ta-
ble 2. As the vocabulary size has been selected for speech
recognition task, rather than for morphological evaluation,
these are not the best possible F-measures for the methods.
While Morfessor Baseline trained without word frequencies
reached the best F-measure, also Morfessor LW andG1G
were reasonably accurate.

Table 2. Morphological F-measures for the methods.
Method Precision Recall F-Measure
Morfessor 0.73 0.52 0.61
Morfessor LW 0.69 0.47 0.56
G1G 0.70 0.48 0.57

3.4. Entropy evaluation

Language models were trained using the VariKN toolkit [16].
Models are Kneser-Ney smoothed and trained using a grow-
ing algorithm. The training data was processed to contain a
special word boundary symbol between all words and also in
the beginning and end of sentences. An example training sen-
tence would thus look like:

<s> <w> kissa <w> käve li <w> kadu lla <w> </s>

Average word entropy is a good measure of how well the
language model can predict the words and word sequences in
the evaluation set [17]. It has a direct relation to language
model perplexity. Entropy was evaluated for each n-gram
model as follows:

1. Segment the evaluation corpusC with the n-gram model
M into subwords in similar format as the training data.
This was done using a FST-based segmenter, which finds
the most likely subword segmentation for each sentence,
given the modelM.

2. Average word entropy for the evaluation corpus was then
computed with the following formula:

HM(C) =
1

|C|

∑

s∈C

−
1

Ws

∑

t∈[2,|Ts|]

log2 P (t|h(0, t−1),M),

(3)
where|C| is the total number of sentences,Ws number of
words in the sentences, Ts all text tokens in the sentence
s andh(0, t − 1) the n-gram context. Note that the cost
for the two first tokens is omitted. Word normalization is
important as token-wise entropy is not meaningful at least
when comparing different vocabularies. The result is in
bits per word.

In the first experiment, unigram entropy of the evaluation
corpus was evaluated as a function of the vocabulary size.
The results are in Figure 2. It can be seen that there are
relatively large differences between the methods. It seems
that G1G performs best and the Morfessor Baseline worst,
lexicon-weighted Morfessor reaching roughly the same level
as G1G. One conclusion is that there is a difference be-
tween optimizing morphological F-measure (being the mo-
tivation behind Baseline Morfessor) and optimizing unigram
codelength asG1G and also lexicon-weighted Morfessor in-
directly.

In the second experiment the vocabulary size was set to
roughly the same number for all methods and variable-length
high order n-gram models were trained with the VariKN
toolkit. The maximum order of n-grams was set to10 for all
models. N-gram frequency cutoff2 was used for all models
and all n-gram orders ranging from2–10. In preliminary tests
this value gave the best models. Model sizes were controlled
by varying the pruning parameters. Word entropy was mea-
sured as a function of the n-gram model sizes. The results
are in Figure 3.G1G and Morfessor LW perform better than
baseline Morfessor method except for the smallest models.
The entropy curves were found to be quite invariant to even
large changes in vocabulary size.
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Fig. 2. Word unigram entropy as a function of vocabulary
size.

3.5. Finnish LVCSR task

The language models in this task are the same as in the en-
tropy evaluation. One model was chosen for each method
with around16 million n-grams. In addition, 2-gram looka-
head models were trained for each method. Development set
was used to optimize the language model scale. Real-time
factor for decoding was evaluated on an Intel Xeon E3-1230
3.30GHz CPU using precomputed acoustic probabilities.
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Fig. 3. Word varigram (max. 10g) entropy as a function of
number of n-grams in the model.

Table 3. Results in a Finnish LVCSR dictation task
Method Vocab n-grams LER WER RTF
Morfessor 35k 16.0 M 7.40 22.32 2.41
Morfessor LW 35k 16.0 M 7.25 21.88 2.34
G1G 35k 16.0 M 7.18 22.02 2.15

The results can be found in Table 3. Prior to this work,
Morfessor Baseline has been the best performing method in
our setup. Because the Finnish words are quite long and typ-
ically contain several morphemes, the most widely used per-
formance measure is letter error rate (LER). Training Morfes-
sor with frequencies and by weighting lexicon, a decrease in
both LER and real time factor (RTF) was recorded.G1G al-
gorithm further improves both metrics. We experimented also
with model sizes of around10 and24 million n-grams and the
conclusions were similar.

4. DISCUSSION

Our purpose was to test whether a good subword vocabulary
could be constructed by minimizing the average word entropy
for a given subword vocabulary size. Because directly opti-
mizing the high order n-grams required by LVCSR is compu-
tationally hard, we approximated it by trying to minimize the
unigram word entropy of the training corpus.

Previous research has shown that a high morphological
F-measure is a good property for a subword vocabulary for
many tasks in natural language processing [15]. Unigram en-
tropy and F-measure are probably somewhat dependent, as
all the methods tried in this work performed reasonably well
in both respects. Our results suggest that unigram entropy
is more important than morphological correctness, if the end
goal is to train a high-order n-gram model as for a speech

recognition task.
The proposed approach of starting with a large pool of

candidate substrings and pruning it to a suitable size has to
our knowledge not been tried before. It provided the so far
most efficient subword vocabulary for a Finnish LVCSR task.
Our experiments also showed that training Morfessor with
word frequency information by weighting the lexicon cost
improved over the baseline Morfessor. A possible future
work is to try system combination withG1G and Morfes-
sor based subword models, because both methods give good
speech recognition results, but with different subwords and
recognition errors.

As the proposedG1G algorithm is quite general, it should
be easy to extend in various ways:

Scalability to longer strings. As the number of allowed
substrings is limited, it is possible to scale the algorithmfor
longer strings. This is more difficult with approaches such
as Morfessor, that introduce new strings during training. In
the context of language modeling, a possible generalization
would be segmenting sentences into more general chunks of
text, allowing cross-word segments and multiwords (cf. [10,
18]). In many languages, through declension, the suffix of
previous word is connected to the adjacent word. These cases
might be better modelled by allowing the units to cross word
boundaries. At least in conversational LVCSR, it is a rela-
tively common practice to use multiword units [19].G1G
algorithm could be used to learn the most important multi-
words on text-level. With suitable modifications, the algo-
rithm could be used in segmenting continuous strings, not
limited to natural language.

Pronunciation variants. By removing subwords instead
of introducing new ones, it should be easy to control the qual-
ity of pronunciation lexicon for languages with more com-
plex letter-to-phoneme mapping. The vocabulary could be
initialized by selecting only strings with a well defined or es-
timable pronunciation variant and record the possible changes
on word-level while pruning the vocabulary.

Higher-order statistics. If the goal is to optimize the en-
tropy of a high-order n-gram model, utilizing higher-order
statistics already in the vocabulary training phase could im-
prove results. Bigram statistics have been tried for instance in
Chinese word segmentation [20]. In our initial experiments
for subword segmentation, starting with a large vocabulary
seemed to avoid local maxima rather well.

5. CONCLUSIONS

Our results suggest that unigram entropy is a good indicator
for the quality of high order n-gram models for that vocabu-
lary. A novel algorithm,G1G, which learns a subword vocab-
ulary based on unigram likelihood, was presented. It provided
the best performing subword vocabulary for a Finnish LVCSR
task. The algorithm is quite general by nature and could prove
useful for other string segmentation and compression tasks.
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