Labelling grids locally

Christopher Purcell

Joint work with: Sebastian Brandt, Orr Fischer, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, Patric Östergård, Przemysław Uznański

1Aalto University 2ETH Zurich 3Tel Aviv 4University of Helsinki

24 November 2016
Setting the scene

- Computer scientists study what can be computed with limited resources, e.g. space and time.
- One interpretation is that we are studying just how complex time and space can be.
- Philosophically, the conjecture $P \subset \text{PSPACE}$ proposes that space is more complex than time.
- Other examples include recent work on the black hole firewall paradox.
Setting the scene

- Computer scientists study what can be computed with limited resources, e.g. space and time.
- One interpretation is that we are studying just how complex time and space can be.
Setting the scene

- Computer scientists study what can be computed with limited resources, e.g. space and time.
- One interpretation is that we are studying just how complex time and space can be.
- Philosophically, the conjecture $P \subset PSPACE$ proposes that space is more complex than time.
- Other examples include recent work on the black hole firewall paradox.
Aims

- Our broad goal is to take a similar look at reality through the lens of distributed computing.
- In distributed computing, our limited resources are information about the input and communication.
- We want to understand the distributed computational capabilities of reality.
Grids

- Grids are a reasonable place to start and are nice to reason about.
- Typical lower bound constructions are good expanders, grids are more realistic.
- Grids haven't been well studied from our point of view.
- Grids are a reasonable place to start and are nice to reason about.
- Typical lower bound constructions are good expanders, grids are more realistic.
- Grids haven’t been well studied from our point of view.
Our model

- A collection of nodes communicate in synchronous rounds and try to solve a problem.
- Each node sits at a vertex of a graph G and in each round communicates with its neighbours.
- The nodes may have some input (e.g., a unique identifier) but do not know G initially.
- Local computation is free; the complexity measure is the number of rounds.
Our model

- A collection of nodes communicate in synchronous rounds and try to solve a problem.
- Each node sits at a vertex of a graph G and in each round communicates with its neighbours.
- The nodes may have some input (e.g. a unique identifier) but do not know G initially.
- Local computation is free; the complexity measure is the number of rounds.
Our model

- Input graph is an $n \times n$ grid with a consistent orientation unless otherwise specified.
- Nodes have unique identifiers and must output a label according to some set of rules.
- We restrict ourselves to labellings that are *locally checkable*: validity in the constant radius around each node implies global validity; e.g., vertex colouring, edge colouring, maximal independent set (MIS)
Warm up: one dimension

Theorem

On an oriented cycle, every locally checkable labelling problem that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Idea: for suitable constant k, we find a MIS in G_k in $O(\log^* n)$ time and try to fix a particular labelling for each possible gap.
Warm up: one dimension

Theorem

On an oriented cycle, every locally checkable labelling problem that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.
Warm up: one dimension

Theorem

On an oriented cycle, every locally checkable labelling problem that cannot be solved in $O(\log^ n)$ time requires $\Omega(n)$ time.*

Idea: for suitable constant k, we find a MIS in G^k in $O(\log^* n)$ time and try to fix a particular labelling for each possible gap.
Warm up: one dimension

Theorem

On an oriented cycle, every locally checkable labelling problem that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Idea: for suitable constant k, we find a MIS in G^k in $O(\log^* n)$ time and try to fix a particular labelling for each possible gap.

Figure: An MIS in G^3
Warm up: one dimension

Theorem
On an oriented cycle, every solvable locally checkable labelling problem has asymptotic complexity $O(1)$, $\Theta(\log^* n)$ or $\Theta(n)$ *time.*

Definition
A vertex v in a directed graph is *flexible* if there exists a constant k such that for all $k' > k$ there is a circuit of length k that begins and ends at v.

Figure: Locally optimal cut
Warm up: one dimension

Theorem

On an oriented cycle, every solvable locally checkable labelling problem has asymptotic complexity $O(1)$, $\Theta(\log^ n)$ or $\Theta(n)$ time.*

Proof (Sketch).

If the *neighbourhood graph* of Π has a flexible label we can use the MIS. If there is no such label, then for some b nodes at distance $0 \bmod b$ must have the same label.

![Locally optimal cut](image-url)
Figure: Locally optimal cut
Speed up

Theorem
On oriented grids, every locally checkable labelling problem Π that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Idea: If we have an algorithm A that runs in $o(n)$ time, nodes running A don’t see the edges of the grid. Maybe we can simulate A in a bigger grid. The problem is the unique identifiers.
Speed up

Theorem

On oriented grids, every locally checkable labelling problem Π that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Idea: If we have an algorithm A that runs in $o(n)$ time, nodes running A don’t see the edges of the grid. Maybe we can simulate A in a bigger grid. The problem is the unique identifiers.
Theorem

On oriented grids, every locally checkable labelling problem Π that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Idea: If we have an algorithm A that runs in $o(n)$ time, nodes running A don’t see the edges of the grid. Maybe we can simulate A in a bigger grid. The problem is the unique identifiers.
Speed up

Theorem

On oriented grids, every locally checkable labelling problem Π that cannot be solved in $O(\log^* n)$ time requires $\Omega(n)$ time.

Proof (Sketch).

Given algorithm A that runs in $o(r)$ on $r \times r$ grids we want an algorithm that runs in $O(\log^* n)$ for $n \times n$ grid G.

Speed up

Theorem

On oriented grids, every locally checkable labelling problem \(\Pi \) that cannot be solved in \(O(\log^* n) \) time requires \(\Omega(n) \) time.

Proof (Sketch).

Given algorithm \(A \) that runs in \(o(r) \) on \(r \times r \) grids we want an algorithm that runs in \(O(\log^* n) \) for \(n \times n \) grid \(G \).

- Pick suitable constants \(r, k \).
- Find an MIS in \(G^k \), and use it to pick locally unique identifiers for \(r \times r \) neighbourhoods.
- Simulate \(A \).
Undecidability

Question
Can we characterise the classes of LCLs having asymptotic complexity $O(1), \Theta(\log^* n), \Theta(n)$?
Undecidability

Question
Can we characterise the classes of LCLs having asymptotic complexity $O(1)$, $\Theta(\log^* n)$, $\Theta(n)$?

Not in general - whether a given LCL has complexity $\Theta(\log^* n)$ or $\Theta(n)$ on grids is undecidable.
If we know that a problem has $\Theta(\log^* n)$ complexity on grids (or we make a lucky guess) we can find such an algorithm.

- For each r, k we enumerate all radius r neighbourhoods that represent possible fragments of an MIS in G^k.
- Construct the neighbourhood graph - an algorithm is a labelling of the neighbourhood graph.
- Use SAT solvers to find a labelling.
A 2-colouring may not exist in a grid, and is inherently a global problem. A 5-colouring of a grid is a $\Delta + 1$-colouring

- 2-colouring: $\Theta(n)$
- 3-colouring: ??
- 4-colouring: ??
- 5-colouring: $\Theta(\log^* n)$
A 2-colouring may not exist in a grid, and is inherently a global problem. A 5-colouring of a grid is a $\Delta + 1$-colouring

- 2-colouring: $\Theta(n)$
- 3-colouring: ??
- 4-colouring: $\Theta(\log^* n)$
- 5-colouring: $\Theta(\log^* n)$
A 2-colouring may not exist in a grid, and is inherently a global problem. A 5-colouring of a grid is a $\Delta + 1$-colouring

- 2-colouring: $\Theta(n)$
- 3-colouring: $\Theta(n)$
- 4-colouring: $\Theta(\log^* n)$
- 5-colouring: $\Theta(\log^* n)$
Results: two labels

\textit{a, b-labelling}: black nodes have at least \textit{a} white neighbours, white nodes have at least \textit{b} black neighbours.
Results: two labels

\textbf{a, b-labelling}: black nodes have at least \emph{a} white neighbours, white nodes have at least \emph{b} black neighbours.

<table>
<thead>
<tr>
<th>(d = 1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>1</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
</tr>
<tr>
<td>2</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>

\textbf{Figure:} Asymptotic complexity of \(a, b\)-labellings for oriented cycles

<table>
<thead>
<tr>
<th>(d = 2)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>1</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
</tr>
<tr>
<td>2</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>3</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>4</td>
<td>(O(1))</td>
<td>(\Theta(\log^* n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>

\textbf{Figure:} Asymptotic complexity of \(a, b\)-labellings for oriented 2d grids
Summary

- For directed grids all LCL problems have a $O(\log^* n)$ upper bound or $\Omega(n)$ lower bound.
- 4-colouring is $\Theta(\log^* n)$, 3-colouring is $\Theta(n)$.
- $O(\log * n)$ algorithms can be synthesised.
Questions

- Interpretation: what’s the moral of the story?
- Connections to physics and real world systems.
- What next?