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No Sublogarithmic-Time Approximation Scheme
for Bipartite Vertex Cover

Mika Göös · Jukka Suomela

Abstract König’s theorem states that on bipartite graphs
the size of a maximum matching equals the size of a mini-
mum vertex cover. It is known from prior work that for every
ε > 0 there exists a constant-time distributed algorithm that
finds a (1+ ε)-approximation of a maximum matching on
bounded-degree graphs. In this work, we show—somewhat
surprisingly—that no sublogarithmic-time approximation
scheme exists for the dual problem: there is a constant δ > 0
so that no randomised distributed algorithm with running
time o(logn) can find a (1+ δ )-approximation of a mini-
mum vertex cover on 2-coloured graphs of maximum de-
gree 3. In fact, a simple application of the Linial–Saks (1993)
decomposition demonstrates that this run-time lower bound
is tight.

Our lower-bound construction is simple and, to some
extent, independent of previous techniques. Along the way
we prove that a certain cut minimisation problem, which
might be of independent interest, is hard to approximate
locally on expander graphs.

Keywords Distributed graph algorithms · Local approxima-
tion · Lower bounds · Vertex cover

1 Introduction

Many graph optimisation problems do not admit an exact
solution by a fast distributed algorithm. This is true not only
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for most NP-hard optimisation problems, but also for prob-
lems that can be solved using sequential polynomial-time
algorithms. This work is a contribution to the distributed ap-
proximability of such a problem: the minimum vertex cover
problem on bipartite graphs—we call it 2-VC, for short.

Our focus is on negative results: We prove an optimal (up
to constants) time lower bound Ω(logn) for a randomised
distributed algorithm to find a close-to-optimal vertex cover
on bipartite 2-coloured graphs of maximum degree ∆ = 3.
In particular, this rules out the existence of a sublogarithmic-
time approximation scheme for 2-VC on sparse graphs, and
it implies that König’s theorem is non-local—see Sect. 1.4.

On a technical level our lower bound result exhibits the
following features:

– Expanders: Our proof is relatively simple as compared
to the strength of the result. This is achieved through
an application of expander graphs in the lower-bound
construction.

– A new source of hardness: Many previous distributed
inapproximability results are based on the hardness of
local symmetry breaking. This is not the case here: the
difficulty we pinpoint for 2-VC is in the task of gluing
together two different types of local solutions.

– The RECUT problem: To formalise this new source of
hardness we introduce a new distributed cut minimisation
problem called RECUT, which might have applications
elsewhere.

1.1 The LOCALModel

We work in the standard LOCAL model of distributed com-
puting [13,20]. As input we are given an undirected graph
G = (V,E). We interpret G as defining a communication net-
work: the nodes V host processors, and two processors can
communicate directly if they are connected by an edge. All
nodes run the same distributed algorithm A. The computa-
tion of A on G starts out with every node v ∈V knowing an
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upper bound on n = |V | and possessing a globally unique
O(logn)-bit identifier ID(v); for simplicity, we assume that
V ⊆ {1,2, . . . ,poly(n)} and ID(v) = v. Also, we assume that
the processors have access to independent (and unlimited)
sources of randomness. The computation proceeds in syn-
chronous communication rounds. In each round, all nodes
first perform some local computations and then exchange
(unbounded) messages with their neighbours. After some
r communication rounds the nodes stop and produce local
outputs. Here r is the running time of A and the output of v
is denoted A(G,v).

The fundamental limitation of a distributed algorithm
with running time r is that the output A(G,v) can only de-
pend on the information available in the subgraph G[v,r]⊆G
induced on the vertices in the radius-r ball

BG(v,r) = {u ∈V : distG(v,u)≤ r}.

Conversely, it is well known that an algorithm A can essen-
tially discover the structure of G[v,r] in time r. Thus, A can
be thought of as a function mapping r-neighbourhoods G[v,r]
(together with the additional input labels and random bits on
BG(v,r)) to outputs.

While the LOCAL model abstracts away issues of net-
work congestion and asynchrony, this only makes our lower-
bound result stronger.

1.2 Bipartite Vertex Cover

Distributed algorithms for the bipartite vertex cover problem
are run on 2-coloured graphs G. That is, G is not only bipar-
tite (which is a global property), but every node v is informed
of the bipartition by an additional input label c(v), where
c : V →{white,black} is a proper 2-colouring of G.

Definition 1 In the 2-VC problem we are given a 2-coloured
graph G = (G,c) and the objective is to output a minimum-
size vertex cover of G.

A distributed algorithm A computes a vertex cover by
outputting a single bitA(G,v)∈ {0,1} on a node v indicating
whether v is included in the solution. This way, A computes
the set A(G) := {v ∈ V : A(G,v) = 1}. Moreover, we say
that A computes an α-approximation of 2-VC if A(G) is
a vertex cover of G and |A(G)| ≤ α ·OPTG, where OPTG
denotes the size of a minimum vertex cover of G.

1.3 Our Result

Our main result is the following.

Theorem 1 (Inapproximability of 2-VC) There exists a
δ > 0 such that no randomised distributed algorithm with
run-time o(logn) can find an expected (1+δ )-approximation
of 2-VC on graphs of maximum degree ∆ = 3.

Our proof of Theorem 1 permits one to take δ = 0.01, but
since our argument does not seem to yield the best possible
value for δ , we do not try to optimise it.

The run-time lower bound in Theorem 1 is tight: a match-
ing run-time upper bound is given by the well-known network
decomposition algorithm due to Linial and Saks [14].

Theorem 2 (Consequence of Linial–Saks) Let ε > 0. An
expected (1+ ε)-approximation of 2-VC can be computed in
time O(ε−1 logn) on graphs of maximum degree ∆ = O(1).

1.4 König Duality

The classic theorem of König (see, e.g., Diestel [3, §2.1])
states that, on bipartite graphs, the size of a maximum match-
ing equals the size of a minimum vertex cover. A modern
perspective is to view this result through the lens of linear
programming (LP) duality. The LP relaxations of these prob-
lems are the fractional matching problem (primal) and the
fractional vertex cover problem (dual):

maximise ∑
e∈E

xe minimise ∑
v∈V

yv

subject to ∑
e:v∈e

xe ≤ 1, ∀v subject to ∑
v:v∈e

yv ≥ 1, ∀e

x≥ 0 y≥ 0

It is known from general LP theory (see, e.g., Papadimitriou
and Steiglitz [18, §13.2]) that on bipartite graphs the above
LPs do not have an integrality gap: among the optimal feasi-
ble solutions are integral vectors x ∈ {0,1}E and y ∈ {0,1}V
that correspond to maximum matchings and minimum vertex
covers, respectively.

In the context of distributed algorithms, the following is
known on (bipartite) bounded-degree graphs:

1. The primal and dual LPs admit local approximation
schemes. As part of their general result, Kuhn et al. [10]
give constant-time algorithms for computing (1 + ε)-
approximations for the above LPs. That is, their algo-
rithms run in time Oε(1) that is dependent on ε , but
independent of the number of nodes.

2. The integral primal problem admits a local approxi-
mation scheme. Nguyen and Onak [17] describe a ran-
domised constant-time approximation scheme for the
maximum matching problem on bounded-degree graphs.
In case the input graph is 2-coloured, there is also a de-
terministic constant-time approximation scheme [1].

3. The integral dual problem does not admit a local approx-
imation scheme. The present work shows—in contrast to
the above positive results—that there is no local approxi-
mation scheme for 2-VC even when ∆ = 3.
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These run-time bounds are summarised in the following table
where our new lower bound is highlighted:

Primal Dual

Integral Oε(1) Ω(logn)

LP Oε(1) Oε(1)

1.5 Related Lower Bounds

There are relatively few independent methods for obtaining
negative results for distributed approximation in the LOCAL
model. We list three main sources.

Local algorithms. Linial’s [13] lower bound Ω(log∗ n) for
3-colouring a cycle together with the Ramsey technique of
Naor and Stockmeyer [16] establish basic limitations on find-
ing exact solutions strictly locally in constant time. These
impossibility results were later extended to finding approx-
imate solutions on cycle-like graphs by Lenzen and Wat-
tenhofer [12] and Czygrinow et al. [2]. A recent work [4]
generalised these techniques even further to show that de-
terministic local algorithms in the LOCAL model are often
no more powerful than algorithms running on anonymous
port numbered networks. For more information on this line
of research, see the survey of local algorithms [21].

Here, the inapproximability results typically exploit the
inability of a local algorithm to break local symmetries. By
contrast, in this work, we consider the case where the local
symmetry is already broken by a 2-colouring.

KMW bounds. Kuhn, Moscibroda and Wattenhofer [9,10,
11] prove that any randomised algorithm for computing a
constant-factor approximation of minimum vertex cover on
general graphs requires time Ω(

√
logn) and Ω(log∆). Their

technique consists of showing that a fast algorithm cannot
locally tell apart two adjacent nodes v and u, even though it
is globally more profitable to include v in the vertex cover
and exclude u than conversely. Their lower-bound graphs
have ∆ = ω(1), as this is necessary in order to prove an
ω(1) run-time lower bound; if their construction is halted at
∆ = O(1), it becomes possible to locally distinguish v and u
topology-wise.

By contrast, in this work, we need a new source of hard-
ness that is present even in case ∆ = O(1).

Sublinear-time centralised algorithms. Parnas and Ron [19]
discuss how a fast distributed algorithm can be used as a
solution oracle in a centralised algorithm that approximates
parameters of a sparse graph G via a randomised query access
to G. Thus, query complexity lower bounds in this model

imply time complexity lower bounds for distributed algo-
rithms. In particular, an argument of Trevisan (presented in
[19]) implies that computing a (2− ε)-approximation of a
minimum vertex cover requires Ω(logn) time on d-regular
graphs, where d = d(ε) is sufficiently large.

We note that (the size of) 2-VC is easy to approximate in
the Parnas–Ron model: if we are promised that G is bipartite,
König duality applies and we can use any of the constant-
time algorithms mentioned in Sect. 1.4 as a solution oracle to
obtain an estimate for the common size of a minimum vertex
cover and a maximum matching.

2 Deterministic Lower Bound

To best explain the basic idea of our lower bound result,
we first prove Theorem 1 for a toy model that we define in
Sect. 2.1; in this model, we only consider a certain class of
deterministic distributed algorithms in anonymous networks.
Later in Sect. 3 we will show how to implement the same
proof technique in a much more general setting: randomised
distributed algorithms in networks with unique identifiers.

We emphasise that the deterministic lower bound given
in the present section contains all the important ideas; the
subsequent extension to randomised algorithms is somewhat
of a technicality.

Proof overview. We find a source of hardness for 2-VC as
follows. First, we argue that any approximation algorithm for
the 2-VC problem also solves a certain cut minimisation prob-
lem called RECUT. More formally, we give an approximation-
preserving local reduction

RECUT≤ 2-VC. (1)

We then show that RECUT is hard to approximate locally,
which, by (1), implies that 2-VC must also be hard to approx-
imate locally.

2.1 Toy Model of Deterministic Algorithms

Throughout this section we consider deterministic algorithms
A running in time r = o(logn) that operate on anonymous
networks G = (V,E). More precisely, we impose the follow-
ing additional restrictions in the LOCAL model:

– Determinism: The nodes of G are not given random bits
as input.

– Anonymity: The output of A is invariant under reas-
signing node identifiers. That is, if G is isomorphic to
G′ = (V ′,E ′) via a mapping f : V →V ′, then the output
of a node v ∈V agrees with the output of f (v) ∈V ′:

A(G,v) =A(G′, f (v)). (2)
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Put otherwise, the only available symmetry-breaking infor-
mation is the radius-r neighbourhood topology—the nodes
do not have unique identifiers.

We will also consider graphs that may be associated with
some additional symmetry-breaking structure:

– Node labels: A node v ∈V is supplied with a label `(v).
In the context of property (2), we must now require that
the isomorphism f : V → V ′ between labelled graphs
(G, `) and (G′, `′) preserves the labels in the sense that
`(v) = `′( f (v)) for all v ∈V .

– Directed edges: The edges E may be directed. Here, the
directions are merely additional data; they do not restrict
communication.

2.2 Recut Problem

In the RECUT problem we will be interested in partitions of V
into red and blue colour classes as determined by a labelling

` : V →{red,blue}.

We write ∂` for the fraction of edges crossing the red/blue
cut:

∂` :=
e(`−1(red), `−1(blue))

|E|
,

where e(U,U ′) denotes the number of edges with one end-
point in U and another in U ′. As usual, we also write `(V ) :=
{`(v) : v ∈V} for the image of `.

Definition 2 In the RECUT problem we are given a labelled
graph (G, `) as input and the objective is to compute an output
labelling (a recut) `out that minimises ∂`out subject to the
following constraints: (a) If `(V ) = {red}, then `out(V ) =

{red}. (b) If `(V ) = {blue}, then `out(V ) = {blue}.

In words, if we have an all-red input, we have to produce
an all-red output, and if we have an all-blue input, we have
to produce an all-blue output. Otherwise the output can be
arbitrary. See Fig. 1 for an illustration.

Needless to say, the global optimum for an algorithm A
would be to produce a constant output labelling `A (either
all red or all blue) having ∂`A = 0. However, a distributed
algorithm A can only access the values of the input labelling
` in its local radius-r neighbourhood: when encountering a
neighbourhood v ∈U ⊆V with `(U) = {red}, the algorithm
is forced to output red at v to guarantee satisfying the global
constraint (a), and when encountering a neighbourhood v ∈
U ⊆V with `(U) = {blue}, the algorithm is forced to output
blue at v to satisfy (b). Thus, if a connected graph G has two
disjoint r-neighbourhoods U,U ′ ⊆V with `(U) = {red} and
`(U ′) = {blue}, algorithm A cannot avoid producing at least
some red/blue edge boundary.

RECUT input

RECUT output

simple algorithm:

optimum:

Fig. 1 The RECUT problem. In this example, we have used a simple
distributed algorithm A to find a recut `out with a small boundary ∂`out:
a node outputs red iff there is a red node within distance r = 3 in the
input. While the solution is not optimal, in a grid graph the boundary
will be relatively small. However, our lower bound shows that any fast
distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

Indeed, the best we can hope A to achieve is a recut `A
of size ∂`A ≤ ε for some small constant ε > 0. Such recuts
can be computed using, e.g., graph decomposition algorithms
for G: if we are given a decomposition of G into low-diameter
components that is induced by deleting a small fraction of
edges, we can simply colour the components monochromati-
cally. Currently, the fastest decomposition algorithms found
in the literature are all randomised: the Linial–Saks [14] de-
composition algorithm allows one to compute a recut of size
∂`A ≤ ε in time Oε(logn) on any graph G, whereas for some
restricted graph families decomposition is possible even in
constant-time; see, e.g., Hassidim et al. [6].

Interpretation. The RECUT problem models the following
abstract high-level challenge in designing distributed algo-
rithms: Each node in a local neighbourhood U ⊆V can, in
principle, internally compute a completely locally optimal
solution for the subgraph induced by U , but difficulties arise
when deciding which of these proposed solution are to be
used in the final distributed output. In particular, when the
type of the produced solution changes from one (e.g., red)
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to another (e.g., blue) across a graph G one might have to
introduce suboptimalities to the solution at the (red/blue)
boundary in order to glue together the different types of local
solutions.

In fact, the RECUT problem captures the first non-trivial
case of this phenomenon with only two solution types present.
One can think of the input labelling ` as recording the ini-
tial preferences of the nodes whereas the output labelling
`A records how an algorithm A decides to combine these
preferences into the final unified output. In the end, our lower-
bound strategy will be to argue that any A can be forced into
producing too large an edge boundary ∂`A resulting in too
many suboptimalities in the produced output.

Next, we show how the above discussion is made concrete
in the case of the 2-VC problem.

2.3 Reduction

Terminology. We call a graph G tree-like if all the r-neigh-
bourhoods in G are trees, i.e., G has girth larger than 2r+1.
Furthermore, if G is directed, we say that it is balanced
if in-degree(v) = out-degree(v) for all vertices v. We note
that a deterministic algorithm A produces the same output
on every node of a balanced regular tree-like (unlabelled)
digraph G, because such a graph is locally homogeneous: all
the r-neighbourhoods of G are pairwise isomorphic.

Using this terminology we prove the following.

Theorem 3 (RECUT ≤ 2-VC) Suppose that algorithm A
(with run-time r) computes a (1+ ε)-approximation of 2-VC
on graphs of maximum degree ∆ = 3. Then, there is an
algorithm (with run-time r) that finds a recut `A of size
∂`A = O(ε) on balanced 4-regular tree-like digraphs.

The proof of Theorem 3 follows the usual route. In three
steps, we describe a reduction that can be computed by a
local algorithm:

1. We start with an instance (G, `) of RECUT and transform
it into a white/black-coloured instance Π(G, `) of 2-VC.

2. Then, we simulate A on the resulting instance Π(G, `).
3. Finally, we map the output of A back to a solution `A of

the RECUT instance (G, `).

We now proceed with the details. Let G = (V,E) be a bal-
anced 4-regular tree-like digraph and let ` : V →{red,blue}
be a labelling of G. The instance Π(G, `) is obtained by
replacing each vertex v ∈ V by one of two local gadgets
depending on the label `(v). We first describe and analyse
simple gadgets yielding instances of 2-VC with ∆ = 4; the
gadgets yielding instances with ∆ = 3 are described later.

Red gadgets. The red gadget replaces a vertex v ∈V by two
new vertices wv (white) and bv (black) that share a new edge

ev := {wv,bv}. The incoming edges of v are reconnected to
wv, whereas the outgoing edges of v are reconnected to bv.
See Fig. 2.

v
wv

bv
�

red node red gadget

RECUT input 2-VC input

Fig. 2 Red gadget for ∆ = 4.

The case of all-red input. The 2-VC instance Π(G, red),
where we denote by red the constant labelling v 7→ red, con-
tains {ev : v ∈ V} as a perfect matching. Since (G, red) is
locally homogeneous, in Π(G, red) the solutions output by
A on the endpoints of ev are isomorphic across all v. As-
suming ε < 1 it follows that algorithm A must output either
the set of all white nodes or the set of all black nodes on
Π(G, red). Our reduction branches at this point: we choose
the structure of the blue gadget to counteract this white/black
decision made by A on the red gadgets. We describe the
case thatA outputs all white nodes on Π(G, red); the case of
black nodes is symmetric.

Blue gadgets. The blue gadget replacing v ∈V is identical
to the red gadget with the exception that a third new vertex
w′v (white) is added and connected to bv. See Fig. 3.

v
wv

bv

w’v

�

blue node blue gadget

RECUT input 2-VC input

Fig. 3 Blue gadget for ∆ = 4 (assuming an all-red input produces an
all-white output).

Similarly as above, we can argue that A outputs exactly
the set of all black nodes on the instance Π(G,blue). This
completes the description of Π .

Simulation. Next, we simulate algorithm A on Π(G, `). The
output of A is then transformed back to a labelling `A : V →
{red,blue} by setting

`A(v) = blue ⇐⇒ the output of A contains only
the black node bv at the gadget at v.
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See Fig. 4. Note that `A satisfies both feasibility constraints
(a) and (b) of RECUT. It remains to bound the size ∂`A of
this recut.

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Recut analysis. Call a red vertex v in (G, `A) bad if v has a
blue out-neighbour u; see Fig. 5.

v u

wv
bv

wu
bu

�

RECUT output2-VC output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

By the definition of “`A(u) = blue”, the vertex cover pro-
duced by algorithm A does not contain the white node wu.
Thus to cover the edge (bv,wu), the vertex cover has to con-
tain the black node bv. But by the definition of “`A(v) = red”,
we must have wv or w′v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is subopti-
mal as compared to the minimum vertex cover {bv : v ∈V},

which uses only one node per gadget. This implies that we
must have at most ε|V | bad vertices as A produces a (1+ ε)-
approximation of 2-VC on Π(G, `).

On the other hand, exactly half of the edges crossing the
cut `A are oriented from red to blue since G is balanced.
Each bad vertex gives rise to at most two of these edges, so
we have that ∂`A · |E|/2≤ 2ε|V | which gives ∂`A ≤ 2ε , as
required. This proves Theorem 3 for ∆ = 4.

Gadgets for ∆ = 3. The maximum degree used in the gadgets
can be reduced to 3 by the following modification. The red
gadget replaces a vertex v ∈ V by a path of length 3; see
Fig. 6.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 6 Gadgets for ∆ = 3.

Again, to achieve a 1.499-approximation of 2-VC on
Π(G, red), algorithm A has to make a choice: either leave
out the middle black vertex or the middle white vertex from
the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget
with an additional white vertex connected to the middle black
one.

After simulating A on an instance Π(G, `) we define
`A(v) = blue iff A outputs only black nodes at the gadget
at v. The recut analysis will then give ∂`A ≤ 4ε .

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small recut on gen-
eral graphs stems from the inability of an algorithm to over-
come the neighbourhood expansion of an input graph in
r = o(logn) steps—an algorithm cannot hide the red/blue
boundary as the radius-r neighbourhoods themselves might
have large boundaries.

To formalise this intuition, we use expander graphs as a
basis for our lower-bound construction.
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Definition 3 (Expander graphs) Let δ > 0. A graph G =

(V,E), |V |= n, is called a δ -expander if it satisfies the edge
expansion condition

e(S,V rS)≥ δ · |S| for all S⊆V, |S| ≤ n/2, (3)

where e(S,V rS) is the number of edges leaving S.

See Hoory et al. [7] for a survey on expanders graphs.
For our proof, we will need an infinite family F of ex-

pander graphs, i.e., there is a universal constant δ > 0 so that
each G ∈ F is a δ -expander. Now, to fool an algorithm A
into producing a large recut on the graphs G ∈F it is enough
for us to force A to output a nearly balanced recut `A on
G where both colour classes have size n/2± o(n). This is
because if the number of, say, the red nodes is

|`−1
A (red)|= n/2−o(n),

then the expansion property (3) implies that

∂`A ≥ δ/4−o(1).

That is, A computes a recut of size Ω(δ ).
Indeed, the following simple fooling trick makes up the

very core of our argument.

Lemma 1 Suppose A produces a feasible solution for the
RECUT problem in time r = o(logn). Then for each 4-regular
graph G there exists an input labelling for whichA computes
a nearly balanced recut.

Proof Fix an arbitrary ordering v1,v2, . . . ,vn for the vertices
of G and define a sequence of labellings `0, `1, . . . , `n by
setting `i(v j) = blue iff j ≤ i. That is, in `0 all nodes are
red, in `n all nodes are blue, and `i is obtained from `i−1 by
changing the colour of vi from red to blue.

When we switch from the instance (G, `i−1) to (G, `i)

the change of vi’s colour is only registered by nodes in the
radius-r neighbourhood of vi. This neighbourhood has size
|BG(vi,r)| ≤ 4r +1 = o(n), and so the number of red nodes
in the outputs `i−1

A and `i
A of A can only differ by o(n); see

Fig. 7 for an illustration. As, by assumption, we have that A
computes the labelling `0

A = red on (G, `0) and the labelling
`n
A = blue on (G, `n), it follows that some labelling in our

sequence must force A to output n/2−o(n) red nodes. ut

We now have all the ingredients for the lower-bound
proof: We can take δ = 2−

√
3 if we choose F to be the fam-

ily of 4-regular Ramanujan graphs due to Morgenstern [15].
These graphs are tree-like, as they have girth Θ(logn). They
can be made into balanced digraphs since a suitable orien-
tation can always be derived from an Euler tour. Thus, F
consists of balanced 4-regular tree-like digraphs. Lemma 1
together with the discussion above imply that every algorithm
for RECUT produces a recut of size Ω(δ ) on some labelled
graph in F . Hence, the contrapositive of Theorem 3 proves
Theorem 1 for our deterministic toy algorithms.

Input

Red nodes in output

o(n)

n/2 − o(n)

0

n/2

n

…

`0: all red `n: all blue

Fig. 7 An illustration for the proof of Lemma 1.

3 Randomised Lower Bound

Model. Even though our model of deterministic algorithms
in Sect. 2 is an unusually weak one, we can quickly recover
the standard LOCAL model from it by equipping the nodes
with independent sources of randomness. In particular, as is
well known, each node can choose an identifier uniformly
at random from, e.g., the set {1,2, . . . ,n3}, and this results
in the identifiers being globally unique with probability at
least 1−1/n.

Simplifying assumptions. Without loss of generality, we may
assume the randomised algorithm is of the following form:

(a) Deterministic run-time: Each node runs for at most
r = o(logn) steps.

(b) Las Vegas algorithm: The algorithm always produces
a feasible solution.

Indeed, if we are given an algorithm that has expected run-
ning time r′ = o(logn) and covers each edge with probability
1−o(1), we can modify it so that it satisfies the above two
properties at a cost of only an additive o(1) term in the ex-
pected approximation ratio. This is done as follows:

(a) Choose a slowly growing function t such that r := tr′ =
o(logn). If a node v runs longer than r steps, we stop
v’s computation and output v into the vertex cover. By
Markov’s inequality, this modification interferes with the
computation of only o(n) nodes in expectation.

(b) After r steps we finish by including both endpoints of
each uncovered edge in the output.
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Overview. When discussing randomised algorithms many of
the simplifying assumptions made in Sect. 2 no longer apply.
For example, a randomised algorithm need not produce the
same output on every node of a locally homogeneous graph.
Consequently, the homogeneous feasibility constraints in the
RECUT problem do not strictly make sense for randomised
algorithms.

However, we can still emulate the same proof strategy
as in Sect. 2: we force the randomised algorithm to output a
nearly balanced recut with high probability, i.e., with proba-
bility 1−o(1). Below, we describe this strategy in case of the
easy-to-analyse “∆ = 4” gadgets with the understanding that
the same analysis can be repeated for the “∆ = 3” gadgets
with little difficulty.

3.1 Repeating Sect. 2 for Randomised Algorithms

Fix a randomised algorithmA with running time r = o(logn)
and let G = (V,E), n = |V |, be a large 4-regular expander.

Again, we start out with the all-red instance. We denote
by W and B the number of black and white nodes output by
A on Π(G, red). As each of the edges ev must be covered,
we have that

W +B≥ n.

Hence, by linearity of expectation, at least one of E[W ]≥ n/2
or E[B]≥ n/2 holds. We assume that E[W ]≥ n/2; the other
case is symmetric.

In reaction to A preferring white nodes, the blue gadgets
are now defined exactly as in Sect. 2. Furthermore, for any
input ` : V → {red,blue} we interpret the output of A on
Π(G, `) as defining an output labelling `A of V , where, again,
`A(v) = blue iff A outputs only the black node at the gadget
at v. This definition translates our assumption of E[W ]≥ n/2
into

E[R(red)]≥ n/2, (4)

where R(`) := |`−1
A (red)| counts the number of gadgets (i.e.,

vertices of G) relabelled red by A on Π(G, `).
If A relabels a blue gadget red, it must output at least

two nodes at the gadget. This means that the size of the
solution output by A on Π(G,blue) is at least n+R(blue).
Thus, if A is to produce a 3/2-approximation on Π(G,blue)
in expectation, we must have that

E[R(blue)]≤ n/2. (5)

The inequalities (4) and (5) provide the necessary bound-
ary conditions for the argument of Lemma 1: by transform-
ing the instance (G, red) into (G,blue) by changing the node
colours one at a time we may find an input labelling `∗ achiev-
ing

E[R(`∗)] = n/2−o(n). (6)

Note that this does not yet prove that A’s output is a bad
approximation in expectation; it might be the case that half
the time A outputs all-red and half the time all-blue. To rule
out this possibility we need to show that A outputs a nearly
balanced recut not only “in expectation” but also with high
probability.

3.2 Local Concentration Bound

Focusing on the instance Π(G, `∗) we write R = R(`∗) and

R = ∑
v∈V

Xv, (7)

where Xv ∈ {0,1} indicates whether A relabels the gadget at
v red.

The variables Xv are not too dependent: the 2rth power
of G, denoted G2r, where u,v ∈V are joined by an edge iff
BG(v,r)∩BG(u,r) 6=∅, is a dependency graph for the vari-
ables Xv. Every independent set I ⊆V in G2r corresponds to a
set {Xv}v∈I of mutually independent random variables. Since
the maximum degree of G2r is at most maxv |BG(v,2r)| =
o(n), this graph can always be partitioned into χ(G2r) = o(n)
independent sets.

Indeed, Janson [8] presents large deviation bounds for
sums of type (7) by applying Chernoff–Hoeffding bounds
for each colour class in a χ(G2r)-colouring of G2r. For any
ε > 0, Theorem 2.1 in Janson [8], as applied to our setting,
gives

Pr(R≥ E[R]+ εn)≤ exp
(
−2

(εn)2

χ(G2r) ·n

)
→ 0, as n→ ∞, (8)

and the same bound holds for Pr(R≤ E[R]− εn). That is, R
is concentrated around its expectation.

In conclusion, the combination of (6) and (8) implies that,
for large n, algorithm A outputs a nearly balanced recut on
Π(G, `∗) with high probability. By the discussion in Sect. 2,
this proves Theorem 1.

4 Randomised Upper Bound

We now proceed to prove the matching positive result, Theo-
rem 2. The subroutine Construct Block in the algorithm of
Linial and Saks [14] computes, in time r = O(ε−1 logn), a
set S⊆V with the following two properties.

– Each component in the subgraph G[S] induced by S has a
small weak diameter in the following sense: for each pair
u,v ∈ S that belong to the same component of G[S], we
have that distG(u,v)≤ r.

– In expectation, |S| ≥ (1− ε)n.
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Let C be a component of G[S]. Every node of C can dis-
cover the structure of C in time O(r) by exploiting the weak
diameter property: C is contained in the r-neighbourhood
of every node in C. Thus, every node of C can internally
compute the same optimal solution of 2-VC on C. We can
then output as a vertex cover for G the union of the optimal
solutions at the components together with the vertices V rS.
This results in a solution of size at most

OPTG[S]+ εn≤ OPTG + εn.

But since OPTG ≥ |E|/∆ = Ω(n) for connected G, this is
an expected (1+O(ε))-approximation of 2-VC.

5 Conclusions

In this work we have shown that there is a positive con-
stant δ such that no distributed algorithm can find a (1+δ )-
approximation of a minimum vertex cover in sublogarithmic
time. While prior lower bound constructions are based on
high-degree graphs, our negative result holds in the simplest
possible case of bipartite graphs of maximum degree 3.

To prove the lower bound result, we introduced a very
simple graph problem—the RECUT problem. In a sense, the
RECUT problem resembles the binary consensus problem: if
all inputs are red, all outputs must be red, and if all inputs
are blue, all outputs must be blue. In the general case of
mixed inputs, we do not require that all nodes agree on the
same output. Nevertheless, we would prefer to have few
pairs of adjacent nodes that disagree on their outputs. This
way we have turned the binary consensus problem into an
optimisation problem that can be studied from the perspective
of distributed graph algorithms.

We show that RECUT is difficult to solve well on ex-
panded graphs in sublogarithmic time, even if we can use
randomness. The lower bound for the vertex cover problem
follows by simple local reductions. We believe similar tech-
niques could be used to prove lower bounds for other graph
problems as well.
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