Distributed Maximal Matching: Greedy is Optimal

Jukka Suomela
Helsinki Institute for Information Technology HIIT
University of Helsinki

Joint work with Juho Hirvonen

Weizmann Institute of Science, 27 November 2011
Background
Maximal Matchings

Input

Output
Distributed Algorithms

- Graph $G = $ input = communication network
 - node = computer
 - edge = communication link
Distributed Algorithms

- Initially, each node only knows its incident edges
 - i.e., each node knows its “radius-0 neighbourhood”
Distributed Algorithms

• Nodes can exchange messages to learn more about graph G...

 • 1 communication round: discover radius-1 neighbourhood
Distributed Algorithms

- Nodes can exchange messages to learn more about graph G...
 - 2 communication rounds: discover radius-2 neighbourhood
Distributed Algorithms

- Nodes can exchange messages to learn more about graph G...
 - 3 communication rounds: discover radius-3 neighbourhood
 - all nodes can do this in parallel
Distributed Algorithms

After T rounds, all nodes know their radius-T neighbourhoods in G
Distributed Algorithms

After T rounds, all nodes know their radius-T neighbourhoods in G

“local view”
Distributed Algorithms

Mapping: \textit{local view} \mapsto \textit{local output}

Each node decides whether it is matched and with whom
Distributed Algorithms

• Time = number of communication rounds

• Equivalent:
 • Distributed algorithm that runs in time T
 • All nodes run the same algorithms; after T synchronous communication rounds all nodes announce their local outputs
 • Mapping from radius-T neighbourhoods to local outputs
Distributed Algorithms

• Time = number of communication rounds

• *How fast* can we find a maximal matching?

 • $O(n)$? $O(\log n)$? $O(1)$?
Distributed Algorithms

- Time = number of communication rounds
- How fast can we find a maximal matching?
 - $O(n)$? $O(\log n)$? $O(1)$?

- Maybe we should first make sure that we can find a maximal matching at all...
Symmetry Breaking

• Some kind of symmetry-breaking is needed!
 • identical local views,
 identical local outputs...
Symmetry Breaking

- Unique identifiers
- Port numbering
- Node colouring
- Edge colouring
- Randomness
- Geometry
Symmetry Breaking

- Unique identifiers
- Port numbering
- Node colouring
- Edge colouring
- Randomness
- Geometry

}\ another world...
Symmetry Breaking

- Unique identifiers
- Port numbering
- Node colouring
- Edge colouring
- Randomness
- Geometry

} not enough!

} another world...
Symmetry Breaking

• Unique identifiers
 • n nodes: identifiers subset of \{1, 2, ... $\text{poly}(n)$\}
 • I will refer to this when discussing related work

• Edge colouring
 • proper k-colouring of edges
 • enough for our purposes—this what we use today
Greedy Algorithm

- Given: k-edge coloured graph
Greedy Algorithm

- Greedily add edges of colour 1, ...
Greedy Algorithm

- Greedily add edges of colour 1, 2, ...
Greedy Algorithm

• Greedily add edges of colour 1, 2, 3, ...

Input

Greedy algorithm
Greedy Algorithm

- Greedily add edges of colour 1, 2, ..., k
Greedy Algorithm

- That’s it – maximal matching in time $O(k)$
Greedy Algorithm

- Running time is exactly $k - 1$
 - initially each node knows the colours of incident edges
Greedy Algorithm

- Running time is exactly $k - 1$
- Analysis is tight
 - Example for case $k = 4$
 - Identical radius-2 neighbourhoods, different outputs:
Greedy Algorithm

• Running time is exactly $k - 1$
• Analysis is tight

• But *could we design a faster algorithm?*
 • turns out that this is connected to some fundamental open questions of the field...
Related Work
Running time as a function of what?

Two parameters commonly used:

- $n =$ number of nodes
- $\Delta =$ maximum degree

We often assume that n and Δ are known

- or some upper bounds of them
<table>
<thead>
<tr>
<th>Problem</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximal matching</td>
<td>$\Delta + \log^* n$</td>
<td>$\text{polylog}(\Delta) + \log^* n$</td>
</tr>
<tr>
<td>$(\Delta+1)$-vertex colouring</td>
<td>$\Delta + \log^* n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>$(2\Delta-1)$-edge colouring</td>
<td>$\Delta + \log^* n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>maximal edge packing</td>
<td>Δ</td>
<td>$\text{polylog}(\Delta)$</td>
</tr>
<tr>
<td>vertex cover 2-approx.</td>
<td>Δ</td>
<td>$\text{polylog}(\Delta)$</td>
</tr>
</tbody>
</table>

Negative: *Linial (1992), Kuhn et al. (2004, 2006)*
n and Δ

- Time complexity is well-understood as a function of n
 - asymptotically tight upper and lower bounds

- But we do not really understand time complexity as a function of Δ
 - exponential gap
k and Δ

• What about edge-coloured graphs?
 • $k =$ number of colours, $\Delta =$ maximum degree

• Maximal matching:
 • upper bound: $O(\Delta + \log^* k)$
 • lower bound: $\Omega(\text{polylog}(\Delta) + \log^* k)$

• Again, an exponential gap for Δ...
k and Δ

• What about edge-coloured graphs?
 • $k =$ number of colours, $\Delta =$ maximum degree

• Maximal matching:
 • upper bound: $O(\Delta + \log^* k)$
 • lower bound: $\Omega(\text{polylog}(\Delta) + \log^* k)$

• Again, an exponential gap for Δ...
Contributions

• Time complexity of finding maximal matchings in k-edge-coloured graphs

• General graphs: $\geq k - 1$
 • matching upper bound: $\leq k - 1$ (greedy)

• Bounded-degree graphs: $\Omega(\Delta + \log^* k)$
 • matching upper bound: $O(\Delta + \log^* k)$ (an adaptation of Panconesi–Rizzi 2001)
Lower Bound
Plan

• Focus: d-regular k-edge-coloured graphs

• If $d = k$:
 • trivial to find a maximal matching in constant time (pick a colour class)

• If $d = k - 1$:
 • as difficult as the general case!
 • we show that we need at least d rounds
Plan

• Given $k \geq 3$, define $d = k - 1$, assume:
 • algorithm A finds a maximal matching in any d-regular k-edge-coloured graph

• We construct a pair of infinite trees T_1, T_2:
 • root nodes have identical $(k - 2)$-neighbourhoods
 • output of A: root of T_1 matched, root of T_2 unmatched
 • running time of A is at least $k - 1$
Now we need tools for constructing and manipulating infinite edge-coloured trees...

Warning:
- the manuscript uses a very different formalism (with some group-theoretic constructions)
- in this talk I’ll try to keep everything lightweight, and just present the key ideas with illustrations
Node Colours

- Node colour = the unique “missing colour”
Templates

- Degree $< d$
• Degree < d: add loops
Templates

• Degree < d: add loops, unfold loops
Templates

- Unfolding preserves traversals
Templates

• Natural homomorphism
Templates

- Compact representations of trees
Templates

\[
\begin{align*}
1 & \quad 3 & 4 \\
4 & \quad 1 & 2 \\
1 & \quad 4 & 2 \\
3 & \quad & \\
\end{align*}
\]

\[
\begin{align*}
4 & \quad 1 & 2 \\
1 & \quad 3 & 2 \\
4 & \quad 2 & 2 \\
3 & \quad & \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 3 & 4 \\
1 & \quad 4 & 4 \\
1 & \quad 2 & 2 \\
1 & \quad 1 & 1 \\
\end{align*}
\]
Templates
Templates

“origin”
Templates

same origin
same local view
same output
What is the output of A here?
What is the output of A here?
What is the output of A here?

Definition!
What is the output of A here?

From now on we can study the output of algorithm A on templates...
Templates

Template of degree < \(d \): all nodes are matched
Templates

Output x: matched along the edge of colour x
Templates

Output x: matched along the edge of colour x
Base Case

- Apply algorithms A to templates of degree zero
- Defines a mapping from node colours to outputs

<table>
<thead>
<tr>
<th>Template</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Base Case

• $h: \{1,2,\ldots,k\} \rightarrow \{1,2,\ldots,k\}$

• no fixed points
Base Case

• $h: \{1,2,\ldots,k\} \rightarrow \{1,2,\ldots,k\}$

• no fixed points

• there are distinct x, y, z with
 • $h(x) = y$
 • $h(z) \neq y$
Base Case

- $h: \{1,2,\ldots,k\} \rightarrow \{1,2,\ldots,k\}$
- no fixed points
- there are distinct x, y, z with
 - $h(x) = y$
 - $h(z) \neq y$
Base Case

edge of colour y exists, in matching

edge of colour y exists, but not in matching
Base Case

\[\xrightarrow{y} \]

\[K \]

\[\xrightarrow{y} \]

\[L \]
Base Case

output in X cannot be copied from K & L – something must change!
Base Case

degree 1 templates, same radius-0 view, different output
Base Case

degree 1 templates,
same radius-0 view,
different output
Inductive Step

Given:
degree i templates, same radius-$(i-1)$ view, different output

Construct:
degree $i+1$ templates, same radius-i view, different output

(here $i = 1$)
Inductive Step

Choose one loop per node

Prefer loops that are matched in T

Then unfold these loops...
Inductive Step

\[K \]

\[L \]
Inductive Step

... again, something must change in the output!
Inductive Step
Inductive Step

same radius-0 view
Inductive Step
Inductive Step

same radius-1 view
Inductive Step

degree 2 templates, same radius-1 view, different output
Inductive Step

Given:
degree i templates, same radius-$(i-1)$ view, different output

Construct:
degree $i+1$ templates, same radius-i view, different output

(here $i = 1$)
Inductive Step

K

L
Inductive Step

\[\text{... something must change} \]
Inductive Step

\[K \]

\[X \]

\[L \]
Inductive Step

K

same radius-2 view

X
In the Inductive Step, we consider the following structures:

- **K**: A sequence of elements labeled with 'z' and a single element labeled 'x' at the bottom.
- **L**: Similar to K but with an additional 'x' at the top.
- **X**: A sequence of elements labeled with 'z' and a single element labeled 'X' at the top.

The diagram illustrates the relationships and connections between these elements.
Inductive Step
Conclusions

By induction, we can construct:

- two degree-\(d\) trees
- same radius-(\(d-1\)) view
- different output
Conclusions

• Algorithm A requires at least $k - 1$ rounds in a k-edge-coloured graph

• Algorithm A cannot be faster than the greedy algorithm
Conclusions

- Greedy is optimal
Conclusions

• Maximal matching in k-edge-coloured graphs requires:
 • $k - 1$ communication rounds in general
 • $\Theta(\Delta + \log^* k)$ rounds in graphs of degree $\leq \Delta$

• Still open:
 • what if we have unique identifiers?
 • or both edge colouring and node colouring?