Designing Local Algorithms with Algorithms

Jukka Suomela · Aalto University
Joint work with...

Juho Hirvonen · Janne H. Korhonen
Tuomo Lempiäinen · Christopher Purcell
Joel Rybicki · Patric Östergård (Aalto)

Sebastian Brandt · Przemysław Uznański
(ETH Zurich)

Orr Fischer (Tel Aviv)
Algorithm synthesis

• Computer science: what can be automated?
• Can we *automate our own work*?

• Can we outsource algorithm design to computers?
 • input: problem specification
 • output: asymptotically optimal algorithm
Today: a success story

• Case study:
 • computational design of local distributed algorithms for LCL problems on grid graphs

• Spoiler:
 • undecidable – but with one bit of advice we can do it!
 • *not just in theory but also in practice*
Setting

• Distributed graph algorithms

• **Input graph = computer network**
 • node = computer, edge = communication link
 • unknown topology

• Each node outputs its own part of solution
 • e.g. graph colouring: node outputs its own colour
Setting

- Deterministic distributed algorithms, **LOCAL** model of computing
 - unique identifiers
 - synchronous communication rounds
 - $\text{time} = \text{number of rounds}$ until all nodes stop
 - unlimited message size, unlimited local computation
Setting

- Deterministic distributed algorithms, **LOCAL** model of computing
- Time = distance
- Algorithm with running time T: *mapping from radius-T neighbourhoods to local outputs*
LCL problems

• LCL = locally checkable labelling
 • Naor–Stockmeyer (1995)

• Valid solution can be detected by checking $O(1)$-radius neighbourhood of each node
 • maximal independent set, maximal matching, vertex colouring, edge colouring …
LCL problems

• All LCL problems can be solved with $O(1)$-round nondeterministic algorithms
 • guess a solution, verify it in $O(1)$ rounds

• Key question: how fast can we solve them with deterministic algorithms?
 • cf. P vs. NP
Traditional settings

• Directed cycles
 • Cole–Vishkin (1986), Linial (1992)…
 • well understood

• General (bounded-degree) graphs
 • lots of ongoing work…
 • typical challenge: expander-like constructions
Our setting today

- **Oriented grids** (2D)
 - toroidal grid, \(n \times n \) nodes, unique identifiers
 - consistent orientations north/east/south/west

- **Generalisation of directed cycles** (1D)

- Closer to real-world systems than expander-like worst-case constructions?
Warm-up examples

• Vertex colouring in 1D grids

• 2-colouring: global, $\Theta(n)$ rounds

• 3-colouring: local, $\Theta(\log^* n)$ rounds
 • Cole–Vishkin (1986), Linial (1992)
Warm-up examples

• Vertex colouring in 2D grids

• 2-colouring: global, $\Theta(n)$ rounds

• 3-colouring: ???

• 4-colouring: ???

• 5-colouring: local, $\Theta(\log^* n)$ rounds
Warm-up examples

- Vertex colouring in 2D grids
- 2-colouring: global, $\Theta(n)$ rounds
- 3-colouring: global, $\Theta(n)$ rounds
- 4-colouring: local, $\Theta(\log^* n)$ rounds
- 5-colouring: local, $\Theta(\log^* n)$ rounds
Warm-up examples

• Vertex colouring in 4-regular graphs
• 2-colouring: global, $\Theta(n)$ rounds
• 3-colouring: global, $\Theta(n)$ rounds
• 4-colouring: intermediate, polylog rounds
• 5-colouring: local, $\Theta(\log^* n)$ rounds
Complexity of LCL problems

• 1D grids:
 • everything is $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$
 • decidable

• Bounded-degree graphs:
 • intermediate complexities, $\text{polylog}(n)$ …
 (Brand et al. 2016)
 • undecidable (Naor–Stockmeyer 1995)
Complexity of LCL problems

• 1D grids:
 • everything is $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$
 • decidable

• 2D grids:
 • everything is $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$
 • undecidable
Complexity of LCL problems

• 1D grids:
 • everything is $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$
 • decidable

• 2D grids:
 • everything is $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$
 • undecidable — but let us not despair!
Goal: algorithm synthesis

• Setting:
 • **input:** specification of an LCL problem
 • **output:** asymptotically optimal algorithm for 2D grids

• Does **this** make any **sense**?
 • most interesting case: $\Theta(\log^* n)$ time
 • how could one even represent an arbitrary $\Theta(\log^* n)$-round algorithm in a computer??
\[
\begin{array}{cccccccc}
92 & 33 & 77 & 57 & 49 & 26 & 74 \\
71 & 79 & 8 & 62 & 48 & 24 & 55 \\
31 & 21 & 15 & 30 & 60 & 67 & 3 \\
0 & 5 & 17 & 95 & 23 & 47 & 98 \\
87 & 80 & 25 & 38 & 20 & 64 & 88 \\
45 & 61 & 91 & 51 & 69 & 1 & 99 \\
58 & 53 & 63 & 40 & 16 & 2 & 39 \\
\end{array}
\]

\[O(\log^* n)\]
Goal: algorithm synthesis

• \(\Theta(\log^* n)\)-round algorithm in 2D grids:
 • mapping from \(\Theta(\log^* n) \times \Theta(\log^* n)\) neighbourhoods to local outputs
 • nodes are labelled with 1, 2, …, \(\text{poly}(n)\)

• **Infinite family of functions**

• Awkward to handle with computers
Key insight: normalisation

- **Setting**: LCL problems, 2D grids

- **Theorem**: Any $\Theta(\log^* n)$-time algorithm can be translated to a “normal form”
 - we isolate a fixed $\Theta(\log^* n)$-time component
 - everything else is a finite function
\[O(\log^* n) \]

MIS

\[O(1) \]

\[f \]
Key insight: normalisation

• For any problem P of complexity $\Theta(\log^* n)$, there are constants k and r and function f such that P can be solved as follows:
 • input: 2D grid G with unique identifiers
 • find a maximal independent set in G^k
 • discard unique identifiers
 • apply function f to each $r \times r$ neighbourhood
Some proof ideas

• Given: A solves P in time $o(n)$ in $n \times n$ grids

• Solving P in time $O(\log^* N)$ in $N \times N$ grids:
 • pick suitable $n = O(1)$, $k = O(1)$
 • find MIS in G^k
 • use MIS to find *locally unique identifiers* for $n \times n$ neighbourhoods
 • simulate A in $n \times n$ local neighbourhoods
Normalisation in practice

• Example: 4-colouring

• Sufficient to pick $k = 3, r = 7$

• Algorithm \approx mapping $\{0, 1\}^{7 \times 7} \rightarrow \{1, 2, 3, 4\}$
 • only finitely many candidates
 • given a candidate, we can easily verify if it is good
What about undecidability?

• **Trivial case:** complexity $O(1)$

• **Undecidable:** given an LCL problem, is its complexity $\Theta(\log^* n)$ or $\Theta(n)$ in 2D grids?

• However, if we get just **one bit of advice** (or make a lucky guess), we can find an asymptotically optimal algorithm!
Synthesis with advice

• **Advice:** complexity is $\Theta(\log^* n)$
 - try each pair (r, k)
 - check if there is a valid mapping from binary $r \times r$ matrices that represent local parts of maximal independent sets in G^k

• **Advice:** complexity is $\Theta(n)$
 - trivial brute force is optimal
It works in practice, too!

• **Ongoing work:** we have already synthesised asymptotically optimal algorithms for *thousands* of LCL problems
 • “high-throughput algorithm design”
 • can gain insights into the structure of large families of *parametrised problems*
 • synthesis unsuccessful: conjecture lower bound?
Some building blocks

- Enumerate all $r \times r$ neighbourhoods that represent possible fragments of maximal independent sets in G^k

- Construct neighbourhood graphs
 - algorithm ≈ labelling of neighbourhood graph

- Apply SAT solvers to find a labelling
Human beings still needed

- Computers can design e.g. very efficient algorithms for 4-colouring
- We still needed human beings to prove that there is no algorithm for 3-colouring
 - *new lower-bound techniques* needed, but more about this in some other talk!
Conclusions

- Nontrivial algorithms: $\Theta(\log^* n)$ complexity
- Any such algorithm can be split in two parts:
 - “symmetry breaking”: find an MIS
 - “computation”: nontrivial but finite
- Main open question: how far can we push this beyond oriented 2D grids?
$O(\log^* n)$

MIS

$O(1)$

f