Related to...

Brandt et al.: “A lower bound for the distributed Lovász local lemma”, STOC 2016

arxiv.org/abs/1511.00900
Big picture

• Tuomo presented details related to LLL in December

• Now: *why does all this matter?*
Big picture

• Our focus:
 • distributed computing
 • distributed time complexity

• Compare with:
 • Turing machines
 • classes P, NP-intermediate, NP-complete
Classic setting

- **Algorithm:** Turing machine
- **Input:** string on a tape
- **Output:** string on a tape
- **Time:** elementary steps
Classic setting

- **P**
 - lots of things: *easy to compute*

- **NP-intermediate**
 - some candidates: factoring, graph isomorphism

- **NP-complete**
 - lots of things: *easy to check*, hard to compute?
Distributed setting

Computer network + message passing
 • input: network topology + unique node identifiers
 • output: local output for each computer
 • e.g. LOCAL model

Time step:
 • all computers in parallel: send + receive + compute
Distributed setting

$t = 0$

$t = 1$

$t = 2$

$t = 3$
Distributed setting

- Fast algorithm = localised algorithm
- *Time* = *distance*
Distributed setting

- Time $O(1) =$ “fast”
 - typically fairly trivial problems

- Time $\Theta(n) =$ “slow”
 - brute-force algorithms
 - everything is trivial
Distributed setting

• Time $O(1) = \text{“fast”}$
 • typically fairly trivial problems

• Intermediate time complexity?

• Time $\Theta(n) = \text{“slow”}$
 • brute-force algorithms
 • everything is trivial
Distributed setting

• Fairly trivial to construct contrived problems of any time complexity T
 • cheat with a promise on input: “trees of diameter T”
 • cheat with problem definition: “detect if there are any red nodes within distance T”
Distributed setting

- Fairly trivial to construct contrived problems of any time complexity T
- Cf. time hierarchy theorems
- Cf. class EXP
- What could be the analogue of NP?
Idea: easy to check

• **LCL: locally checkable labelling**

• Everything bounded:
 • $O(1)$ bits of output / node
 • $O(1)$ bits of input / node
 • maximum degree $\Delta = O(1)$
Idea: easy to check

• **LCL:** locally checkable labelling

• Everything bounded

• Correct solution can be locally verified:
 • check that *radius*-$O(1)$ *neighbourhoods* of all nodes look good
Idea: easy to check

• These are locally checkable labellings:
 • vertex colouring with \(k \) colours, edge colouring …
 • maximal independent set, minimal dominating set, maximal matching, perfect matching, SAT, …

• These are not:
 • spanning trees, Eulerian cycles …
 • maximum independent set, maximum matching …
LCL problems

- **Time $O(1)$**
 - easy to compute
 - cf. P

- **Time $\Theta(n)$**
 - easy to check, hard to compute
 - cf. NP
LCL problems

- **Time $O(1)$ — *a bit too strict!***
 - easy to compute
 - cf. P

- **Time $\Theta(n)$**
 - easy to check, hard to compute
 - cf. NP
\[\log^* n \]

\[\log \log \ldots \log n \leq 1 \]

\[\log^* 10^{10000} = 5 \]
log* \(n\)

- Cole–Vishkin (1986) technique:
 - from \(x\) colours to \(O(\log x)\) colours in one round
 - paths: compare my colour with my successor
 - (value, index) of the *first bit that differs*

- Unique identifiers: \(\text{poly}(n)\) colours

- After \(O(\log^* n)\) steps: \(O(1)\) colours
$\log^* n$

- Lots of LCL problems in time $\Theta(\log^* n)$
 - typically: problems that are *easy to solve greedily*

- Examples:
 - vertex colouring with $\Delta+1$ colours, edge colouring with $2\Delta-1$ colours
 - maximal independent set, maximal matching, minimal dominating set
LCL problems

- **Time $O(\log^* n)$**
 - easy to compute, cf. P

- **Time $\Theta(n)$**
 - easy to check, hard to compute, cf. NP-complete
LCL problems

- **Time** $O(\log^* n)$
 - easy to compute, cf. P

- *Intermediate problems?*
 - cf. NP-intermediate?

- **Time** $\Theta(n)$
 - easy to check, hard to compute, cf. NP-complete
Intermediate LCL problems

• Try to construct one!
 • without resorting to a promise…

• Not so easy to cheat any more

• Perhaps everything is either strictly local or strictly global?
 • $O(\log^* n)$ or $\Theta(n)$, nothing else?
Intermediate LCL problems

• First proper examples discovered this year!

• *Sinkless orientation*:
 • orient all edges so that all nodes have outdegree ≥ 1
Intermediate LCL problems

• First proper examples discovered this year!

• Sinkless orientation:
 • orient all edges so that all nodes have outdegree ≥ 1

• 2-regular graphs: boring…
 • upper bound $O(n)$, trivial
 • lower bound $\Omega(n)$, easy
Intermediate LCL problems

• First proper examples discovered this year!

• **Sinkless orientation**:
 • orient all edges so that all nodes have outdegree \(\geq 1 \)

• 3-regular graphs: more interesting!
 • upper bound \(O(\log n) \), e.g. using LLL
 • lower bound \(\Omega(\log \log n) \)
Intermediate LCL problems

• One problem found, more with reductions!

• Natural example:
 \textit{d-colouring in d-regular graphs}, \(d \geq 3 \)

 • at least as hard as sinkless orientation, \(\Omega(\log \log n) \)

 • upper bounds from prior work, e.g. \(\text{polylog}(n) \)

 • (recall Brook’s theorem)
Intermediate LCL problems

<table>
<thead>
<tr>
<th></th>
<th>2-regular graphs</th>
<th>3-regular graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-colouring</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>3-colouring</td>
<td>(O(\log^* n))</td>
<td>intermediate</td>
</tr>
<tr>
<td>4-colouring</td>
<td></td>
<td>(O(\log^* n))</td>
</tr>
</tbody>
</table>