DDA 2010, lecture 7: Local news

- Some recent work in our research group
 - algorithm for vertex covers
 - application of Cole-Vishkin technique in port-numbering model
Research problem

- Goal: finding a 2-approximation of minimum vertex cover
 - fast: time independent of n
 - port-numbering model

- From lecture 4:
 - even if we had unique identifiers, it’s not possible to find $(2 - \varepsilon)$-approximation in constant time
 - hence approximation factor 2 is the best possible
DDA 2010, lecture 7a:
Vertex covers and edge packings
Vertex cover
in the port-numbering model

• Convenient to study a more general problem: minimum-weight vertex cover

• More general problems are sometimes easier to solve?

Notation:
\(w(v) = \text{weight of } v \)
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] =$ total weight of edges incident to v
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v]$ = total weight of edges incident to v

![Graph](image)

- $y[u] = 2$
- $w(u) = 6$
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e

 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] =$ total weight of edges incident to v

\[
y[v] = 3 + 0 + 4 + 0 + 0 + 2 = 9
\]
\[
w(v) = 9
\]
Edge packings and vertex covers

- Node v is **saturated** if $y[v] = w(v)$
 - Total weight of edges incident to v is *equal* to $w(v)$, i.e., the packing constraint holds with equality

![Diagram](image)

- $y[v] = w(v)$
- $y[v] < w(v)$
Edge packings and vertex covers

- Edge e is **saturated** if at least one endpoint of e is saturated
 - Equivalently: edge weight $y(e)$ can’t be increased

$2 + \varepsilon$ would violate a packing constraint
Edge packings and vertex covers

- **Maximal edge packing**: all edges saturated
 ⇔ none of the edge weights $y(e)$ can be increased
 ⇔ saturated nodes form a vertex cover!
Edge packings and vertex covers

- **Minimum-weight vertex cover C^* difficult to find:**
 - Centralised setting: NP-hard
 - Distributed setting: integer problem (choose 0 or 1), symmetry-breaking issues

- **Maximal edge packing y easy to find:**
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)
Edge packings and vertex covers

- Minimum-weight vertex cover C^* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y: 2-approximation of C^*
 - Textbook proof: LP-duality, relaxed complementary slackness
 - Minimum-weight fractional vertex cover and maximum-weight edge packing are dual problems
 - But there’s a simple and more elementary proof...
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) \quad \text{Total weight of saturated nodes} \]
\[= \sum_{v \in C(y)} y[v] \quad \text{Saturated nodes have } y[v] = w(v) \]
\[= \sum_{e \in E} y(e) \mid e \cap C(y) \mid \quad \text{Interchange the order of summation} \]
\[\leq 2 \sum_{e \in E} y(e) \mid e \cap C^* \mid \quad \text{Each edge is covered at least } \textit{once} \text{ by } C^* \text{ and at most } \textit{twice} \text{ by } C(y) \]
\[= 2 \sum_{v \in C^*} y[v] \quad \text{Interchange the order of summation} \]
\[\leq 2 \sum_{v \in C^*} w(v) \quad \text{All nodes have } y[v] \leq w(v) \]
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) = \sum_{v \in C(y)} y[v] \]

Interchange the order of summation

\[\leq 2 \sum_{e \in E} y(e) | e \cap C(y) | \]

Each edge is covered at least \textit{once} by \(C^* \) and at most \textit{twice} by \(C(y) \)

\[= 2 \sum_{v \in C^*} y[v] \]

Interchange the order of summation

\[\leq 2 \sum_{v \in C^*} w(v) \]

All nodes have \(y[v] \leq w(v) \)
Summary

- **Goal:**
 - Find a 2-approximation of minimum-weight vertex cover
 - Deterministic algorithm in the port-numbering model

- **Idea:**
 - Find a maximal edge packing, take saturated nodes

- **Coming up next:**
 - Begin with a “greedy but safe” algorithm
 - We will see later how the Cole-Vishkin technique helps
DDA 2010, lecture 7b:
Finding a maximal edge packing
Finding a maximal edge packing: phase 1

• $y[v] =$ total weight of edges incident to node v
• **Residual capacity** of node v: $r(v) = w(v) - y[v]$
• Saturated node: $r(v) = 0$
Finding a maximal edge packing: phase I

Start with a trivial edge packing $y(e) = 0$
Finding a maximal edge packing: phase I

Each node \(v \) offers \(r(v)/\text{deg}(v) \) units to each incident edge.
Finding a maximal edge packing: basic idea

Each edge **accepts** the smallest of the 2 offers it received.

Increase $y(e)$ by this amount:

- Safe, can’t violate packing constraints
Finding a maximal edge packing: phase I

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals and graph, etc.
Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm.

We are making some progress towards finding a maximal edge packing — but...
Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm.

We are making some progress towards finding a maximal edge packing — but this is **too slow**!
Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
 - Node will be **saturated**
 - And all edges incident to it will be saturated as well

![Graph diagram]

Residual capacity was 8, will be 0
Finding a maximal edge packing: colouring trick

• Offer is a local minimum:
 • Node will be **saturated**
• Otherwise there is a neighbour with a different offer:
 • Interpret the offer sequences as “colours”
 • Nodes u and v have different colours: \{u, v\} is **multicoloured**
Finding a maximal edge packing: colouring trick

• Some progress guaranteed:
 • On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 • Such edges are be discarded in phase I: node degrees decrease by at least one on each iteration
 • Hence in Δ iterations all edges are saturated or multicoloured

$\Delta = \text{maximum degree}$
Finding a maximal edge packing: colouring trick

• Phase I: in Δ rounds all edges are saturated or multicoloured
 • Saturated edges are good — we’re trying to construct a maximal edge packing
 • Why are the multicoloured edges useful?
Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are **saturated** or **multicoloured**
 - Saturated edges are good — we’re trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let’s focus on unsaturated nodes and edges
Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers
- Assume that node weights are integers $1, 2, \ldots, W$
- Let’s analyse the offers more carefully in that case…

(2, 2/3, 1/6, 1/12)

(2, 2/3, 1/6, 1/24)
Finding a maximal edge packing: colouring trick

- Offers are rationals of the form $q/(\Delta!)^\Delta$
 - Proof idea: multiply weights by $(\Delta!)^\Delta$
 - Then $r(v)$ is a multiple of $(\Delta!)^\Delta$ before iteration 1
 - Offer $r(v)/\deg(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ on iteration 1
 - $r(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ after iteration 1
 - ... (more formally: proof by induction)
- $r(v)$ is a multiple of $\Delta!$ before iteration Δ
- Offers are integers on iteration Δ
Finding a maximal edge packing: colouring trick

• Offers are rationals of the form $q/(\Delta!)^\Delta$
 • Proof idea: if we multiplied weights by $(\Delta!)^\Delta$, then the offers would integers throughout the algorithm
 • Without scaling, we get in the worst case $q/(\Delta!)^\Delta$
• If node weights are integers 1, 2, ..., W, then offers are rationals between 0 and W
 • Offer of v is at most $r(v) \leq w(v) \leq W$
• There are at most $W(\Delta!)^\Delta$ possible offers!
Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers.
- Assume that node weights are integers $1, 2, \ldots, W$.
- Then there are at most $W(\Delta!)^\Delta$ possible offers.
- And hence only $k = (W(\Delta!)^\Delta)^\Delta$ possible colours.
Finding a maximal edge packing: colouring trick

• Only $k = (W(\Delta!)^\Delta)^\Delta$ possible colours

• Replace “inconvenient” colours (sequences of rationals) with “convenient” colours (integers 1, 2, ..., k)

1378 $(2, \frac{2}{3}, \frac{1}{6}, \frac{1}{12})$

2789 $(2, \frac{2}{3}, \frac{1}{6}, \frac{1}{24})$
Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests
Finding a maximal edge packing: phase II

- For each forest in parallel...
Finding a maximal edge packing: phase II

• For each forest in parallel:
 • Use Cole-Vishkin style colour reduction algorithm
 • Given a k-colouring, finds a 3-colouring in time $O(\log^* k)$
Finding a maximal edge packing: phase II

- For each forest and each colour $j = 1, 2, 3$ in sequence:
 - Consider all outgoing edges of colour-j nodes
Finding a maximal edge packing: phase II

- For each forest and each colour $j = 1, 2, 3$ in sequence:
 - Consider all outgoing edges of colour-j nodes
 - Node-disjoint stars: easy to saturate all such edges in parallel
 - Two simple cases:
 - saturate centre
 - saturate all leaves
Finding a maximal edge packing: phase II

• This way we can saturate all multicoloured edges:
 • Each edge belongs to one forest, and its tail has colour 1, 2, or 3
 • We simply go through all forests and all colours and therefore saturate everything
Finding a maximal edge packing: algorithm overview

- Phase I:
 - All edges become saturated or multicoloured

- Phase II:
 - Multicoloured edges are partitioned in \(\Delta \) forests
 - Forests are 3-coloured
 - 3-coloured forests are saturated
Finding a maximal edge packing: running time analysis

- Total running time:
 - All edges become saturated or multicoloured: $O(\Delta)$
 - Multicoloured forests are 3-coloured: $O(\log^* k)$
 - 3-coloured forests are saturated: $O(\Delta)$

- $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 - k is huge, but \log^* grows slowly
Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time $O(\Delta + \log^* W)$
 - $W = \text{maximum node weight}$
- Unweighted graphs: running time simply $O(\Delta)$, independent of n
- Everything can be implemented in the port-numbering model

48
Finding a maximal edge packing: recap

Phase I:

- **Residuals**
 \[r(v) = w(v) - y[v] \]
- **Offer** \(r(v) / \deg(v) \)
- **Accept minimum**, increase weights
- **Progress**: edges become *saturated* or *multicoloured* (different offers)
Finding a maximal edge packing: recap

Phase II:

- Saturated edges are already ok, we focus on multicoloured edges
- Colours are sequences of offers, re-colour with integers 1, 2, ..., k
- Partition in Δ forests
- Cole-Vishkin: 3-colouring
- Use colours to saturate all edges
Finding a maximal edge packing: some intuition

- Regular graph with uniform weights:
 - Symmetry-breaking (e.g., graph colouring) is not possible in the port-numbering model
 - But it is trivial to find a maximal edge packing directly

- “Irregular” graph:
 - We have symmetry-breaking information, which can be used to find a graph colouring, which can be used to find a maximal edge packing

- Handling these two cases turns out to be enough!
Take-home messages

- Non-trivial problems can be solved in very restrictive models of distributed computing
- Generalise!
 - More difficult problems may be easier to solve: vertex cover \rightarrow weighted vertex cover \rightarrow weighted set cover...
- Cole-Vishkin technique is a powerful tool
 - Wide range of applications far beyond the textbook examples of colouring cycles with numerical IDs
 - \log^* of almost everything is something reasonable