Distributed Maximal Matching: Greedy is Optimal

Juho Hirvonen and Jukka Suomela

Helsinki Institute for Information Technology HIIT
University of Helsinki
Finland

17 July 2012
PODC
Maximal Matchings

Input

Output
Distributed Algorithms

- Graph $G = \text{input} = \text{communication network}$
 - node = computer
 - edge = communication link
 - synchronous communication rounds, *deterministic* algorithms
Distributed Algorithms

• Graph $G =$ input = communication network

• Each node has to stop and output its own part of the solution
 • am I matched?
 • with whom?
Distributed Algorithms

- Time = number of communication rounds
- Equivalent:
 - running time is T
 - all nodes stop after T communication rounds
 - output of node $v = f(\text{radius-}T\text{ neighbourhood of } v)$

- How fast can we find a maximal matching?
Time = \(f(n, \Delta) \)

- \(n \) = number of nodes
- \(\Delta \) = maximum degree
- Focus: \(\Delta \ll n \)
<table>
<thead>
<tr>
<th>problem</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximal matching</td>
<td>$\Delta + \log^* n$</td>
<td>$\text{polylog}(\Delta) + \log^* n$</td>
</tr>
<tr>
<td>$(\Delta+1)$-vertex colouring</td>
<td>$\Delta + \log^* n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>$(2\Delta-1)$-edge colouring</td>
<td>$\Delta + \log^* n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>maximal edge packing</td>
<td>Δ</td>
<td>$\text{polylog}(\Delta)$</td>
</tr>
<tr>
<td>vertex cover 2-approx.</td>
<td>Δ</td>
<td>$\text{polylog}(\Delta)$</td>
</tr>
</tbody>
</table>

Time = $f(n, \Delta)$

- Fairly well-understood as a function of n
 - tight upper and lower bounds if $\Delta = O(1)$
- Wide open as a function of Δ
 - exponential gap
- **Linear-in-Δ lower bounds missing**
Plan

1. Study a simpler model
 • unique node identifiers make things complicated
 • but *what is the right model?*

2. Generalise
 • future work...
 • but see the next talk for a promising technique!
Simpler Model?

• Unique identifiers
 • standard model
 • complicated to analyse directly...

• Node colouring
 • weaker than unique identifiers
Simpler Model?

• Unique identifiers
 • standard model
 • complicated to analyse directly...

• Node colouring
 • weaker than unique identifiers
 • *too weak — cannot find a maximal matching!*
Simpler Model?

• Port numbering
 • another popular model
 • too weak...

• Edge colouring
 • stronger than port numbering
 • *just right for our purposes!*
Model

• Given: k-edge-coloured graph
 - proper edge colouring: adjacent edges have different colours
 - colour palette: $\{1, 2, \ldots, k\}$
 - anonymous nodes
 - nodes can use edge colours to refer to their neighbours
Greedy Algorithm

- Greedily add edges of colour 1, ...

Input

Greedy algorithm
Greedy Algorithm

- Greedily add edges of colour 1, 2, ...

Input

Greedy algorithm
Greedy Algorithm

- Greedily add edges of colour 1, 2, 3, ...

Input

Greedy algorithm
Greedy Algorithm

- Greedily add edges of colour 1, 2, ..., k
Greedy Algorithm

- That’s it – we have a maximal matching
Greedy Algorithm

• Running time is exactly $k - 1$ rounds
 • initially each node knows the colours of incident edges
 • analysis is tight

• But *is there a faster algorithm?*
Contributions

• Maximal matchings in k-edge-coloured graphs
• General graphs: $\geq k - 1$ rounds
 • matching upper bound: greedy
• Bounded-degree graphs: $\Omega(\Delta + \log^* k)$
 • matching upper bound: adaptation of Panconesi–Rizzi (2001)
Lower Bound

• d-regular, k-edge-coloured graphs

• $d = k$:
 • trivial to find a maximal matching in constant time (pick a colour class)

• $d = k - 1$:
 • as difficult as the general case!
 • we show that we need at least d rounds
Lower Bound

• Given an algorithm \(A \)

• Construct two \(d \)-regular trees \(T_1 \) and \(T_2 \):
 • root nodes have *identical* \((d - 1)\)-neighbourhoods
 • root nodes produce *different outputs*

• Running time of \(A \) is at least \(d = k - 1 \)
Node Colours

- Node colour = the unique “missing colour”
Templates

- Degree < d
Templates

- Degree $< d$: add loops
Templates

- Degree $< d$: add loops, unfold loops
Templates

- Unfolding preserves traversals
Templates

• Compact representations of trees
Templates

\[1 \ 3 \ 4 \ = \ 4 \ 1 \ 2 \ = \ 1 \ 3 \ 4 \]
Templates

\[1 \quad = \quad \begin{array}{c}
\begin{array}{c}
1 \\
3
\end{array}
\end{array} \quad = \quad \begin{array}{c}
\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}
\end{array} \]
What is the output of A here?

Definition!
Induction

- Degree i templates:
 - root nodes produce different outputs
 - identical neighbourhoods up to distance $i - 1$
- $i = 1$: base case
- $i > 1$: by induction
- $i = d$: main result
Base Case

- Edge of colour y exists, in matching

- Edge of colour y exists, but not in matching
Base Case

\[x \leftrightarrow y \longrightarrow x \rightarrow z \quad K \]

\[z \leftrightarrow y \longrightarrow z \rightarrow x \quad L \]
Base Case

output in X cannot be copied from K & L – something must change!
Base Case

degree 1 templates, same radius-0 view, different output
Base Case

degree 1 templates, same radius-0 view, different output
Inductive Step

Given:
degree i templates, same radius-$(i-1)$ view, different output

Construct:
degree $i+1$ templates, same radius-i view, different output

(here $i = 1$)
Inductive Step

Choose one loop per node

Prefer loops that are matched in T

Then unfold these loops...
Inductive Step
Inductive Step

... again, something must change in the output!
Inductive Step
Inductive Step

same radius-o view

same radius-o view
Inductive Step

same radius-1 view
Conclusions

• By induction, we can construct:
 • two degree-d trees
 • same radius-$(d-1)$ view
 • different output
Conclusions

• Maximal matching in \textit{k-edge-coloured} graphs requires:
 • \(k - 1\) communication rounds in general
 • \(\Theta(\Delta + \log^* k)\) rounds in graphs of degree \(\leq \Delta\)

• What if we have \textbf{unique identifiers}?
 • \textit{in progress}: tight bounds for \textit{maximal edge packings}...
 • \textit{still open}: tight bounds for \textit{maximal matchings}?