Unique Identifiers

DDA Course
week 5
Unique Identifiers

- Networks with *globally unique identifiers*
 - IPv4 address, IPv6 address, MAC address, IMEI number, ...
- “Everything” can be discovered
 - in a connected graph G, all nodes can discover full information about G in time $O(\text{diam}(G))$
round 1: \{2,3\} \{2,3\} \{2,7\} \{2,7\} \{6,7\} \{6,8\} \{5,8\} \{5,8\} \{4,9\} \{4,9\}
\{6,9\}
round 2: \{2,3\} \{2,3\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{4,9\} \{4,9\} \{4,9\} \{6,7\} \{6,8\} \{6,8\} \{6,8\} \{6,9\} \{6,9\} \{6,9\}
round 5: \{2,3\} \{2,3\} \{2,3\} \{2,3\} \{2,3\} \{2,3\} \{2,3\} \{2,3\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{2,7\} \{4,9\} \{4,9\} \{4,9\} \{4,9\} \{4,9\} \{4,9\} \{4,9\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{5,8\} \{6,7\} \{6,7\} \{6,7\} \{6,7\} \{6,7\} \{6,8\} \{6,8\} \{6,8\} \{6,8\} \{6,8\} \{6,8\} \{6,9\} \{6,9\} \{6,9\} \{6,9\} \{6,9\}
Unique Identifiers

• “Everything” can be discovered
 • in a connected graph G, all nodes can discover full information about G in time $O(\text{diam}(G))$

• “Everything” can be solved
 • once all nodes know G, solving a graph problem is just a local state transition

• Key question: what can be solved fast?
Graph Colouring

• Given unique identifiers, can we find a graph colouring fast?
 • unique identifiers from \{1, 2, ..., x\} can be interpreted as a graph colouring with \(x\) colours
 • problem: huge number of colours
 • we only need to solve a colour reduction problem: given an \(x\)-colouring, find a \(y\)-colouring for a small \(y < x\)
Greedy Graph Colouring

• All nodes of colour \(x \) pick the smallest free colour in their neighbourhood
 • there is always a free colour in the set \(\{1, 2, ..., \Delta + 1\} \)
 • reduces the number of colours from \(x \) to \(x - 1 \), assuming that \(x > \Delta + 1 \)

• Very slow...
Fast Graph Colouring

• Let’s first study a special case...

• Directed pseudoforest
 • edges oriented
 • outdegree ≤ 1
Fast Graph Colouring

• Idea: colour = *binary string*

• Reduce colours:
 - k bits \rightarrow $1 + \log_2 k$ bits
 - 2^k colours \rightarrow $2k$ colours

\[
\begin{align*}
0001110101000011 & \rightarrow 10111 \\
0001110001000011 & \rightarrow 10000 \\
0011110101000011 & \rightarrow 10001
\end{align*}
\]
Fast Graph Colouring

- Compare bit string with the successor, find the first bit that differs

```
000110001000011
10001

k bits

001110101000011
bit 8, value 1

1 + \log k bits

10001
```
Fast Graph Colouring

- Correct, no matter what the successor does

```
000011001000011

00111101000011

k bits

0011110101000011

bit 6, value 1 → 01101
bit 7, value 0 → 01110
bit 8, value 0 → 10000
...

bit 8, value 1 → 10001

1 + log k bits
```
Fast Graph Colouring

• Correct, no matter what the successor does
• For each directed edge \((u, v)\):
 • the new colour of node \(u\) is different from the new colour of its successor \(v\)
• Proper graph colouring
Fast Graph Colouring

• No successor?
 Pretend that there is one...

\[k \text{ bits} \rightarrow 0011110101000011 \rightarrow 0011110101000011 \rightarrow 0000000000000000 \rightarrow 00001 \]

\[1 + \log k \text{ bits} \]
Fast Graph Colouring

• Very fast colour reduction:
 • 2^{128} colours $\rightarrow 2 \cdot 128 = 2^8$ colours
 • 2^8 colours $\rightarrow 2 \cdot 8 = 2^4$ colours
 • 2^4 colours $\rightarrow 2 \cdot 4 = 2^3$ colours
 • 2^3 colours $\rightarrow 2 \cdot 3 = 6$ colours

• But now we are stuck – how to get below 6?
Fast Graph Colouring

• Directed pseudotree with 6 colours: how to reduce the number of colours?
Fast Graph Colouring

- Shift colours “down”: all predecessors have the same colour

![Graph Diagram]

- make up something if no successor
Fast Graph Colouring

• Now greedy works very well: there is always a free colour in set \{1, 2, 3\}
Fast Graph Colouring

- Colour reduction in directed pseudotrees
 - bit comparisons: very quickly from \(x\) to 6 colours
 - \(2^{128} \rightarrow 2^8 \rightarrow 16 \rightarrow 8 \rightarrow 6\)
 - shift + greedy: slowly from 6 to 3 colours
 - \(6 \rightarrow 5 \rightarrow 4 \rightarrow 3\)
Fast Graph Colouring

• So far:
 • colour reduction in \textit{directed pseudoforests}

• Next:
 • colour reduction in general graphs of maximum degree Δ
Input:
Input:

Colours → orientation:
Input:

Port numbers → partition in ∆ directed pseudoforests

Colours → orientation:
Find a 3-colouring for each pseudoforest

Computed in parallel, simulate Δ instances of the algorithm

Each node has Δ colours, one for each forest
G'_0: $(\Delta+1)$-coloured
– trivial, no edges
union of edges, combination of colours

\[a + b \rightarrow (a, b) \]
G'_0: $(\Delta+1)$-coloured
G'_1: $(\Delta+1)$-coloured
G_0: $(\Delta+1)$-coloured
G_1: 3-coloured
G'_1: 3$(\Delta+1)$-coloured
G'_0: $(\Delta+1)$-coloured

G'_1: $3(\Delta+1)$-coloured, reduce to $\Delta+1$ greedily
G'_1: $(\Delta+1)$-coloured
G_1': $(\Delta+1)$-coloured

G_2: 3-coloured

G_2': $3(\Delta+1)$-coloured
G'_1: ($\Delta+1$)-coloured
G'_2: 3($\Delta+1$)-coloured,
reduce to $\Delta+1$ greedily

G_1: $\Delta+1$-coloured
G_2: 3-coloured

\[G'_1 = (\Delta+1) \]
G'_2: $(\Delta+1)$-coloured
G'_2: $(\Delta+1)$-coloured

G_3: 3-coloured

G'_3: $3(\Delta+1)$-coloured
G'_2: $(\Delta+1)$-coloured
G_3: 3-coloured
G'_3: 3$(\Delta+1)$-coloured,
reduce to $\Delta+1$ greedily
$(\Delta+1)$-colouring of the original graph
Fast Graph Colouring

• Colour reduction from x to $\Delta + 1$
 • orientation: 1 round
 • partition: 0 rounds
 • 3-colouring: $O(\log^* x)$ rounds — see Exercise 5.4
 • Δ phases:
 • merge & reduce $3(\Delta + 1) \rightarrow \Delta + 1$: $2(\Delta + 1)$ rounds
• total: $O(\Delta^2 + \log^* x)$ rounds
Fast Graph Colouring

• Colour reduction from x to $\Delta + 1$
 • $O(\Delta^2 + \log^* x)$ rounds

• Plenty of applications — see exercises

• Similar techniques can be used to solve other problems
Fast Graph Colouring

- Colour reduction from x to $\Delta + 1$
 - $O(\Delta^2 + \log^* x)$ rounds
- Fast, but running time depends on x
- Next week:
 - dependence on x is necessary
 - even if $\Delta = 2$, we cannot reduce the number of colours from x to 3 in constant time, independently of x