Stable matchings from the perspective of distributed algorithms

Jukka Suomela — HIIT, University of Helsinki, Finland

Joint work with Patrik Floréen, Petteri Kaski, and Valentin Polishchuk

Zurich, 8 March 2010
Part I: Introduction

Stable matchings
Stable marriage problem

Input: bipartite graph $\mathcal{G} = (R \cup B, E)$...

- $R =$ red nodes
- $B =$ blue nodes
Stable marriage problem

Input: bipartite graph $\mathcal{G} = (R \cup B, E)$ and preferences

- $1 =$ most preferred partner
- but anyone is better than no-one
Output: a stable matching, i.e., a matching without unstable edges
Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M
Stable marriage problem

Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M.
Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M
Unstable edge: edge \(\{r, b\} \notin M \) such that

- \(r \) prefers \(b \) to \(r \)'s current partner (if any)
- \(b \) prefers \(r \) to \(b \)'s current partner (if any)
Unstable edge: edge \(\{r, b\} \notin M \) such that

- \(r \) prefers \(b \) to \(r \)'s current partner (if any)
- \(b \) prefers \(r \) to \(b \)'s current partner (if any)
Unstable edge: edge \(\{r, b\} \not\in M \) such that

- \(r \) prefers \(b \) to \(r \)'s current partner (if any)
- \(b \) prefers \(r \) to \(b \)'s current partner (if any)
No unstable edges \implies stable matching

- Does it always exist?
- How to find one?
Part II:
Finding a stable matching

Gale–Shapley
Stable marriage problem

An adaptation of the Gale–Shapley algorithm (1962)

Begin with an empty matching
Stable marriage problem

Unmatched red nodes send *proposals* to their most-preferred neighbours.
Blue nodes accept the best proposal
Stable marriage problem

Blue nodes *accept* the best proposal

Remove rejected edges and repeat...
Unmatched red nodes send *proposals* to their most-preferred neighbours.
Stable marriage problem

Blue nodes *accept* the best proposal

It is ok to change mind if a better proposal is received!
Stable marriage problem

Blue nodes *accept* the best proposal

Remove rejected edges and repeat…
Eventually each red node

- is matched, or
- has been rejected by all neighbours
Let \(\{r, b\} \notin M \): (i) \(b \in B \) rejected \(r \in R \)

\(\implies \) \(b \) was matched to a more preferred neighbour

\(\implies \) \(\{r, b\} \) is not unstable
Stable marriage problem

Let \(\{ r, b \} \notin M \): (ii) \(r \in R \) did not ask \(b \in B \)

\(\implies r \) is matched to a more preferred neighbour

\(\implies \) \(\{ r, b \} \) is not unstable
The Gale–Shapley algorithm finds a stable matching

Ok, that was published 48 years ago, more recent news?
Stable matchings are unstable
Stable matchings in a distributed setting

Node = computer, edge = communication link

Efficient distributed algorithms for stable matchings?
The Gale–Shapley algorithm can be interpreted as a distributed algorithm

- proposal, acceptance, rejection: messages
Many nice properties:

- small messages, deterministic
- unique identifiers not needed
Stable matchings in a distributed setting

But Gale–Shapley isn’t fast – it cannot be fast!
Stable matchings in a distributed setting

Solution depends on the input in distant parts of network
⇒ worst-case running time $\Omega(diameter)$
Stable matchings are unstable! Minor changes in input may require major changes in output
Stable matchings in a distributed setting

Stable matchings are unstable! Minor changes in input may require major changes in output

- This isn’t really what we would expect to happen, e.g., in real-world large scale social networks
- Very distant parts of the network should not affect my choices
- Are stable matchings the right problem to study? Matchings that are more robust and more local?
Part IV: Almost stable matchings

Truncating Gale–Shapley
Almost stable matchings

Our contribution: *asking the right questions*

- What if we allow a small fraction of unstable edges?
- What happens if we run Gale–Shapley for a small number of rounds?

Others have asked similar questions, too…
Almost stable matchings

What if we allow a small fraction of unstable edges?

- Biró et al. (2008): finding a \textit{maximum} matching with few unstable edges is hard
- Finding \textit{any} matching with few unstable edges?

Running Gale–Shapley for a small number of rounds?

- Quinn (1985): experimental work suggests that we get few unstable edges
- Any theoretical guarantees?
Definition: A matching M is ϵ-stable if there are at most $\epsilon|M|$ unstable edges.

Main result: There is a distributed algorithm that finds an ϵ-stable matching in $O(\Delta^2/\epsilon)$ rounds.

Algorithm: Just run the distributed version of Gale–Shapley for that many steps!

$\Delta = \text{maximum degree of } G$
During the Gale–Shapley algorithm:

\[
\{r, b\} \in E \text{ is an unstable edge} \Rightarrow r \text{ unmatched and } r \text{ has not yet proposed } b
\]
Almost stable matchings

Key idea: define **total potential**

\[\text{total potential} = \text{number of unmatched red nodes with proposals left} = \text{how much red nodes could “gain” if we did not truncate Gale–Shapley} \]
Almost stable matchings

Key idea: define total potential
= number of unmatched red nodes with proposals left

Initially high
Almost stable matchings

Key idea: define total potential
\[= \text{number of unmatched red nodes with proposals left} \]

Zero if we run the full Gale–Shapley
Almost stable matchings

- Potential is non-increasing: if a red node loses its partner, another red node gains a partner.

- Assume that potential is α after round $k > 1$
 \implies α nodes received 'no' or 'break' in round k
 \implies at least α edges removed in round k
 \implies at least $(k - 1)\alpha$ edges removed in rounds $2, 3, \ldots, k$

- At most $O(\Delta|M|)$ edges removed in total
 \implies potential $O(\Delta|M|/k)$ after round k
 \implies $O(\Delta^2|M|/k)$ unstable edges
Almost stable matchings

Generalises to weighted matchings

Applications (in bipartite, bounded-degree graphs):

- Local \((2 + \epsilon)\)-approximation algorithm for maximum-weight matching
- Centralised randomised algorithm for estimating the size of a stable matching

(All stable matchings have the same size!)
Almost stable matchings

But I think the most interesting observation is this:

- Almost stable matchings are a *local* problem (at least in bounded-degree graphs)

- There is a simple local algorithm that finds a *robust*, almost stable matching M

- The matching M can be easily maintained in a dynamic network, constructed by using an efficient self-stabilising algorithm, etc.
Almost stable matchings

Research question: are *almost stable matchings* the right concept when we try to understand and analyse real-world social networks, matching markets, etc.?
Stable matching:
 • global problem, any solution is unrobust

Almost stable matching:
 • local problem, robust solutions exist

No new algorithms needed, just a new analysis of the Gale–Shapley algorithm from 1962

http://www.cs.helsinki.fi/jukka.suomela/