A distributed approximation scheme for sleep scheduling in sensor networks

Patrik Floréen,
Petteri Kaski,
Jukka Suomela

HIIT,
University of Helsinki,
Finland

SECON
19 June 2007
A sensor network

Battery-powered sensor devices

Maximise the lifetime by letting each node sleep occasionally
Pairwise redundancy relations

Two sensors close to each other may be pairwise redundant.

If \(v \) is active then \(u \) can be asleep and vice versa.

Detecting pairwise redundancy: e.g., Koushanfar et al. (2006)
Redundancy graph for the sensor network

All pairwise redundancy relations
If \(v_1 \) is active then its neighbours can be asleep.
If v_2 is active
then its neighbours
 can be asleep
A dominating set in the redundancy graph

If v_3 is active then its neighbours can be asleep.
If nodes \(\{v_1, v_2, v_3\} \) are active then all other nodes can be asleep.

\[D = \{v_1, v_2, v_3\} \]

dominate the graph.

Task: find multiple dominating sets and apply them one after another.
Fractional domatic partition

Achieved lifetime: \(\frac{5}{2} \) time units

Each node active for 1 time unit
Towards the distributed algorithm

Optimal sleep scheduling =
Optimal fractional domatic partition

- Hard to optimise and hard to approximate in general graphs
- Centralised solutions are not practical in large networks

Plan:

- Identify the features of typical redundancy graphs
- Exploit the features to design a distributed approximation scheme
Features of a typical redundancy graph

Communication graph

1. Density of nodes
2. Length of edges
3. Geometric spanner

Redundancy graph

- Any subgraph

Given these assumptions, there exists a distributed approximation scheme.
The distributed approximation scheme

Idea 1:

1. Partition the graph into small cells
2. Solve the scheduling problem locally in each cell
 - Nodes near a cell boundary help in domination
 - Local optimum at least as good as global optimum
3. Merge the local solutions

Problem:

- Nodes near a cell boundary work suboptimally
The distributed approximation scheme

Idea 2: **shifting strategy**
(e.g., Hochbaum & Maass 1985)

1. Form several partitions
2. Make sure no node is near a cell boundary too often
3. Construct a schedule for each partition and interleave

Works fine if the nodes know their coordinates

Can we form the partitions without using any coordinates?
The distributed approximation scheme

Install anchor nodes

Or use a distributed algorithm to find suitable anchors: e.g., any maximal independent set in a power graph of the communication graph

Not too sparse, not too dense

1 bit of information: “I am an anchor”
The distributed approximation scheme

Finding one partition is now easy:
Voronoi cells for anchors

Metric: hop counts in communication graph

How do we get more partitions?

No global consensus on left/right, north/south
The distributed approximation scheme

Assumption: locally unique identifiers for anchors

- MAC addresses
- Random numbers

Shift borders towards those anchors with larger identifiers

Key lemma
No node is near a cell boundary too often
The distributed approximation scheme

A constant number of partitions suffices
Cell size is bounded

Main result
For any $\epsilon > 0$, with suitable anchor placement, sleep scheduling can be approximated within $1 + \epsilon$ in constant time per node
Summary

- Sleep scheduling in sensor networks = fractional domatic partition
- Formalise the features which make the problem easier to approximate
- Anchors suffice, coordinates are not needed
- A distributed approximation scheme, constant effort per node
- Demonstrates theoretical feasibility – more work needed to make the constants practical

http://www.hiit.fi/ada/geru
jukka.suomela@cs.helsinki.fi