Median Filtering is Equivalent to Sorting

Jukka Suomela · Aalto University
Helsinki Algorithms Seminar · 23 October 2014
Median filter

input: n elements
window size: k
output: $n-k+1$ medians

a.k.a. sliding window median, moving median, running median, rolling median, median smoothing
Median filter

- In numerous scientific computing systems:
 - **R**: “runmed”
 - **Mathematica**: “MedianFilter”
 - **Matlab**: “medfilt1”
 - **Octave**: “medfilt1” (signal package)
 - **SciPy**: “medfilt1” (scipy.signal module)
Median filter

• In numerous scientific computing systems:
 • \textit{R, Mathematica, Matlab, Octave, SciPy} …

• 2D version in image processing:
 • \textit{Photoshop}: “Median” filter
 • \textit{Gimp}: “Despeckle” filter
Prior work

• Trivial:
 • compute each median separately
 • $O(nk)$

• “Streaming approach”:
 • maintain a sliding window
 • $O(n \log k)$

n: input size
k: window size
Prior work

• “Streaming approach”

• Sliding window data structure, supports operations:
 • “find median”
 • “remove oldest and add new element”

n: input size
k: window size
Prior work

- Sliding window data structures for B-bit integers:
 - histogram with 2^B buckets
 - with linear scanning: $O(n2^B)$
 - with binary trees: $O(nB)$
 - with van Emde Boas trees: $O(n \log B)$

n: input size
k: window size
Prior work

• General sliding window data structures:
 • maxheap-minheap pair: $O(n \log k)$
 • binary search trees: $O(n \log k)$
 • finger trees: $O(n \log k)$
 • doubly-linked lists: $O(nk)$
 • sorted arrays: $O(nk)$

n: input size
k: window size
Prior work

- Maxheap-minheap pair
 - Astola–Campbell (1989)
 - Juhola et al. (1991)
 - Härdle–Steiger (1995) …

- Fast in practice

- Fast in theory, $O(n \log k)$ comparisons

n: input size

k: window size
Lower bounds

- For comparison-based algorithms: $O(n \log k)$ is optimal
 - Juhola et al. (1991)
 - Krizanc et al. (2005) …

- Reduction from sorting
State of the art

- $O(n \log k)$ comparisons is optimal
 - known since 1990s
 - nothing more to do here,
 case closed, problem solved

n: input size
k: window size
State of the art

- $O(n \log k)$ comparisons is optimal

- But we also know that $O(n \log n)$ comparisons is optimal for sorting in the worst case, yet this is not the full story!

 - integer sorting, adaptive sorting, cache-efficient sorting, GPU sorting …
State of the art

- And what about implementations…
 - \(R: \approx O(n \log k) \)
 - \(\text{Mathematica}: \approx O(nk) \)
 - \(\text{Matlab}: \approx O(nk) \)
 - \(\text{Octave}: \approx O(nk) \)
 - \(\text{SciPy}: \approx O(nk) \)

\(n: \) input size
\(k: \) window size

why?!

\(\text{didn’t we do better already in 1980s?} \)
Key idea

• Prior work:
 • “median filtering is as hard as sorting”

• Could we prove a matching upper bound:
 • “median filtering is as easy as sorting” ??
Key idea

• If we could show that:
 • “median filtering is equivalent to sorting”

• Then we could apply everything that we know about sorting here!
 • adaptive sorting \rightarrow adaptive median filter
 • integer sorting \rightarrow integer median filter …
Key idea

• If we could show that:
 • “median filtering is equivalent to sorting”

• Then we could apply everything that we know about sorting here!
 • all scientific computing packages know how to sort efficiently
Sorting-based lower bound

- Piecewise sorting: sort \(\frac{n}{k} \) blocks of size \(k \)
 - with comparison sort: \(O(n \log k) \) optimal
Sorting-based lower bound

median filter

pad with $\pm \infty$
Sorting-based lower bound

• Piecewise sorting: sort n/k blocks of size k
 • with comparison sort: $O(n \log k)$ optimal

• Can be solved with $O(1)$ median filter operations
 • and some preprocessing & postprocessing

n: input size
k: window size
Sorting-based median filter

• Piecewise sorting: sort n/k blocks of size k

• Prior work:
 • median filter \approx as hard as piecewise sorting

• This work:
 • median filter \approx as easy as piecewise sorting
Sorting-based median filter

- High-level idea:
 - preprocessing = piecewise sorting
 - median filtering now possible in linear time!

- Simple and efficient
 - works very well also in practice
Sorting-based median filter

- **Prior work:**
 - median filtering \approx data structure problem
 - how to maintain sliding window efficiently?

- **This work:**
 - median filtering \approx algorithm problem
 - how to preprocess data?
Sorting-based median filter

• How does piecewise sorting help?
 We only know one median per block...

\[
\begin{array}{cccccccc}
9 & 2 & 4 & 1 & 6 & 5 & 0 & 3 & 8 & 7 \\
1 & 2 & 4 & 6 & 9 & 0 & 3 & 5 & 7 & 8 \\
\end{array}
\]

input

sorted blocks

output
Sorting-based median filter

• Basic idea: maintain sorted doubly-linked lists for each block
Sorting-based median filter

- Sliding window = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- Sliding window = two sorted linked lists
Sorting-based median filter

- Sliding window = two sorted linked lists
Sorting-based median filter

• Sliding window = two sorted linked lists
Sorting-based median filter

- **Sliding window** = two sorted linked lists
Sorting-based median filter

- Maintain “median pointers” for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

• Maintain “median pointers” for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)
Sorting-based median filter

• Maintain “median pointers” for each list (one of these is the median)
Sorting-based median filter

- Median pointers:
 - straightforward in $O(1)$ time per element
 - cf. merge sort

- Sorted linked lists:
 - how to insert & delete in $O(1)$ time?
Sorting-based median filter

- *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it.
Sorting-based median filter

• *Deletions* are easy if we know what to delete: start with a sorted list + pointers to it

```
9 2 4 1 6
```

```
0 3 5 7 8
```
Sorting-based median filter

- **Deletions** are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- **Deletions** are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- **Deletions** are easy if we know what to delete: start with a sorted list + pointers to it
Sorting-based median filter

- **Deletions** are easy if we know what to delete:
 start with a sorted list + pointers to it
Sorting-based median filter

• Asymmetry:
 • deletions from sorted linked lists easy
 • insertions to sorted linked lists hard

• Reverse time!
 • insertions become deletions, easy
Sorting-based median filter

• Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list.
Sorting-based median filter

• Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list
Sorting-based median filter

• Reverse time

• How does this help?
 • insertions become deletions, nice
 • deletions become insertions, bad

• Solution: reverse time again
Sorting-based median filter

- Reverse time again: insert = *undo deletion*
Sorting-based median filter

- Reverse time again:
 insert = *undo deletion*
Sorting-based median filter

- Reverse time again:
 insert = undo deletion
Sorting-based median filter

• Reverse time again:
 insert = undo deletion
Sorting-based median filter

- Reverse time again:
 insert = *undo deletion*
Sorting-based median filter

- Reverse time again: insert = undo deletion
Sorting-based median filter

• Shrinking list: start with a sorted list
 • process one element = *one deletion*

• Growing list: start with a sorted list
 • first *delete* each element in reverse order
 • process one element = *undo one deletion*
Undo deletions from doubly-linked lists

- Knuth (2000): “dancing links”

- Delete:
 \[
 \text{prev}[\text{next}[i]] \leftarrow \text{prev}[i] \\
 \text{next}[\text{prev}[i]] \leftarrow \text{next}[i]
 \]

- Undo:
 \[
 \text{prev}[\text{next}[i]] \leftarrow i \\
 \text{next}[\text{prev}[i]] \leftarrow i
 \]
Sorting-based median filter

- Preprocessing: piecewise sorting
- Sliding window = sorted doubly-linked lists
 - shrinking list: easy
 - growing list: reverse time twice
 - insert = undo deletion, easy with dancing links
Sorting-based median filter

- Optimal algorithm for any input distribution, for almost any model of computing
 - just use optimal sorting algorithm for this setting
 - then \(O(n)\) time postprocessing suffices
- Matching lower bound
Sorting-based median filter

- Easy to implement
- Very fast
def create_array(n):
 return [None] * n

def sort_block(alpha):
 pairs = [(alpha[i], i) for i in range(len(alpha))]
 return [i for v,i in sorted(pairs)]

class Block:
 def __init__(self, h, alpha):
 self.k = len(alpha)
 self.alpha = alpha
 self.pi = sort_block(alpha)
 self.prev = create_array(self.k + 1)
 self.next = create_array(self.k + 1)
 self.tail = self.k
 self.init_links()
 self.m = self.pi[h]
 self.s = h

 def init_links(self):
 p = self.tail
 for i in range(self.k):
 q = self.pi[i]
 self.next[p] = q
 self.prev[q] = p
 p = q
 self.next[p] = self.tail
 self.prev[self.tail] = p

 def unwind(self):
 for i in range(self.k-1, -1, -1):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 self.m = self.tail
 self.s = 0

 def delete(self, i):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 if self.is_small(i):
 self.s -= 1
 else:
 if self.m == i:
 self.m = self.next[self.m]
 if self.s > 0:
 self.m = self.prev[self.m]
 self.s -= 1

 def undelete(self, i):
 self.next[self.prev[i]] = i
 self.prev[self.next[i]] = i
 if self.is_small(i):
 self.m = self.prev[self.m]

 def advance(self):
 self.m = self.next[self.m]
 self.s += 1

 def at_end(self):
 return self.m == self.tail

 def peek(self):
 return float('Inf') if self.at_end() else self.alpha[self.m]

 def get_pair(self, i):
 return (self.alpha[i], i)

 def is_small(self, i):
 return self.at_end() or self.get_pair(i) < self.get_pair(self.m)

 def sort_median(h, b, x):
 k = 2 * h + 1
 B = Block(h, x[0:k])
 y = []
 y.append(B.peek())
 for j in range(1, b):
 A = B
 B = Block(h, x[j*k:(j+1)*k])
 B.unwind()
 for i in range(k):
 A.delete(i)
 B.undelete(i)
 if A.s + B.s < h:
 if A.peek() <= B.peek():
 A.advance()
 else:
 B.advance()
 y.append(min(A.peek(), B.peek()))
 return y

complete Python implementation
$bh = 10^5$

- Mathematica
- SciPy
- Matlab
- R, Stuetzle
- R, Turlach
- Octave
- HeapMedian
- TreeMedian
- SortMedian
- MoveMedian
$bh = 10^8$, all generators

- HeapMedian
- SortMedian
Conclusions

• Median filtering \approx *piecewise sorting*

• In theory and in practice

• arXiv:1406.1717