A distributed approximation scheme for sleep scheduling in sensor networks

Patrik Floréen, Petteri Kaski, Topi Musto, Jukka Suomela

HIIT seminar
23 March 2007
A sensor network

Battery-powered sensor devices

Maximise the lifetime by letting each node sleep occasionally
Two sensors close to each other may be pairwise redundant.

If \(v \) is active then \(u \) can be asleep and vice versa.

Detecting pairwise redundancy: e.g., Koushanfar et al. (2006)
Redundancy graph for the sensor network

All pairwise redundancy relations
A dominating set in the redundancy graph

If \(v_1 \) is active
then its neighbours can be asleep
A dominating set in the redundancy graph

If v_2 is active then its neighbours can be asleep.
A dominating set in the redundancy graph

If v_3 is active then its neighbours can be asleep
A dominating set in the redundancy graph

If nodes \(\{v_1, v_2, v_3\} \)
are active then
all other nodes
can be asleep

\[
D = \{v_1, v_2, v_3\} \text{ is a dominating set in this redundancy graph}
\]
Task: find multiple dominating sets and apply them one after another

Objective: maximise total lifetime

Constraints: the battery capacity of each node
One approach: find disjoint dominating sets

Achieved lifetime: 2 time units

Each node active for 1 time unit

Feasible but not optimal!
Fractional domatic partition

Achieved lifetime: $\frac{5}{2}$ time units

Each node active for 1 time unit
Towards the distributed algorithm

Optimal sleep scheduling = optimal fractional domatic partition

- Hard to optimise and hard to approximate in general graphs
- Centralised solutions are not practical in large networks

Plan:
- Identify the features of typical redundancy graphs
- Exploit the features to design a distributed approximation scheme
Construction of a typical redundancy graph

A potato field
Construction of a typical redundancy graph

Planting sensors...
Construction of a typical redundancy graph

Planting sensors...
Construction of a typical redundancy graph

Planting sensors...
Construction of a typical redundancy graph

A sensor network
Construction of a typical redundancy graph

Wireless communication links
Construction of a typical redundancy graph

Wireless communication links

Some example nodes highlighted

Not necessarily a unit disk graph
Construction of a typical redundancy graph

Redundancy relations

An arbitrary subgraph of the communication graph

Nodes that can communicate with each other can also determine whether they are pairwise redundant
Construction of a typical redundancy graph

The complete redundancy graph

In this example: approx.
2000 nodes
6000 redundancy edges
100,000 communication links
(not shown)
Features of a typical redundancy graph (1)

Bounded density of nodes

Cover a larger area \implies still at most N sensors in any unit disk
Bounded length of edges

In the communication graph and thus also in the redundancy graph

Limited range of radio, limited range of sensor
The communication graph is a geometric spanner.

A shortest path in the graph is not much longer than the shortest path in the plane.

“Sensible” network topology; here guaranteed by the deployment process.

No such assumption is made about the redundancy graph.
Features of a typical redundancy graph

Communication graph
1. Density of nodes
2. Length of edges
3. Geometric spanner

Redundancy graph
- Any subgraph

Given these assumptions, there exists a distributed approximation scheme.
The distributed approximation scheme

Idea 1:

1. **Partition** the graph into small cells
2. Solve the scheduling problem locally in each cell
 - Nodes near a cell boundary help in domination
 - Local optimum at least as good as global optimum
3. Merge the local solutions

Problem:

- Nodes near a **cell boundary** work suboptimally
The distributed approximation scheme

Idea 2: shifting strategy
(e.g., Hochbaum & Maass 1985)

1. Form several partitions
2. Make sure no node is near a cell boundary too often
3. Construct a schedule for each partition and interleave

Works fine if the nodes know their coordinates

Can we form the partitions without using any coordinates?
The distributed approximation scheme

Install anchor nodes

Or use a distributed algorithm to find suitable anchors: e.g., any maximal independent set in a power graph of the communication graph.

Not too sparse, not too dense

1 bit of information: “I am an anchor”
The distributed approximation scheme

Finding one partition is now easy:
Voronoi cells for anchors

- Metric: hop counts in communication graph

How do we get more partitions?

No global consensus on left/right, north/south
The distributed approximation scheme

Assumption: locally unique identifiers for anchors

- MAC addresses
- Random numbers

Shift borders towards those anchors with larger identifiers

Key lemma
No node is near a cell boundary too often
The distributed approximation scheme

A constant number of partitions suffices

Cell size is constant

Main result

For any \(\epsilon > 0 \), with suitable anchor placement, sleep scheduling can be approximated within \(1 + \epsilon \) in constant time per node.
Summary

- Sleep scheduling in sensor networks = fractional domatic partition
- Formalise the features which make the problem easier to approximate
- Anchors suffice, coordinates are not needed
- A distributed approximation scheme, constant effort per node
- Demonstrates theoretical feasibility – more work needed to make the constants practical

To appear in Proc. SECON 2007