Diagram showing a processing core with multiple MUL (multiply) units. The core is connected to various levels of cache memory (L1, L2, L3) and RAM. Arrows indicate data flow between the components.
Today performance comes from parallelism

- **Old kind of progress:**
 - new computers can perform individual operations *faster* than old computers

- **New kind of progress:**
 - new computers have *more parallel units* than old computers
Exploiting parallelism requires independence

- You can exploit parallelism only if your algorithm has independent operations
 - \(a_0 \times= b_0; \ a_1 \times= b_1; \ a_2 \times= b_2; \ldots\)

- Long chain of dependencies: no opportunities for parallelism
 - \(a \times= b_0; \ a \times= b_1; \ a \times= b_2; \ldots\)
Key concepts

Dependency graph, independence, depth

d = op1(a)
e = op2(a, b)
f = op3(c, e)
g = op4(d, f)
x = op5(g)
Key concepts

Dependency graph, *independence*, depth

\[
d = \text{op1}(a) \\
e = \text{op2}(a, b) \\
f = \text{op3}(c, e) \\
g = \text{op4}(d, f) \\
x = \text{op5}(g)
\]
Key concepts

Dependency graph, independence, \textit{depth}

d = \text{op1}(a)
e = \text{op2}(a, b)
f = \text{op3}(c, e)
g = \text{op4}(d, f)
x = \text{op5}(g)
Two main kinds of parallel hardware

- Pipelining
 - operation A starts at time 0, ready at time 5
 - operation B starts at time 1, ready at time 6...

- Multiple parallel units
 - can perform operation A and operation B at the same time
Pipelining in hardware

- Arithmetic units in CPU and cores in GPU
- Memory accesses, disk accesses
- Data transfer CPU–GPU
- Data transfer over network...
Multiple parallel units in hardware

- Multiple cores, multiple processors, multiple GPUs, multiple arithmetic units …
- Wide registers, vector operations
- Wide memory bus, cache lines
- Computer clusters
Exploiting pipelining in software

- CPU arithmetic, memory accesses: automatic for *independent operations*
- GPU arithmetic, memory accesses: have *lots of threads* ready for execution
- Data transfers, disk access, networking…: *large data blocks, asynchrony, threading*
Exploiting parallel units in software

- CPU multiprocessor, multicore: use *threads* (e.g. OpenMP)

- CPU arithmetic units: automatic for *independent operations*

- CPU vector operations: use explicitly *vector types*
Exploiting parallel units in software

- GPU multiprocessor, multicore: use *lots of threads*

- Multi-GPU: switch GPUs in your code

- GPU + CPU: asynchronous GPU operations
Exploiting parallel units in software

- Wide memory bus: organise data so that memory references are *localised*
- Clusters: use e.g. MPI to *exchange messages* between computers
It is not just multithreading!

- E.g. on my laptop:
 - independent operations: ≈ 10 times faster
 - vector operations: ≈ 4–8 times faster
 - multiple threads: ≈ 2 times faster
Avoiding memory bottleneck

- *Arithmetic intensity*
 - how much useful work do we do per one read from main memory to caches?
 - how much useful work do we do per one read from caches to registers?
Avoiding memory bottleneck

• Arithmetic intensity

• Cache blocking may help here
 • plan what to keep in caches
 • use registers explicitly as a cache
 • GPU: use shared memory explicitly as a cache
Demystifying hardware

- Hardware does many things automatically
 - caches, out-of-order execution, pipelining...

- Do not just blindly assume that all this helps with your code

- Design your code so that all this helps!
Demystifying hardware

• Measure the performance

• Check the specifications of the hardware

• Do the math — is your code efficient?

• Understand why this happens!
Demystifying hardware

- Ballpark figures and back-of-the-envelope calculations are often sufficient

- Understand *orders of magnitude*
 - 10^{12} units of data $>>$ your RAM
 - 10^{12} operations $<<$ one minute
10 TB: network storage
1 TB: desktop SSD
100 GB: laptop SSD
10 GB: main memory
1 GB: GPU memory
...
1 MB: L3 cache
100 KB: L2 cache
10 KB: L1 cache, shared memory
1 KB: all registers together
100 B: one vector register, cache line
10 B: one scalar register

(very roughly)
Basic primitive: parallel for loop

```plaintext
defined
```

```c
for (i = 0; i < n; ++i) {
    x[i] = y[i] * z[i];
}
```
Basic primitive: parallel for loop

// Pipelining: automatic!

for (i = 0; i < n; ++i) {
 x[i] = y[i] * z[i];
}
Basic primitive: parallel for loop

// OpenMP: explicit pragma

#pragma omp parallel for
for (i = 0; i < n; ++i) {
 x[i] = y[i] * z[i];
}
Basic primitive: parallel for loop

// SIMD: pack data in vectors, use vector types
// (assuming here that n is a multiple of 8)

for (i = 0; i < n / 8; ++i) {
 vecx[i] = vecy[i] * vecz[i];
}
Basic primitive: parallel for loop

// **CUDA**: multiple blocks

```c
i = blockIdx.x;
x[i] = y[i] * z[i];
...
kernels<<<n, 1>>>();
```
Basic primitive: parallel for loop

// CUDA: multiple threads
// (assuming here that n is small)

\[i = \text{threadIdx.x}; \]
\[x[i] = y[i] \times z[i]; \]
...

\[\text{kernel}<<<1, n>>>(); \]
Basic primitive: parallel for loop

// CUDA: multiple blocks and multiple threads
// (assuming here that n is a multiple of 32)

i = threadIdx.x + blockIdx.x * 32;
\[x[i] = y[i] \times z[i];\]
\[\ldots\]
kernel<<<n/32, 32>>>();
Basic primitive: parallel for loop

- A vector operation is just a parallel for loop
- CUDA kernel launch is just a parallel for loop
- Universal: virtually any tool for any kind of parallel programming supports at least parallel for loops (in some form)
More details that might matter...

• False sharing:
 • thread A reading and writing x[0], x[2], x[4] …
 • thread B reading and writing x[1], x[3], x[5] …
 • everything in the cache happens in full cache lines (64 bytes)
 • x[2k] and x[2k+1] in the same cache line
More details that might matter...

• **False sharing**: avoid

• **Register renaming**:

  ```
  \textcolor{red}{a} = x[0]; \textcolor{red}{++a}; \ y[0] = \textcolor{red}{a};
  a = x[1]; \textcolor{red}{++a}; \ y[1] = \textcolor{red}{a};
  \textcolor{red}{a} = x[0]; \textcolor{red}{++a}; \ y[0] = \textcolor{red}{a};
  b = x[1]; \textcolor{red}{++b}; \ y[1] = \textcolor{red}{b};
  ```
More details that might matter...

- **False sharing:** avoid

- **Register renaming:** helps you

- **Branch prediction:**
 - CPU makes a guess for each *conditional jump*
 - misprediction: penalty \approx length of pipeline
More details that might matter...

- **False sharing**: avoid
- **Register renaming**: helps you
- **Branch prediction**: avoid hard-to-predict jumps
- **Virtual memory**: extra indirection
More details that might matter...

• Typically, such details are important only when trying to use more than 50% of available CPU power

• Seemingly efficient C++ code may use less than 1% of available CPU power!
 • e.g. CP1 vs. CP4 vs. theoretical limits
Always matters a lot: independence

- Compilers and hardware take care of lots of tiny low-level details pretty well

- Just make sure you have independent operations in your code so that there are opportunities for efficient parallel execution
Take-home message

• With some attention to parallelism, you can often *easily* speed up computation by a factor of 10 or more

• It can be as easy as:
 • avoiding some unnecessary dependencies
 • throwing in e.g. `#pragma omp parallel for`
Reminder: careful with data races!

• These are always fine:
 • multiple threads reading, no thread writing
 • only one thread writing and reading

• These *always* require some extra care:
 • one thread writes, another thread reads
 • many threads write
What else is there

- Concurrency:
 - what happens under the hood?
 - how can one efficiently implement e.g. OpenMP critical sections?
What else is there

• Concurrency

• Distributed computing:
 • multiple computers
 • clouds, clusters …
 • MapReduce, MPI …
What else is there

• Concurrency

• Distributed computing

• External memory:
 • processing data sets much larger than RAM
 • cf. cache blocking
What else is there

• Concurrency
• Distributed computing
• External memory
• Design and analysis of parallel algorithms
What else is there

CSE-E5430 Scalable Cloud Computing
This week

Challenge!

Course feedback!