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Abstract

We have extended Morfessor Baseline,
which is a well-known method for unsu-
pervised morphological segmentation, to
semi-supervised learning. As submission
to Morpho Challenge 2010, we provide re-
sults from three methods: The first one is
based on the unsupervised algorithm, but
includes a weight parameter that can be
used to control the amount of segmenta-
tion. The second one applies the semi-
supervised extension, where the labeled
training data is used also during the learn-
ing. The third one is based on the sec-
ond, but as an additional step we label the
segments using a Hidden Markov Model
trained on the labeled data.

1 Introduction

This work is based on Kohonen et al. (2010),
where the Morfessor Baseline method (Creutz and
Lagus, 2002; Creutz and Lagus, 2005; Creutz and
Lagus, 2007) was extended to the semi-supervised
case. Morfessor is a family of generative prob-
abilistic models designed for modeling highly-
inflecting and compounding languages (Creutz
and Lagus, 2007). It induces a lexicon of word
segments, called morphs, from the data. In the
semi-supervised version, the training data contains
labeled words with known gold standard segmen-
tations. The lexicons that include those segments
are favored if the words are added to the data like-
lihood function. In addition, a small set of word
forms with gold standard analyzes can be used for
tuning the respective weights of the annotated and
unannotated data.

Kohonen et al. (2010) made also a simple ex-
periment on labeling the segmentations provided
by the Morfessor to the morpheme labels given
in the training data. The results were encourag-
ing considering the trivial labeling method. Here,

we extend this line of research by training Hid-
den Markov Models (HMM) suitable for the task.
This results not only in segmentation, but a full
morphological analysis of the words.

2 Semi-supervised Morfessor Baseline

Let θ be the parameters of the model,DW be the
set of word forms used for training the model and
DW→A be a subset of words for which we know
the correct morphs. Each wordwj in DW has
a corresponding variableZj that denotes how it
is segmented. That is, its value is a sequence of
morphs,zj = (mj1, . . . , mj|zj |). The set ofZj :s,
Z = (Z1, . . . , Z|DW |) is a hidden variable that we
want to estimate.

A generative model gives the joint distribution
P (W = w, Z = z |θ) of words and their segmen-
tations. Assuming that the sequence of morphs
in z can produce only one word type, the proba-
bility is simply P (Z = z |θ) for that word, and
zero otherwise. Instead of determining aposte-
riori probability distributionP (θ|DW , DW→A)
over model parametersθ as in Bayesian model-
ing, we try to find a point estimate ofθ given a
cost function to minimize. The three main aspects
in this framework are:

• What is the family of the model, i.e., how
probabilitiesP (Z = z |θ) andP (θ) are de-
fined?

• What is the cost function to minimize for se-
lectingθ?

• How to minimize the cost function, i.e., what
is the training algorithm?

Next, we shortly describe the applied solution for
each of them. Only the cost function differs from
the unsupervised Morfessor Baseline.



2.1 Model family

The model family in Morfessor Baseline is rela-
tively simple: The model parametersθ encode a
morph lexicon, which includes the properties of
the morphs. Each morphm in the lexicon has
a probability of occurring in a word,P (M =
m |θ), and these probabilities are assumed to be
independent.

During training, each wordwj is assumed to
have only one possible analysis. Thus, instead
of using the joint distributionP (DW , Z |θ), we
need to use the likelihood function only condi-
tioned on the analyses of the observed words,
P (DW |Z, θ). The conditional likelihood is

P (DW |Z = z, θ)

=

|DW |
∏

j=1

P (W = wj |Z = z, θ)

=

|DW |
∏

j=1

|zj |
∏

i=1

P (M = mji |θ), (1)

wheremij is thei:th morph in wordwj .
The problem of using Equation 1 for the known

segmentations inDW→A is that there can be alter-
native segmentations for each word. As a solution,
we select only the segmentation that has the high-
est probability according to the model, and discard
the others from the likelihood function. Due to
practical reasons, the selection is done only after
each training epoch (see Sec. 2.3).

The parametersθ of the model are:

• Morph type count, or the size of the morph
lexicon,µ ∈ Z+

• Morph token count, or the number of morphs
tokens in the observed data,ν ∈ Z+

• Morph strings(σ1, . . . , σµ), σi ∈ Σ∗

• Morph counts(τ1, . . . , τµ), τi ∈ {1, . . . , ν},
∑

i τi = ν. Normalized withν, these give
the probabilities of the morphs.

In principle, each parameter has a prior proba-
bility. However, with MDL-inspired and non-
informative priors, morph type count and morph
token counts can be neglected as insignificant. The
morph string prior is based on length distribution
P (L) and distributionP (C) of characters over the

character setΣ, both assumed to be known:

P (σi) = P (L = |σi|)

|σi|
∏

j=1

P (C = σij) (2)

We applied the implicit length prior (Creutz and
Lagus, 2005), where instead of determiningP (L),
an end-of-word symbol is used as an additional
character inP (C). For morph counts, we used
the non-informative prior

P (τ1, . . . , τµ) = 1/

(

ν − 1

µ − 1

)

(3)

that gives equal probability to each possible com-
bination of the counts whenµ andν are known.

2.2 Cost function

The unsupervised Morfessor algorithms try to find
the maximum a posteriori estimate of the parame-
ters. The equivalent cost function to minimize is

L(θ, z, DW ) = − lnP (θ) − lnP (DW | z, θ).
(4)

In the semi-supervised version, we add the nega-
tive log-likelihood of the known segmentations in
DW→A. Furthermore, we weight the data likeli-
hoods with parametersα > 0 andβ > 0:

L(θ, z, DW , DW 7→A) =

− lnP (θ)

− α × lnP (DW | z, θ)

− β × lnP (DW 7→A | z, θ) (5)

The data likelihood weights control both the level
of segmentation, as increasing the weight has to
be compensated by a larger morph lexicon, and
how large an effect the known segmentations have
compared to the unsupervised segmentations.

2.3 Training algorithm

The training algorithm of Morfessor Baseline
(Creutz and Lagus, 2005) tries to minimize the
cost function by testing local changes toz, mod-
ifying the parameters according to each change,
and selecting the best one. The training algorithm
is directly applicable to the semi-supervised case.

The initial parameters are obtained by adding
all the words into the morph lexicon. Then, one
word is processed at a time, and the segmentation
that minimizes the cost function with the optimal



model parameters is selected and the parameters
are updated respectively:

z
(t+1)
j = arg min

zj

{

min
θ

L(θ, z(t), DW )
}

(6)

θ
(t+1) = arg min

θ

{

L(θ, z(t+1), DW )
}

(7)

Because a probability of a morph does not depend
on its context, the segmentations inz can be en-
coded as a tree-like graph, where the words are
the top nodes and morphs the leaf nodes. In one
training epoch, each top node is processed once.
A node can either be left as it is or split into two
parts. If the case of a split, the same test is applied
recursively to its parts. As the changes cannot in-
crease the cost function, the parameters will con-
verge to a local optimum. In practice, the training
is stopped when the average change in cost func-
tion per word in an epoch is smaller than 0.005.

3 Morpheme labeling

We use a first-order Hidden Markov Model
(HMM) to label the induced morphs (segments of
words) to morphemes. The unobserved states are
the morpheme labels, and the observations are the
segments. We construct the emission alphabetΣ
by picking out all the morphs from both the train-
ing set and the segmented data that is to be labeled.
The set of possible labels (states) is collected from
the training data. When the training set does not
provide labels for some morphs—as is the case
for a large part of the morphs found in the Turk-
ish training set—we group these morphs together
under a separate label.

Labels of non-observable morphs, such as the
plural morph in the word “men”, are combined
with the label of the preceding morph to create a
compound label. In the case of the word “men”
the compound label would be N+PL. Such com-
pound labels are separated as post-processing. The
resulting labeling would thus be “menN +PL”.
Non-observable morphs that start a word are ig-
nored altogether, since they are usually peculiar-
ities in the gold standard labeling. For example,
the English gold standard segmentation for the
word “propjet” includes a non-observable prefix
“turbo”, which is clearly unnecessary.

Hyphens at the beginning or end of a morph
such as the one in “-inspired”, the second morph
in a segmentation of the word “abba-inspired”, are
removed. I.e. “-inspired” is treated as the same

morph as “inspired” without the hyphen. Hyphens
that are segmented as morphs of their own are
taken into account during the calculation of the
Viterbi paths but are left out of the result files.
Thus, the segmentation “educator - scientist” be-
comes “educatorN scientistN” in the results.

Finally, we handle stem allomorphy by replac-
ing morphs with their respective morphemes when
provided by the training set. This is done as post-
processing. For example, the segmentation “cari-
catur ish” becomes “caricatureN ish s”.

3.1 Transition and emission probabilities

After the sets of emissions and labels are collected,
maximum likelihood estimation is applied to cal-
culate state transition and emission probabilities
from the training data. The probability of a transi-
tion from statel1 to statel2 is

P (l2 | l1) =
C(l1, l2)

C(l1)
, (8)

whereC(l1, l2) is the number of timesl2 follows
l1 in the training set andC(l2) is the total number
of occurrences ofl2 in the training set.

Similarly, we can estimate that the probability
that statel emits morphm is C(m, l)/C(l), where
C(m, l) is the number of timesm is tagged with
l in the training set. However, to accommodate
previously unseen morpheme emissions, we apply
smoothing to emission probabilities. Smoothing is
applied only for labels that represent open classes
of morphs, that is, morph classes that can be ex-
panded with new items. For Finnish and English
these are nouns, verbs and adjectives. Because the
gold standard does not provide labeling for Turk-
ish nouns, verbs and adjectives, we have used the
class of morphs that were unlabeled in the gold
standard as the only open class when labeling the
Turkish data.

As a smoothing method, we use absolute dis-
counting. That is, we subtract a constant value
δ = 0.1 from all emission countsC(m, l) greater
than zero, and the remaining probability mass is
then divided between the previously unseen emis-
sions. Thus, ifN0(l) is the number of emissions
for labell with C(m, l) = 0, we get

P (m | l) =















C(m, l) − δ

C(l)
if C(m, l) > 0

(|Σ| − N0(l))δ

N0(l)C(l)
otherwise.

(9)



4 Experiments

We compare four different variants of the Morfes-
sor Baseline algorithm:

• Unsupervised (U): The classic, unsuper-
vised Morfessor baseline.

• Unsupervised + weighting (U+W):A devel-
opment set is used for adjusting the weight of
the likelihoodα. Whenα = 1, the method is
equivalent to the unsupervised baseline.

• Semi-supervised + weighting (S+W):The
semi-supervised method trained with both
annotated and unannotated data. The param-
etersα andβ are optimized using the devel-
opment set.

• Semi-supervised + weighting + labeling
(S+W+L): As above, but the obtained
morphs are labeled with a HMM tagger
trained on the annotated training data.

All variants were trained for English, Finnish,
and Turkish. Only the unsupervised models were
trained for German, as there was no gold stan-
dard segmentations available for it. Only the data
sets are from the Morpho Challenge 2010 web
site1 were applied. The provided development sets
were used for optimizingα andβ. The training
sets of gold standard segmentations were used in
training the semi-supervised segmentation models
and the labeling models.

Table 1 shows the values for the optimal weights
α andβ that were chosen for different languages
using the development set in both unsupervised
and semi-supervised cases, as well as the re-
spective results. The unsupervised method with
weighting (U+W) results in more balanced preci-
sion and recall values than the unsupervised base-
line method (U), thus clearly increasing the F-
measures. The amount of increase is especially
large for Finnish and Turkish languages due to the
very low recall of the baseline.

The semi-supervised method (S+W) results in
a considerable increase in recall and a somewhat
more modest increase in precision for English and
Finnish. For Turkish, however, we get the oppo-
site result: a large improvement in precision and
a small increase in recall. In both cases, the ob-
tained F-measures are clearly better than the ones
obtained with the unsupervised training.

1www.cis.hut.fi/morphochallenge2010

Model α β P % R % F %
English
U - - 84.75 44.28 58.17
U+W 0.25 - 67.32 60.73 63.86
S+W 0.5 1000 68.46 70.40 69.42
S+W+L 0.5 1000 73.05 68.12 70.50
Finnish
U - - 84.48 17.45 28.92
U+W 0.01 - 59.26 47.00 52.42
S+W 0.01 2000 63.71 60.25 61.93
S+W+L 0.01 500 65.77 67.07 66.41
German
U - - 70.85 22.32 33.95
U+W 0.05 - 56.40 48.53 52.17
Turkish
U - - 94.18 16.85 28.58
U+W 0.01 - 44.91 47.10 45.98
S+W 0.1 1000 73.07 47.95 57.90
S+W+L 0.005 2500 76.95 60.59 67.80

Table 1: The optimal values for the weightsα and
β and the respective precision (P ), recall (R) and
F-measure (F ) on the development set.

The morpheme labeling (L) should improve re-
call by solving allomorphy, i.e., finding common
labels for the different surface forms, and preci-
sion by disambiguating surface forms of differ-
ent morphemes. In our experiments, the largest
increase in F-measure—nearly 10% absolute—is
obtained for Turkish, for which the recall increases
considerably. For Finnish, the increase is about
4.5% absolute. Both the Finnish and Turkish data
sets include a large number of suffixes that have al-
lomorphy, which explains the large improvements.
English benefits less from the labeling, gaining
slightly over 1% to the F-measure. The increase
in precision is larger than for the other languages,
but recall is, in fact, decreased by the labeling.

5 Conclusions

We have presented a semi-supervised extension to
the Morfessor Baseline method, which performs
morphological segmentation using maximum a
posteriori estimation. Using gradually more of the
information provided by the annotated data sets,
we improve the F-measure results on the develop-
ment set, e.g., for Finnish, from 29% to 52% by
optimizing a weight parameter for the data likeli-
hood, to 61% by using the annotated training data
in the likelihood function, and finally to 66% by



using a Hidden Markov Model to label the seg-
mentations. The method could be improved fur-
ther by using the HMM probabilities directly when
segmenting the words. The downside of our ap-
proach is that it requires word annotations with
both the segmentations (morphs) and their labels
(morphemes).
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