Non-local probes do not help with graph problems

Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, Jukka Suomela
Models of computing

Are parallel algorithms stronger than distributed algorithms?

Are there problems that can be solved much faster with parallel algorithms?
Problem setting

Graph problems

Example: *find an independent set*

• set of non-adjacent nodes
Problem setting

Easy graph problems on huge graphs

Example: *find a maximal independent set*

- set of non-adjacent nodes
- maximal w.r.t. set inclusion

Linear time is trivial — and far too slow
- beyond centralised sequential algorithms…
Centralised & sequential

One processor + one memory
 - **input**: stored in memory
 - **output**: stored in memory
 - e.g. *RAM model*

Time step:
 - read + compute + write
Centralised & sequential

One processor + one memory

• **input**: stored in memory
• **output**: stored in memory
• e.g. *RAM model*

Trivial lower bound of $\Omega(n)$

• just to read input or to write output
Parallel algorithms

Multiple processors + one shared memory

- **input**: stored in memory
- **output**: stored in memory
- e.g. CREW PRAM model

Time step:

- **all processors in parallel**: read + compute + write
Parallel algorithms

Multiple processors + one shared memory
- **input**: stored in memory
- **output**: stored in memory
- e.g. *CREW PRAM model*

n processors, one per node
- $O(1)$ time enough to read all input + write all output
Distributed algorithms

Computer network + message passing

- **input:** network topology
- **output:** local output for each computer
- e.g. *LOCAL model*

Time step:

- **all computers in parallel:** send + receive + compute
Distributed algorithms

Computer network + message passing

- **input**: network topology
- **output**: local output for each computer
- e.g. *LOCAL model*

n processors, one per node

- $O(1)$ time enough to read all input + write all output
Distributed vs. parallel

Apples vs. oranges?

Only one fundamental difference: locality

... and it doesn’t matter that much, either
Message passing

$t = 0$

$t = 1$

$t = 2$

$t = 3$

input
messages
local states
messages
local states
messages
output
Message passing

locality
$t = 1$

PRAM

input
processors
memory
processors
memory
processors
output
no locality
Distributed

- Locality
- Key limitation: information
- Well understood

Parallel

- No locality
- Key limitation: computation
- Poorly understood
Probe–query models

• User makes \textbf{queries}:
 \textit{“what is the output of node v?”}

• To answer queries, algorithm can \textbf{probe} the input:
 \textit{“who are the neighbours of node x?”}

• Time = max number of probes / query
Probe-query models

Simplest special case:
- deterministic
- no preprocessing
- no storage between queries

For a fixed input, defines a fixed output
- independent of e.g. query order
Probe–query models

Parallel decision trees
 • depth of decision tree = number of probes

Also known as:
 • “stateless deterministic centralised local algorithms”
 • “stateless deterministic local computation algorithms”
 • CentLOCAL, LCA
Probe–query models

Decision trees ≈ parallel algorithms
 • with some caveats, and some overhead…
Probe–query models

Decision trees \rightarrow parallel algorithms

- trivial
- let one processor simulate one decision tree
Probe–query models

Parallel algorithms \rightarrow decision trees

• not always trivial…

after t steps, some outputs might depend on up to c^t inputs
Probe–query models

Parallel algorithms → decision trees

• e.g. **CREW PRAM**: after t steps, each output depends on at most c^t inputs
• can be simulated with “only” exponential overhead

• if exponential sounds bad, consider $\Theta(\log \log^* n)$ vs. $\Theta(\log^* n)$
Probe–query models

Decision trees ≈ parallel algorithms

Decision trees ≈ distributed algorithms ???
Probe–query models

Distributed algorithms \rightarrow decision trees

- **locality** makes this easy
 (at least in bounded-degree graphs)
- local output after t rounds depends on at most c^t inputs
- can be simulated with “only” exponential overhead
Probe–query models

Decision trees → distributed algorithms

• ???

• distributed algorithms are localised

• decision trees are not necessarily localised, can probe everywhere
Parallel algorithms

Decision trees

Localised decision trees

Distributed algorithms
Decision trees and locality

Do we ever benefit from non-local probes?

Example:

• I need to find the solution for node v
• makes sense: probe the neighbours of v, and then probe their neighbours, etc.
• would it ever make sense to probe node 12345, or node 12v + 7?
Decision trees and locality

Do we ever benefit from non-local probes?

Yes, for certain (artificial?) problems
 • example: binary consensus on graphs

No, for “nice” problems
 • examples: graph colouring, independent sets, matchings, vertex covers, dominating sets…
Binary consensus

Problem definition:

- **input**: nodes labelled with 0 and 1
- **output**: nodes labelled with 0 and 1
- all nodes must produce the same output
- common output equal to at least one input

$\begin{align*}
0000 \rightarrow 0000 & \quad 1111 \rightarrow 1111 & \quad 0111 \rightarrow 0000 \text{ or } 1111
\end{align*}$
Binary consensus

Separation:

• $O(1)$ non-localised probes
• $\Omega(n)$ localised probes
Binary consensus

Trivial with $O(1)$ non-localised probes:

• local output of node $v =$ local input of node 1
Binary consensus

Requires $\Omega(n)$ localised probes:

\[
00000000000000 \rightarrow 00000000000000
\]

\[
11111111111111 \rightarrow 11111111111111
\]

\[
00000001111111 \rightarrow 00000000000000 \text{ or } 11111111111111
\]
Binary consensus

Requires $\Omega(n)$ localised probes:

0000000000000000 \rightarrow 0000000000000000

111111111111111 \rightarrow 111111111111111

000000001111111 \rightarrow 0000000000000000 or

111111111111111
Binary consensus

Requires $\Omega(n)$ localised probes:

\[
\begin{align*}
0000000000000000 & \rightarrow 0000000000000000 \\
1111111111111111 & \rightarrow 1111111111111111 \\
00000001111111 & \rightarrow 0000000000000000 \quad \text{or} \\
1111111111111111 & \rightarrow 1111111111111111
\end{align*}
\]
“Nice” problems

- Defined for bounded-degree graphs
- Invariant under permutation of labels
- Can be solved component-wise
“Nice” problem are localised

Theorem: non-local probes do not help much with “nice” graph problems

If solvable with $t(n) \ll \log^{1/2} n$ probes, then also solvable if limited to radius-$t(n^{\log n})$ local neighbourhoods
“Nice” problem are localised

Theorem: non-local probes do not help much with “nice” graph problems

If solvable with $O(\log^* n)$ probes, then also solvable if limited to radius-$O(\log^* n)$ local neighbourhoods
“Nice” problem are localised

Given: decision tree A for inputs of size N

Construct: local algorithm B for inputs of size $n \ll N$:

- fix a huge dummy graph H, node permutation π
- B with input G: simulate A on input $\pi(G + H)$
- non-local queries: “typically” in H, can answer them
- technical part: there is a fixed π good for any G
Parallel algorithms

Decision trees

Localised decision trees

Distributed algorithms

e.g.:

$\Theta(\log \log^* n)$

$\Theta(\log^* n)$

$\Theta(\log^* n)$