Brief Announcement:
Linial’s Lower Bound Made Easy

Juhana Laurinharju · University of Helsinki
Jukka Suomela · Aalto University

PODC · 18 July 2014
Problem: 3-colouring cycles
Problem: 3-colouring cycles

- Directed cycle with n nodes
- $O(\log n)$-bit identifiers, LOCAL model
Problem: 3-colouring cycles

- Linial (1992): requires at least $\frac{1}{2} \log^*(n) - 1$ communication rounds

- Today: same result, simpler proof
 - student-friendly, self-contained, < 2 pages
 - no references to neighbourhood graphs, line graphs, chromatic numbers …
Colouring cycles in time T

- Each node must output its own colour
- Running time $T = \text{output only depends on radius-}$T neighbourhood of the node
Colouring cycles in time T

$A(87, 29, 11, 46, 32) \neq A(29, 11, 46, 32, 77)$

$T = 2$
k-ary c-colouring function

$A(25, 29, 34, 46, 52) \neq A(29, 34, 46, 52, 77)$

$k = 5$

$A(25, 29, 34, 46, 52)$

$A(29, 34, 46, 52, 77)$
k-ary c-colouring function

- $A(x_1, x_2, \ldots, x_k) \in \{1, 2, \ldots, c\}$ for all $1 \leq x_1 < x_2 < \ldots < x_k \leq n$

- $A(x_1, x_2, \ldots, x_k) \neq A(x_2, x_3, \ldots, x_{k+1})$ for all $1 \leq x_1 < x_2 < \ldots < x_{k+1} \leq n$
k-ary c-colouring function

- Assume: A is a distributed algorithm that finds a 3-colouring in directed n-cycles in time T

- Then: A is a *k-ary 3-colouring function* for $k = 2T + 1$

- Plan: show that $k + 1 \geq \log^* n$
Lemma 1

- If there is a 1-ary c-colouring function, then $c \geq n$

- Proof:
 - pigeonhole principle
Lemma 2

• Given: a \(k \)-ary \(c \)-colouring function \(A \)

• We can construct:
 a \((k - 1)\)-ary \(2^c \)-colouring function \(B \)

• Proof:
 \[
 B(x_1, x_2, \ldots, x_{k-1}) = \{A(x_1, x_2, \ldots, x_{k-1}, y) : y > x_{k-1}\}
 \]
Iterate Lemma 2

- k-ary 3-colouring function \rightarrow
 - k-ary 2^2-colouring function \rightarrow
 - $(k - 1)$-ary 3^2-colouring function \rightarrow
 - $(k - 2)$-ary 4^2-colouring function \rightarrow
 - ...
- 1-ary $k+1^2$-colouring function

$i2 = 2^{i\cdot2}$ (i twos)
Conclusion

• **Lemma 2:**
 - \(k \)-ary 3-colouring function \(\rightarrow \) 1-ary \(k+1 \)-colouring function

• **Lemma 1:**
 - \(k+1 \) \(\geq \) \(n \) (that is, \(k + 1 \geq \log^* n \))

\[i2 = 2^2 \cdots 2 \quad (i \text{ twos}) \]