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Abstract we extend this line of research by training Hid-
den Markov Models (HMM) suitable for the task.
This results not only in segmentation, but a full
morphological analysis of the words.

We have extended Morfessor Baseline,
which is a well-known method for unsu-

pervised morphological segmentation, to
semi-supervised learning. As submission _ ] _
to Morpho Challenge 2010, we provide re- 2 Semi-supervised Morfessor Baseline
sults from three methods: The first one is
based on the unsupervised algorithm, but
includes a weight parameter that can be
used to control the amount of segmenta-
tion. The second one applies the semi-
supervised extension, where the labeled
training data is used also during the learn-
ing. The third one is based on the sec-
ond, but as an additional step we label the
segments using a Hidden Markov Model

trained on the labeled data.

Let @ be the parameters of the modé&d; be the
set of word forms used for training the model and
Dy _, 4 be a subset of words for which we know
the correct morphs. Each word; in Dy, has
a corresponding variablg; that denotes how it
is segmented. That is, its value is a sequence of
morphs,z; = (mj1,...,m;.,|). The setofZ;:s,
Z = (Z1,...,Z py,) is a hidden variable that we
want to estimate.

A generative model gives the joint distribution
_ P(W =w, Z = z| ) of words and their segmen-
1 Introduction tations. Assuming that the sequence of morphs
This work is based on Kohonen et al. (2010),in # can produce only one word type, the proba-
where the Morfessor Baseline method (Creutz an8ility i simply (Z = z|8) for that word, and
Lagus, 2002; Creutz and Lagus, 2005; Creutz and€o otherwise. Instead of determiningpeste-
Lagus, 2007) was extended to the semi-supervised®ri probability distribution (6| Dy, Dy )
case. Morfessor is a family of generative prob-Over model paramete® as in Bayesian model-
abilistic models designed for modeling highly- ing, we try to find a point estimate @ given a
inflecting and compounding languages (Creut£0st function to minimize. The three main aspects
and Lagus, 2007). It induces a lexicon of wordin this framework are:
segments, called morphs, from the data. In the
semi-supervised version, the training data contains ® What is the family of the model, i.e., how
labeled words with known gold standard segmen-  ProbabilitesP(Z = 2| 8) and P(6) are de-
tations. The lexicons that include those segments ~ fined?
are favored if the words are added to the data like-
lihood function. In addition, a small set of word ® What is the cost function to minimize for se-
forms with gold standard analyzes can be used for ~ lecting6?
tuning the respective weights of the annotated and
unannotated data. e How to minimize the cost function, i.e., what

Kohonen et al. (2010) made also a simple ex- is the training algorithm?
periment on labeling the segmentations provided
by the Morfessor to the morpheme labels giverNext, we shortly describe the applied solution for
in the training data. The results were encourageach of them. Only the cost function differs from
ing considering the trivial labeling method. Here,the unsupervised Morfessor Baseline.



2.1 Model family character set, both assumed to be known:

The model family in Morfessor Baseline is rela- o]

tively simple: The model parametefisencode a P(o;) = P(L = |oy]) HP(C = 03)) )
morph lexicon, which includes the properties of iy

the morphs. Each morph in the lexicon has

a probability of occurring in a wordP(M =  We applied the implicit length prior (Creutz and
m|0), and these probabilities are assumed to b&agus, 2005), where instead of determinifgL),
independent. an end-of-word symbol is used as an additional

During training, each wordy; is assumed to character inP(C'). For morph counts, we used
have only one possible analysis. Thus, insteathe non-informative prior
of using the joint distributionP(Dyy, Z | 6), we
. . . ;- v—1
qeed to use the likelihood function only condi P(r,..., 1) = 1/< > 3)
tioned on the analyses of the observed words, p—1

P(Dw | Z,0). The conditional likelihood is ) N ]
that gives equal probability to each possible com-

P(Dw | Z = 2,0) bination of the counts whem andv are known.

|Dw |

2.2 Cost function
=[] PW=w;|Z=20)
j=1

The unsupervised Morfessor algorithms try to find
\Dw| 151 the maximum a posteriori estimate of the parame-
J . . .. . .
ters. The equivalent cost function to minimize is
= HHP(M:mji|0)v 1) g
=t L(6, 2, Dyw) = —In P(8) — In P(Dy | 2, 6).
wherem;; is thei:th morph in wordw;. _ _ _ (4)
The problem of using Equation 1 for the known !N the sémi-supervised version, we add the nega-
segmentations iy _ 4 is that there can be alter- tive log-likelihood of the knowr\ segmentatlo.ns in
native segmentations for each word. As a solutionP?w—4. Furthermore, we weight the. data likeli-
we select only the segmentation that has the highhOOdS with parameters > 0 and/3 > 0
est probability according to the model, and discard

the others from the likelihood function. Due to L(6,z, Dw, Dw—4) =

practical reasons, the selection is done only after —InP(0)
each training epoch (see Sec. 2.3). —axInP(Dy|z0)
The parameter8 of the model are: — B xInP(Dyea|z80) (5

* Morph type count, or the size of the morph e (ata likelihood weights control both the level
lexicon, pu € Z of segmentation, as increasing the weight has to
be compensated by a larger morph lexicon, and
how large an effect the known segmentations have
compared to the unsupervised segmentations.

e Morph token count, or the number of morphs
tokens in the observed datagc 7

e Morph strings(oy, ..., 0,), 0; € ¥ 2.3 Training algorithm

e Morph counts(r,...,7,), 7 € {1,...,v}, The training algorithm of Morfessor Baseline
S, 7 = v. Normalized withv, these give (Creutz and Lagus, 2005) tries to minimize the
the probabilities of the morphs. cost function by testing local changes4pmod-

ifying the parameters according to each change,
In principle, each parameter has a prior probaand selecting the best one. The training algorithm
bility. However, with MDL-inspired and non- is directly applicable to the semi-supervised case.
informative priors, morph type count and morph The initial parameters are obtained by adding
token counts can be neglected as insignificant. Thall the words into the morph lexicon. Then, one
morph string prior is based on length distributionword is processed at a time, and the segmentation
P(L) and distributionP(C') of characters over the that minimizes the cost function with the optimal



model parameters is selected and the parametensorph as “inspired” without the hyphen. Hyphens
are updated respectively: that are segmented as morphs of their own are
taken into account during the calculation of the
zj(.t“) = argmin { min L(H,z(t),DW)} (6) Viterbi paths but are left out of the result files.
% Thus, the segmentation “educator - scientist” be-
01 = arg min {L(97 2D, Dw)} (7) comes “educatoN scientistN” in the results.
0 Finally, we handle stem allomorphy by replac-

Because a probability of a morph does not depenH19 ”,“’rphs with th§|r-respectlve.m.orphemes when
on its context, the segmentationsarcan be en- provided by the training set. This is done as post-

coded as a tree-like graph, where the words argroce_ssing. For examp!e, the gegmentation carl-
the top nodes and morphs the leaf nodes. In Once‘atur ish” becomes “caricatud ish.s".

training epoch, each top node is processed oncg.1  Transition and emission probabilities

A node can either be left as it is or split into two .
. . ._After the sets of emissions and labels are collected,
parts. If the case of a split, the same test is applied . o L .
. ) ._maximum likelihood estimation is applied to cal-
recursively to its parts. As the changes cannot in- " e .-
: ) culate state transition and emission probabilities
crease the cost function, the parameters will con;

. . . . from the training data. The probability of a transi-
verge to a local optimum. In practice, the training

is stopped when the average change in cost fun(:y-On from state, to statel; is
C(ly,1y)

tion per word in an epoch is smaller than 0.005.
Pl |h) = Cly) ’

(8)
3 Morpheme labeling
whereC'(l1, 1) is the number of times, follows

We use a first-order Hidden Markov Model , i the training set and’(,) is the total number
(HMM) to label the induced morphs (segments off gccurrences ok in the training set.
words) to morphemes. The unobserved states are gjmjlarly, we can estimate that the probability
the morpheme labels, and the observations are thgat statd emits morphm is C(m, 1) /C(1), where
segments. We construct the emission alphabet C(m, 1) is the number of times is tagged with
by picking out all the morphs from both the train- ; i the training set. However, to accommodate
ing set and the segmented data that is to be |abe|e€reviously unseen morpheme emissions, we apply
The set of possible labels (states) is collected frongmoothing to emission probabilities. Smoothing is
the training data. When the training set does nofppjied only for labels that represent open classes
provide labels for some morphs—as is the cas@f morphs, that is, morph classes that can be ex-
for a large part of the morphs found in the Turk- panded with new items. For Finnish and English
ish training set—we group these morphs togethefhese are nouns, verbs and adjectives. Because the
under a separate label. gold standard does not provide labeling for Turk-

Labels of non-observable morphs, such as thgsh nouns, verbs and adjectives, we have used the
plural morph in the word “men”, are combined ¢|ass of morphs that were unlabeled in the gold
with the label of the preceding morph to create astandard as the only open class when labeling the
compound label. In the case of the word “men”Tyrkish data.
the compound label would be N+PL. Such com- ag g smoothing method, we use absolute dis-
pound labels are separated as post-processing. TBgunting. That is, we subtract a constant value
resulting labeling would thus be “meM +PL". 5 — 0.1 from all emission count&’(m, 1) greater
Non-observable morphs that start a word are igthan zero, and the remaining probability mass is
nored altogether, since they are usually peculiarthen divided between the previously unseen emis-

ities in the gold standard labeling. For examplesions, Thus, ifN(1) is the number of emissions
the English gold standard segmentation for thegr |abell with C(m,1) = 0, we get

word “propjet” includes a non-observable prefix

“turbo”, which is clearly unnecessary. C(m,l) =6 it Clm. 1) > 0
Hyphens at the beginning or end of a morph Plm|1) = ) ’

such as the one in “-inspired”, the second morph (%] = No(1))d

in a segmentation of the word “abba-inspired”, are W

removed. l.e. “-inspired” is treated as the same (9

otherwise.



4 Experiments Modd | o | B3 |P% | R% | F%

. . English
We;ompl_aref(I)ur(_:h:]fer.entvarlantsofthe Morfes- U - - 84751 4428 58.17
sor Baseline algorithm: UtW | 025| - |67.32|60.73| 63.86

e Unsupervised (U): The classic, unsuper- S+W 0.5 | 1000 | 68.46| 70.40| 69.42
vised Morfessor baseline. S+W+L | 0.5 | 1000| 73.05| 68.12| 70.50
Finnish

e Unsupervised + weighting (U+W):A devel- N N 84.48] 17.45] 28.92
opment set is used for adjusting the weight of |,y 001 ) 5026 | 47.00| 52.42
the likelihooda. Whena = 1, the method is g4y 001 | 2000| 63.71| 60.25| 61.93

equivalent to the unsupervised baseline. s+W+L | 001 | 500 | 65.77| 67.07| 66.41

e Semi-supervised + weighting (S+W)The _German

semi-supervised method trained with both U - - | 70.85| 22.32| 33.95

annotated and unannotated data. The paramMY*W | 0.05] - ]56.40| 48.53| 52.17

etersa and 3 are optimized using the devel- _Turkish

opment set. U - - 94.18| 16.85| 28.58
U+w 0.01 4491 | 47.10| 45.98

e Semi-supervised + weighting + labeling  g+w 0.1 | 1000 | 73.07| 47.95| 57.90

(S+W+L): As above, but the obtained s+w+L | 0.005| 2500| 76.95| 60.59 | 67.80
morphs are labeled with a HMM tagger
trained on the annotated training data. Table 1: The optimal values for the weightsand
_ _ _ B and the respective precisio®), recall (R) and
All variants were trained for English, Finnish, F-measure) on the development set.
and Turkish. Only the unsupervised models were

trained for German, as there was no gold stan-
dard segmentations available for it. Only the data The morpheme labeling (L) should improve re-
sets are from the Morpho Challenge 2010 welsall by solving allomorphy, i.e., finding common
site! were applied. The provided development setdabels for the different surface forms, and preci-
were used for optimizinge and 3. The training sion by disambiguating surface forms of differ-
sets of gold standard segmentations were used BNt morphemes. In our experiments, the largest
training the semi-supervised segmentation model§icrease in F-measure—nearly 10% absolute—is
and the labeling models. obtained for Turkish, for which the recall increases
Table 1 shows the values for the optimal weightsconsiderably. For Finnish, the increase is about
o andﬁ that were chosen for different |anguages4.5% absolute. Both the Finnish and Turkish data
using the development set in both unsuperviseéets include a large number of suffixes that have al-
and semi-supervised cases, as well as the réomorphy, which explains the large improvements.
spective results. The unsupervised method witfEnglish benefits less from the labeling, gaining
weighting (U+W) results in more balanced preci_Slighﬂy over 1% to the F-measure. The increase
sion and recall values than the unsupervised basé precision is larger than for the other languages,
line method (U), thus clearly increasing the F-butrecallis, in fact, decreased by the labeling.
measures. The amount of increase is especiall )
large for Finnish and Turkish languages due to theg Conclusions

very low regall of thg baseline. _ We have presented a semi-supervised extension to
The semi-supervised method (S+W) results iy,e \orfessor Baseline method, which performs

a considerable increase in recall and a SomeWh?ﬁorphological segmentation using maximum a
more modest increase in precision for English an?)osteriori estimation. Using gradually more of the

Finnish. For Turkish, however, we get the OPPO%information provided by the annotated data sets,

site result: a large improvement in precision and, . improve the F-measure results on the develop-

a small increase in recall. In both cases, the Obp,ont et e.g., for Finnish, from 29% to 52% by

talngd F-mgasures are clee}rly bettgr than the On%?)timizing a weight parameter for the data likeli-
obtained with the unsupervised training. hood, to 61% by using the annotated training data
www. ci s. hut . i/ nor phochal | enge2010 in the likelihood function, and finally to 66% by




using a Hidden Markov Model to label the seg-
mentations. The method could be improved fur-
ther by using the HMM probabilities directly when
segmenting the words. The downside of our ap-
proach is that it requires word annotations with
both the segmentations (morphs) and their labels
(morphemes).
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