Juho Hirvonen · Joel Rybicki · Stefan Schmid · Jukka Suomela

Large cuts with local algorithms on triangle-free graphs

Manuscript · February 2014

authors’ version arXiv.org


We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/\sqrt{d})m$, where $m$ is the number of edges. We give a simpler algorithm that does much better: it finds a cut of expected size $(1/2 + 0.28125/\sqrt{d})m$. As a corollary, this shows that in any $d$-regular triangle-free graph there exists a cut of at least this size.

Our algorithm can be interpreted as a very efficient randomised distributed algorithm: each node needs to produce only one random bit, and the algorithm runs in one synchronous communication round. This work is also a case study of applying computational techniques in the design of distributed algorithms: our algorithm was designed by a computer program that searched for optimal algorithms for small values of $d$.


This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.