Median Filtering is Equivalent to Sorting

Jukka Suomela · Aalto University
TU Berlin · 6 August 2014
Median filter

input: \(n\) elements
window size: \(k\)
output: \(n-k+1\) medians

a.k.a. sliding window median, moving median, running median, rolling median, median smoothing
Median filter

• In numerous scientific computing systems:
 • \textit{R}: “runmed”
 • \textit{Mathematica}: “MedianFilter”
 • \textit{Matlab}: “medfilt1”
 • \textit{Octave}: “medfilt1” (\texttt{signal} package)
 • \textit{SciPy}: “medfilt1” (\texttt{scipy.signal} module)
Median filter

- In numerous scientific computing systems:

- 2D version in image processing:
 - \textit{Photoshop}: “Median” filter
 - \textit{Gimp}: “Despeckle” filter
Prior work

- **Trivial:**
 - compute each median separately
 - $O(nk)$

- **“Streaming approach”:**
 - maintain a sliding window
 - $O(n \log k)$
Prior work

- “Streaming approach”
- Sliding window data structure, supports operations:
 - “find median”
 - “remove oldest and add new element”
Prior work

- Sliding window data structures for B-bit integers:
 - histogram with 2^B buckets
 - with linear scanning: $O(n2^B)$
 - with binary trees: $O(nB)$
 - with van Emde Boas trees: $O(n \log B)$

n: input size
k: window size
Prior work

- General sliding window data structures:
 - maxheap-minheap pair: $O(n \log k)$
 - binary search trees: $O(n \log k)$
 - finger trees: $O(n \log k)$
 - doubly-linked lists: $O(nk)$
 - sorted arrays: $O(nk)$

n: input size
k: window size
Prior work

• Maxheap-minheap pair
 • Astola–Campbell (1989)
 • Juhola et al. (1991)
 • Härdle–Steiger (1995) …

• Fast in practice

• Fast in theory, $O(n \log k)$ comparisons

n: input size
k: window size
Lower bounds

• For comparison-based algorithms: \(O(n \log k)\) is optimal
 • Juhola et al. (1991)
 Krizanc et al. (2005) …

• Reduction from sorting

\(n\): input size
\(k\): window size
State of the art

- $O(n \log k)$ comparisons is optimal
 - known since 1990s
 - nothing more to do here, case closed, problem solved

n: input size
k: window size
State of the art

- $O(n \log k)$ comparisons is optimal
- But we also know that $O(n \log n)$ comparisons is optimal for sorting in the worst case, yet this is not the full story!
 - integer sorting, adaptive sorting, cache-efficient sorting, GPU sorting …
State of the art

And what about implementations…

- \mathcal{R}: $\approx O(n \log k)$
- Mathematica: $\approx O(nk)$
- Matlab: $\approx O(nk)$
- Octave: $\approx O(nk)$
- SciPy: $\approx O(nk)$

why?! didn’t we do better already in 1980s?

n: input size
k: window size
Key idea

- Prior work:
 - “median filtering is as hard as sorting”

- Could we prove a matching upper bound:
 - “median filtering is as easy as sorting”
Key idea

• If we could show that:
 • “median filtering is equivalent to sorting”

• Then we could apply everything that we know about sorting here!
 • adaptive sorting \rightarrow adaptive median filter
 • integer sorting \rightarrow integer median filter …
Key idea

• If we could show that:
 • “median filtering is equivalent to sorting”

• Then we could apply everything that we know about sorting here!
 • all scientific computing packages know how to sort efficiently
Sorting-based lower bound

- Piecewise sorting: sort n/k blocks of size k
 - with comparison sort: $O(n \log k)$ optimal
Sorting-based lower bound

- - 7 2 5 + + - - 1 4 3 + + - - 9 6 8 + +

2 5 7 5 5 1 1 1 3 4 4 3 9 6 6 8 9

2 5 7 1 3 4 6 8 9

pad with ±∞

median filter
Sorting-based lower bound

- Piecewise sorting: sort n/k blocks of size k
 - with comparison sort: $O(n \log k)$ optimal
- Can be solved with $O(1)$ median filter operations
 - and some preprocessing & postprocessing

n: input size

k: window size
Sorting-based median filter

- Piecewise sorting: sort \(\frac{n}{k} \) blocks of size \(k \)
- Prior work:
 - median filter \(\approx \) as hard as piecewise sorting
- This work:
 - median filter \(\approx \) as easy as piecewise sorting

\(n \): input size
\(k \): window size
Sorting-based median filter

• High-level idea:
 • preprocessing = piecewise sorting
 • median filtering now possible in linear time!

• Simple and efficient
 • works very well also in practice
Sorting-based median filter

- Prior work:
 - median filtering \approx data structure problem
 - how to maintain sliding window efficiently?

- This work:
 - median filtering \approx algorithm problem
 - how to preprocess data?
Sorting-based median filter

- How does piecewise sorting help? We only know one median per block...

Input: 9 2 4 1 6 5 0 3 8 7

Sorted blocks: 1 2 4 6 9 0 3 5 7 8

Output: 4 ?? ?? ?? ?? ?? 5
Sorting-based median filter

- Basic idea: maintain sorted doubly-linked lists for each block
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

- Maintain “median pointers” for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

• Maintain “median pointers” for each list (one of these is the median)
Sorting-based median filter

• Median pointers:
 • straightforward in $O(1)$ time per element
 • cf. merge sort

• Sorted linked lists:
 • how to insert & delete in $O(1)$ time?
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it.
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it.
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- **Deletions** are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- **Asymmetry:**
 - deletions from sorted linked lists easy
 - insertions to sorted linked lists hard

- **Reverse time!**
 - insertions become deletions, easy
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

\[\begin{array}{cccccc}
9 & 2 & 4 & 1 & 6 \\
1 & 2 & 4 & 6 & 9 \\
\end{array}\]

\[\begin{array}{cccccc}
5 & 0 & 3 & 8 & 7 \\
0 & 3 & 5 & 7 & 8 \\
\end{array}\]
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

• Reverse time: insertions become deletions, easy to do if we start with a sorted list

[Diagram showing a sequence of numbers with arrows indicating the flow of elements, with a highlighted section of numbers 4, 1, 6, 5, 0, 3, 8, 7, 5, 3, 0, 8, 7, 8.]
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

```
9 2 4 1 6
```

```
1 2 4 6 9
```
Sorting-based median filter

- Reverse time

- How does this help?
 - insertions become deletions, nice
 - deletions become insertions, bad

- Solution: reverse time again
Sorting-based median filter

• Reverse time again:
 insert = *undo deletion*
Sorting-based median filter

- Reverse time again: insert = *undo deletion*
Sorting-based median filter

- Reverse time again:
 insert = *undo deletion*
Sorting-based median filter

- Reverse time again: insert = *undo deletion*
Sorting-based median filter

- Reverse time again: insert = *undo deletion*
Sorting-based median filter

- Reverse time again:
 insert = *undo deletion*
Sorting-based median filter

- Shrinking list: start with a sorted list
 - process one element = one deletion
- Growing list: start with a sorted list
 - first delete each element in reverse order
 - process one element = undo one deletion
Undo deletions from doubly-linked lists

- Knuth (2000): “dancing links”

- Delete: \(\text{prev}[\text{next}[i]] \leftarrow \text{prev}[i] \)
 \(\text{next}[\text{prev}[i]] \leftarrow \text{next}[i] \)

- Undo: \(\text{prev}[\text{next}[i]] \leftarrow i \)
 \(\text{next}[\text{prev}[i]] \leftarrow i \)
Sorting-based median filter

- Preprocessing: piecewise sorting
- Sliding window = sorted doubly-linked lists
 - shrinking list: easy
 - growing list: reverse time twice
 - insert = undo deletion, easy with dancing links
Sorting-based median filter

- Optimal algorithm for any input distribution, for almost any model of computing
 - just use optimal sorting algorithm for this setting
 - then $O(n)$ time postprocessing suffices

- Matching lower bound
Sorting-based median filter

• Easy to implement
• Very fast
def create_array(n):
 return [None] * n

def sort_block(alpha):
 pairs = [(alpha[i], i) for i in range(len(alpha))]
 return [i for v, i in sorted(pairs)]

class Block:
 def __init__(self, h, alpha):
 self.k = len(alpha)
 self.alpha = alpha
 self.pi = sort_block(alpha)
 self.prev = create_array(self.k + 1)
 self.next = create_array(self.k + 1)
 self.tail = self.k
 self.init_links()
 self.m = self.pi[h]
 self.s = h

 def init_links(self):
 p = self.tail
 for i in range(self.k):
 q = self.pi[i]
 self.next[p] = q
 self.prev[q] = p
 p = q
 self.next[p] = self.tail
 self.prev[self.tail] = p

 def unwind(self):
 for i in range(self.k - 1, -1, -1):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 self.m = self.tail
 self.s = 0

 def delete(self, i):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 if self.is_small(i):
 self.s -= 1
 else:
 if self.m == i:
 self.m = self.next[self.m]
 if self.s > 0:
 self.m = self.prev[self.m]
 self.s -= 1

 def undelete(self, i):
 self.next[self.prev[i]] = i
 self.prev[self.next[i]] = i
 if self.is_small(i):
 self.m = self.prev[self.m]

 def advance(self):
 self.m = self.next[self.m]
 self.s += 1

 def at_end(self):
 return self.m == self.tail

 def peek(self):
 return float('Inf') if self.at_end() else self.alpha[self.m]

 def get_pair(self, i):
 return (self.alpha[i], i)

 def is_small(self, i):
 return self.at_end() or self.get_pair(i) < self.get_pair(self.m)

 def sort_median(h, b, x):
 k = 2 * h + 1
 B = Block(h, x[0:k])
 y = []
 y.append(B.peek())
 for j in range(1, b):
 A = B
 B = Block(h, x[j*k:(j+1)*k])
 B.unwind()
 for i in range(k):
 A.delete(i)
 B.undelete(i)
 if A.s + B.s < h:
 if A.peek() <= B.peek():
 A.advance()
 else:
 B.advance()
 y.append(min(A.peek(), B.peek()))
 return y

complete Python implementation
For $bh = 10^5$, the plot shows the time (seconds) for different half-window sizes h. The libraries and algorithms compared include Mathematica, SciPy, Matlab, R, Stuetzle, Octave, and MoveMedian. The y-axis represents time in seconds, ranging from 10^{-2} to 10^3, and the x-axis represents the half-window size h, ranging from 10^0 to 10^4.
$bh = 10^8$, all generators

- HeapMedian
- SortMedian
Conclusions

• Median filtering \approx piecewise sorting

• In theory and in practice

• arXiv:1406.1717